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Abstract

In this paper, we provide an overview of some recently introduced principles and ideas for speech enhancement with
linear filtering and explore how these are related and how they can be used in various applications. This is done in a
general framework where the speech enhancement problem is stated as a signal vector estimation problem, i.e., with
a filter matrix, where the estimate is obtained by means of a matrix-vector product of the filter matrix and the noisy
signal vector. In this framework, minimum distortion, minimum variance distortionless response (MVDR), tradeoff,
maximum signal-to-noise ratio (SNR), and Wiener filters are derived from the conventional speech enhancement
approach and the recently introduced orthogonal decomposition approach. For each of the filters, we derive their
properties in terms of output SNR and speech distortion. We then demonstrate how the ideas can be applied to
single- and multichannel noise reduction in both the time and frequency domains as well as binaural noise reduction.
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1 Review
1.1 Introduction
The problem of speech enhancement, or noise reduction
as it is also sometimes called, is a well-known, longstand-
ing problem with important applications in, for example,
speech communication systems and hearing aids, where
additive noise can, and often does, have a detrimen-
tal impact on the speech quality. Although the problem
is a classical one and many solutions have been pro-
posed throughout the years, it has arguably not been
well-understood, even for the comparably simple case of
linear filters. Indeed, it is not until quite recently that
steps have been taken to accurately formulate the problem
and characterize the desirable properties of possible solu-
tions. Simply put, the performance of speech enhance-
ment methods can be assessed in terms of two quantities,
namely noise reduction and speech distortion, and an
optimal solution to the speech enhancement would, thus,
explicitly take both into account. As an example that
this has historically not been done, consider the classical
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and well-known Wiener filter. It is usually derived from
a mean-square error (MSE) criterion, and it is not until
recently that its properties in terms of noise reduction
and speech distortion have been thoroughly analyzed [1].
Although it was shown in [1] that theWiener filter indeed
improves the signal-to-noise ratio (SNR) (this had not
been shown before), it does so without any explicit con-
trol over the amount of distortion incurred on the speech
signal. As a result, other filters are worth considering. The
minimum variance distortionless response (MVDR) fil-
ter, in principle, guarantees that no distortion is incurred
on the speech signal while the noise is reduced as much
as possible. The maximum SNR filter, on the other hand,
yields the highest possible output SNR but does so at
the cost of a considerable amount of speech distortion.
Other competing methods to linear filtering include spec-
tral subtraction methods [2], subspace methods [3,4], and
statistical methods [5-7].
In this paper, we continue the research into meth-

ods for speech enhancement based on linear filtering.
More specifically, we provide a brief overview of linear
filters derived from the conventional approach and the
recently introduced orthogonal decomposition approach.
We do so in a more general framework than what is typ-
ical. More specifically, the speech enhancement problem
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is stated as the problem of finding a rectangular filter
matrix for estimating the speech signal vector from a
noisy signal observation vector. Using the two aforemen-
tioned approaches, we derive the maximum SNR, Wiener,
tradeoff, and MVDR filters and analyze and relate their
properties. All of the derived filters are based on second-
order statistics of the observed signal as well as the noise.
While estimation of these statistics are not considered
herein, there exist multiple, well-known methods for con-
ducting this estimation in practice both in single-channel
[8,9] and multichannel [10-12] scenarios. Finally, we then
proceed to demonstrate and discuss their application in
various settings, including time and frequency domain
enhancement and single- and multichannel enhancement.
The rest of the paper is organized as follows. In

Section 1.2, we introduce the signal model and basic
assumptions and state the problem at hand. We then, in
Section 1.3, address the problem using the conventional
approach, define various useful performance measures,
and derive and compare some optimal filters. We then
proceed to present an alternative approach based on the
orthogonal decomposition in Section 1.4, and we use this
to derive optimal filters. These are then also compared in
terms of their noise reduction and speech distortion prop-
erties. In Section 1.5, we show how the two approaches
can be applied in various speech enhancement contexts
before concluding on the work in Section 2.

1.2 Signal model and problem formulation
We consider the very general signal model of an observa-
tion signal vector of lengthM:

y = [
y1 y2 · · · yM

]T
= x + v, (1)

where the superscript T is the transpose operator, and x
and v are the speech and noise signal vectors, respectively,
which are defined similarly to the noisy signal vector, y.
We assume that the components of the two vectors x and v
are zero mean, stationary, and circular. We further assume
that these two vectors are uncorrelated, i.e., E

(
xvH

) =
E

(
vxH

) = 0M×M , where E(·) denotes mathematical
expectation, the superscript H is the conjugate-transpose
operator, and 0M×M is a matrix of sizeM × M with all its
elements equal to 0. In this context, the correlation matrix
(of sizeM × M) of the observations is:

�y = E
(
yyH

)
= �x + �v, (2)

where �x = E
(
xxH

)
and �v = E

(
vvH

)
are the correla-

tion matrices of x and v, respectively. In the rest of this
paper, we assume that the rank of the speech correlation
matrix, �x, is equal to P ≤ M and the rank of the noise
correlation matrix, �v, is equal toM.

In order to be able to derive appropriate performance
measures and optimal linear filters that can achieve a clear
objective according to thesemeasures, it is of great impor-
tance to define, without any ambiguity, the desired signal
that we want to estimate or extract from the observations.
Also, in general, y should be written explicitly as a func-
tion of this desired signal. In some context, x1, the first
element of x, is the desired signal; in some other situations,
the whole vector x or part of it is the desired signal vector.
Therefore, in a general manner, our desired signal vector
is defined as:

xQ = [
x1 x2 · · · xQ

]T , (3)

where 1 ≤ Q ≤ M. In the same way, we define the vector
vQ as the first Q components of v. Then, the objective of
speech enhancement (or noise reduction) is to estimate xQ
from y. This should be done in such a way that the noise is
reduced as much as possible with no or little distortion of
the desired signal vector [1,13-15]. In the rest of this study,
we consider two important cases: without (conventional
approach) and with the orthogonal decomposition of the
speech signal vector.

1.3 Speech enhancement with the conventional
approach

1.3.1 Principle
Our objective is to estimate xQ from y, even though y is
not an explicit function of xQ. With linear filtering tech-
niques [3,4,16-20], the desired signal vector is estimated
as:

z = Hy
= H (x + v)
= xfd + vrn, (4)

where z is supposed to be the estimate of xQ,

H =

⎡
⎢⎢⎢⎣
hH1
hH2
...

hHQ

⎤
⎥⎥⎥⎦ (5)

is a rectangular filtering matrix of size Q × M, hq, q = 1,
2, . . . ,Q are complex-valued filters of lengthM, xfd = Hx
is the filtered desired signal, and vrn = Hv is the residual
noise. We deduce that the correlation matrix of z is:

�z = �xfd + �vrn , (6)

where �xfd = H�xHH and �vrn = H�vHH .
An interesting particular case is Q = P = 1. In this

scenario, Equation 4 simplifies to:

z = hHy, (7)
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where h is a complex-valued filter of length M. Since �x
is a rank 1 matrix, it can be written as:

�x = φx1dd
H , (8)

where φx1 = E
(|x1|2) is the variance of x1 and d is a vector

of lengthM, whose first element is equal to 1.

1.3.2 Performancemeasures
We are now ready to define the most important perfor-
mance measures in the context of linear filtering.
The input SNR is defined as:

iSNR = tr
(
�xQ

)
tr

(
�vQ

) , (9)

where tr(·) denotes the trace of a square matrix, and �xQ
and �vQ are the correlation matrices (of size Q×Q) of xQ
and vQ, respectively.
The output SNR, obtained from Equation 6, helps quan-

tify the SNR after filtering. It is given by:

oSNR (H) = tr
(
�xfd

)
tr

(
�vrn

) (10)

= tr
(
H�xHH)

tr
(
H�vHH

) .
Then, the main objective of speech enhancement is to

find an appropriate H that makes the output SNR greater
than the input SNR. Consequently, the quality of the noisy
signal may be enhanced.
The noise reduction factor quantifies the amount of

noise being rejected by H. This quantity is defined as the
ratio of the power of the original noise over the power of
the noise remaining after filtering, i.e.,

ξnr (H) = tr
(
�vQ

)
tr

(
H�vHH

) . (11)

Any good choice of H should lead to ξnr (H) ≥ 1, in
which case the noise has been attenuated.
The desired speech signal can be distorted by the rect-

angular filtering matrix. Therefore, the speech reduction
factor is defined as:

ξsr (H) = tr
(
�xQ

)
tr

(
H�xHH

) . (12)

For optimal filters, we should have ξsr (H) ≥ 1 as the
optimal filter would otherwise amplify the desired signal.
By making the appropriate substitutions, one can derive

the relationship among the measures defined so far, i.e.,

oSNR (H)

iSNR
= ξnr (H)

ξsr (H)
. (13)

This fundamental expression indicates the equivalence
between gain/loss in SNR and distortion (for both speech
and noise).

Another way to measure the distortion of the desired
signal vector due to the filtering operation is via the
speech distortion index defined as:

υsd (H) =
E

[(
xfd − xQ

)H (
xfd − xQ

)]
tr

(
�xQ

) . (14)

The speech distortion index is always greater than or
equal to 0 and should be upper bounded by 1 for optimal
rectangular filtering matricesa; so the higher the value of
υsd (H) is, the more the desired signal is distorted.
We define the error signal vector between the estimated

and desired signals as:

e = z − xQ (15)
= Hy − xQ,

which can also be expressed as the sum of two uncorre-
lated error signal vectors:

e = eds + ers, (16)

where

eds = xfd − xQ (17)

is the signal distortion due to the rectangular filtering
matrix and

ers = vrn (18)

represents the residual noise. Therefore, the MSE crite-
rion is:

J (H) = tr
[
E

(
eeH

)] = tr
(
�xQ

) + tr
(
H�yHH)

− tr
(
H�xITi

)
− tr

(
Ii�xHH)

,
(19)

where

Ii = [
IQ 0Q×(M−Q)

]
(20)

is the identity filtering matrix, with IQ being the Q × Q
identity matrix. Using the fact that E

(
edseHrs

) = 0Q×Q,
J (H) can be expressed as the sum of two other MSEs, i.e.,

J (H) = tr
[
E

(
edseHds

)] + tr
[
E

(
erseHrs

)]
= Jds (H) + Jrs (H) , (21)

where

Jds (H) = tr
(
�xQ

)
υsd (H) (22)

and

Jrs (H) = tr
(
�vQ

)
ξnr (H)

. (23)

We deduce that
Jds (H)

Jrs (H)
= iSNR × ξnr (H) × υsd (H)

= oSNR (H) × ξsr (H) × υsd (H) . (24)

We observe how the MSEs are related to the different
performance measures.
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1.3.3 Optimal filters
Let λmax be themaximum eigenvalue of thematrix�−1

v �x
with corresponding eigenvector bmax. It can be shown that
the maximum SNR filtering matrix is given by [20]:

Hmax =

⎡
⎢⎢⎢⎣

β1bTmax
β2bTmax

...
βQbTmax

⎤
⎥⎥⎥⎦ , (25)

where βq, q = 1, 2, . . . ,Q are arbitrary complex num-
bers with at least one of them different from 0. The
corresponding output SNR is:

oSNR (Hmax) = λmax. (26)

The output SNR with the maximum SNR filtering
matrix is always greater than or equal to the input SNR,
i.e., oSNR (Hmax) ≥ iSNR. We also have oSNR (H) ≤
λmax, ∀H. The best way to find the βqs is by minimizing
distortion. By substitutingHmax into the distortion-based
MSE and minimizing with respect to the βqs, we get

Hmax = Ii�x
bmaxbHmax

λmax
(27)

= Ii�vbmaxbHmax.

If we differentiate the MSE criterion, J (H), with respect
to H and equate the result to zero, we find the Wiener
filtering matrix:

HW = Ii�x�
−1
y

= Ii
(
IM − �v�

−1
y

)
, (28)

where IM is the M × M identity matrix. The output SNR
with the Wiener filtering matrix is always greater than
or equal to the input SNR, i.e., oSNR (HW) ≥ iSNR.
Obviously, we have

oSNR (HW) ≤ oSNR (Hmax) (29)

and, in general,

υsd (HW) ≤ υsd (Hmax) . (30)

To better compromise between noise reduction and
speech distortion, we can minimize the speech distortion
index with the constraint that the noise reduction factor is
equal to a positive value that is greater than 1, i.e.,

min
H

Jds (H) subject to Jrs (H) = βtr
(
�vQ

)
, (31)

where 0 < β < 1 to insure that we get some noise
reduction. The previous optimization leads to the tradeoff
filter:

HT,μ = Ii�x (�x + μ�v)
−1 , (32)

where μ > 0 is a Lagrange multiplier. The output SNR
with the tradeoff filtering matrix is always greater than or

equal to the input SNR, i.e., oSNR
(
HT,μ

) ≥ iSNR, ∀μ >

0. Usually, μ is chosen in a heuristic way, so that for

• μ = 1,HT,1 = HW, which is the Wiener filtering
matrix;

• μ > 1, results in a filtering matrix with low residual
noise at the expense of high speech distortion
(as compared to Wiener); and

• μ < 1, results in a filtering matrix with high residual
noise and low speech distortion (as compared to
Wiener).

We should have for μ ≥ 1,

oSNR (HW) ≤ oSNR
(
HT,μ

) ≤ oSNR (Hmax) , (33)
υsd (HW) ≤ υsd

(
HT,μ

)
, (34)

and for μ ≤ 1,

oSNR
(
HT,μ

) ≤ oSNR (HW) ≤ oSNR (Hmax) , (35)
υsd

(
HT,μ

) ≤ υsd (HW) . (36)

Another filter can be derived by just minimizing Jds (H).
We obtain the minimum distortion (MD) rectangular
filtering matrix:

HMD = Ii�x�
†
x, (37)

where �†
x is the pseudoinverse of �x. If �x is a full-rank

matrix,HMD becomes the identity filter, Ii, which does not
affect the observations. The MD filter is very close to the
well-known MVDR filter.
For Q = P = 1, it is possible to derive the MVDR filter.

Indeed, by minimizing the variance of the filter’s output,
φz = hH�yh, or the variance of the residual noise, φvrn =
hH�vh, subject to the distortionless constraint, hHd = 1,
we easily get

hMVDR = �−1
y d

dH�−1
y d

= �−1
v d

dH�−1
v d

. (38)

It can be checked that Jds (hMVDR) = 0, proving that
hMVDR is distortionless.
It is also possible to derive the MVDR (square) filter-

ing matrix for Q = M. Using the well-known eigenvalue
decomposition [21], the speech correlation matrix can be
diagonalized as:

QH
x �xQx = �x, (39)

where

Qx = [
qx,1 qx,2 · · · qx,M

]
(40)

is a unitary matrix, i.e.,QH
x Qx = QxQH

x = IM and

�x = diag
(
λx,1, λx,2, . . . , λx,M

)
(41)
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is a diagonal matrix. The orthonormal vectors qx,1,
qx,2, . . . , qx,M are the eigenvectors corresponding, respec-
tively, to the eigenvalues λx,1, λx,2, . . . , λx,M of the matrix
�x, where λx,1 ≥ λx,2 ≥ · · · ≥ λx,P > 0 and λx,P+1 =
λx,P+2 = · · · = λx,M = 0. Let

Qx = [
Tx 	x

]
, (42)

where the M × P matrix Tx contains the eigenvectors
corresponding to the nonzero eigenvalues of �x and the
M × (M − P) matrix 	x contains the eigenvectors corre-
sponding to the null eigenvalues of �x. It can be verified
that

IM = TxTH
x + 	x	

H
x . (43)

Notice that TxTH
x and 	x	H

x are two orthogonal pro-
jection matrices of rank P andM−P, respectively. Hence,
TxTH

x is the orthogonal projector onto the speech sub-
space (where all the energy of the speech signal is concen-
trated), or the range of �x and 	x	

H
x is the orthogonal

projector onto the null subspace of�x. Using Equation 43,
we can write the speech vector as:

x = QxQH
x x

= TxTH
x x. (44)

We deduce from Equation 44 that the distortionless
constraint is:

HTx = Tx, (45)

since, in this case, Hx = HTxTH
x x = TxTH

x x = x. Now,
from the criterion:

min
H

tr
(
H�vHH)

subject to HTx = Tx, (46)

we find the MVDR:

HMVDR = Tx
(
TH
x �−1

v Tx
)−1 TH

x �−1
v . (47)

Equation 47 can also be expressed as:

HMVDR = Tx
(
TH
x �−1

y Tx
)−1

TH
x �−1

y . (48)

Of course, for P = M, the MVDR filtering matrix sim-
plifies to the identity matrix, i.e., HMVDR = IM . As a
consequence, we can state that the higher the dimen-
sion of the null space of �x is, the more the MVDR is
efficient in terms of noise reduction. The best scenario
corresponds to P = 1. We can verify that Jds (HMVDR) =
0.

1.4 Speech enhancement with the orthogonal
decomposition of the speech signal vector

1.4.1 Principle
Another perspective for speech enhancement is to extract
the desired signal vector, xQ, from x. This way, the obser-
vation signal vector, y, will be an explicit function of xQ.
As a consequence, the objectives that we wish to achieve
are much easier to handle.

In this section, we assume that the elements xq , q = 1,
2, . . . ,Q are not fully coherent, so that �xQ is a full-rank
matrix. To extract xQ from x, we need to decompose x into
two orthogonal components: one correlated with (or is a
linear transformation of) the desired signal vector and the
other one orthogonal to xQ and, hence, will be considered
as an interference signal vector. Specifically, the vector x
is decomposed into the following form [22,23]:

x = �xxQ�−1
xQ xQ + xi

= xd + xi, (49)

where

xd = �xxQ�−1
xQ xQ

= 
xxQxQ (50)

is a linear transformation of the desired signal vector,
�xxQ = E

(
xxHQ

)
is the cross-correlation matrix (of size

M × Q) between x and xQ, 
xxQ = �xxQ�−1
xQ , and

xi = x − xd (51)

is the interference signal vector. It is easy to see that xd and
xi are orthogonalb, i.e.,

E
(
xdxHi

) = 0M×M . (52)

We observe that the first Q elements of xd and xi are
equal to xQ and 0Q×1, respectively. Now, we can express
the observation signal vector as an explicit function of xQ,
i.e.,

y = 
xxQxQ + xi + v. (53)

With this approach, the estimator is:

z′ = H′ [xd + xi + v]
= x′

fd + x′
ri + v′

rn, (54)

where

H′ =

⎡
⎢⎢⎢⎣
h′H
1

h′H
2
...

h′H
Q

⎤
⎥⎥⎥⎦ (55)

is a rectangular filtering matrix of size Q × M, h′
q, q =

1, 2, . . . ,Q are complex-valued filters of length M, x′
fd =

H′xd is the filtered desired signal, x′
ri = H′xi is the resid-

ual interference, and v′
rn = H′v is the residual noise. The

correlation matrix of z′ is then:

�z′ = �x′
fd

+ �x′
ri

+ �v′
rn , (56)

where �x′
fd

= H′�xdH′H , with �xd = 
xxQ�xQ
H
xxQ

being the correlation matrix (whose rank is equal to Q)
of xd, �x′

ri
= H′�xiH′H , with �xi = E

(
xixHi

)
being the

correlation matrix of xi, and �v′
rn = H′�vH′H .



Benesty et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:162 Page 6 of 10
http://asp.eurasipjournals.com/content/2014/1/162

1.4.2 Performancemeasures
The input SNR is identical to the definition given in
Equation 9.
From Equation 56, we deduce the output SNR:

oSNR
(
H′) =

tr
(
�x′

fd

)

tr
(
�x′

ri
+ �v′

rn

)

=
tr

(
H′
xxQ�xQ
H

xxQH
′H

)
tr

(
H′�inH′H) , (57)

where

�in = �xi + �v (58)

is the correlation matrix of the interference-plus-noise.
The obvious objective is to find an appropriateH′ in such
a way that oSNR

(
H′) ≥ iSNR.

The noise reduction factor is:

ξnr
(
H′) = tr

(
�vQ

)
tr

(
H′�inH′H) . (59)

A reasonable choice of H′ should give a value of the
noise reduction factor greater than 1, meaning that the
noise and interference have been attenuated by the filter.
The speech reduction factor is defined as:

ξsr
(
H′) = tr

(
�xQ

)
tr

(
H′
xxQ�xQ
H

xxQH
′H

) . (60)

A rectangular filtering matrix that does not affect the
desired signal requires the constraintc:

H′
xxQ = IQ. (61)

Hence, ξsr
(
H′) = 1 in the absence of (correlated)

distortion and ξsr
(
H′) > 1 in the presence of distortion.

Again, we have the fundamental relationship:

oSNR
(
H′)

iSNR
= ξnr

(
H′)

ξsr (H′)
. (62)

When no distortion occurs, the gain in SNR coincides
with the noise reduction factor.
We can also quantify the distortion with the speech

distortion index:

υsd
(
H′) =

tr
[(
H′
xxQ − IQ

)
�xQ

(
H′
xxQ − IQ

)H]
tr

(
�xQ

) . (63)

The speech distortion index is always greater than or
equal to 0 and should be upper bounded by 1 for optimal
filtering matrices, which corresponds to the case where
the filtering matrix is just a matrix of zeros; so the higher
the value of υsd

(
H′) is, the more the desired signal is

distorted.

The error signal is:

e′ = z′ − xQ (64)
= H′y − xQ.

It can be written as the sum of two orthogonal error
signal vectors:

e′ = e′
ds + e′

rs, (65)

where

e′
ds = x′

fd − xQ
= (

H′
xxQ − IQ
)
xQ (66)

is the signal distortion due to the rectangular filtering
matrix and

e′
rs = x′

ri + v′
rn

= H′xi + H′v (67)

represents the residual interference-plus-noise. Having
defined the error signal, we can now write the MSE
criterion:

J
(
H′) = tr

[
E

(
e′e′H)]

= tr
(
�xQ

) + tr
(
H′�yH′H) − tr

(
H′�xITi

)

− tr
(
Ii�xH′H)

= Jds
(
H′) + Jrs

(
H′) ,

(68)

where

Jds
(
H′) = tr

(
�xQ

) + tr
(
H′�xdH

′H) − tr
(
H′�xdI

T
i

)

− tr
(
Ii�xdH

′H)
(69)

and

Jrs
(
H′) = H′�inH′H . (70)

We deduce that
Jds

(
H′)

Jrs (H′)
= iSNR × ξnr

(
H′) × υsd

(
H′)

= oSNR
(
H′) × ξsr

(
H′) × υsd

(
H′) , (71)

showing how the MSEs are related to the different perfor-
mance measures.

1.4.3 Optimal filters
Let λ′

max be the maximum eigenvalue of the matrix
�−1

in �xd with corresponding eigenvector b′
max. We eas-

ily find that the maximum SNR filtering matrix with
minimum distortion is:

H′
max = Ii�xd

b′
maxb′H

max
λ′
max

(72)

= Ii�inb′
maxb

′H
max
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and

oSNR
(
H′

max
) = λ′

max. (73)

The output SNR with the maximum SNR filtering
matrix is always greater than or equal to the input SNR,
i.e., oSNR

(
H′

max
) ≥ iSNR. We also have oSNR

(
H′) ≤

λ′
max, ∀H′.
The minimization of the MSE criterion leads to the

Wiener filtering matrix:

H′
W = Ii�x�

−1
y

= HW, (74)

which is identical to the Wiener filter obtained with the
classical approach. Even though theWiener filter obtained
with the two different approaches is the same, its evalu-
ation with the performance measures is slightly different
due the conceptual difference between the two methods.
We always have oSNR

(
H′

W
) ≥ iSNR.

We can rewrite the Wiener filtering matrix as:

H′
W =

(
IQ + �xQ
H

xxQ�−1
in 
xxQ

)−1
�xQ
H

xxQ�−1
in

=
(
�−1

xQ + 
H
xxQ�−1

in 
xxQ

)−1

H
xxQ�−1

in . (75)

This form is interesting because it shows an obvious link
with some other optimal filtering matrices as it will be
verified later.
Another way to express the Wiener filter is:

H′
W = Ii
xxQ�xQ
H

xxQ�−1
y

= Ii
(
IM − �in�

−1
y

)
. (76)

The MVDRd rectangular filtering matrix is obtained
by minimizing the MSE of the residual interference-plus-
noise, Jrs

(
H′), subject to the constraint that the desired

signal vector is not distorted. Mathematically, this is
equivalent to:

min
H′ tr

(
H′�inH′H)

subject to H
xxQ = IQ. (77)

The solution to the above optimization problem is:

H′
MVDR =

(

H
xxQ�−1

in 
xxQ

)−1

H
xxQ�−1

in , (78)

which is interesting to compare to H′
W [Equation 75]. We

can rewrite the MVDR as:

H′
MVDR =

(

H
xxQ�−1

y 
xxQ

)−1

H
xxQ�−1

y . (79)

We should always have

oSNR
(
H′

MVDR
) ≤ oSNR

(
H′

W
) ≤ oSNR

(
H′

max
)
. (80)

Byminimizing the speech distortion index with the con-
straint that the noise reduction factor is equal to a positive
value that is greater than 1, we find the tradeoff filtering
matrix:

H′
T,μ′ = �xQ
H

xxQ

(

xxQ�xQ
H

xxQ + μ′�in
)−1

, (81)

which can be rewritten as:

H′
T,μ′ =

(
μ′�−1

xQ + 
H
xxQ�−1

in 
xxQ

)−1

H
xxQ�−1

in , (82)

where μ′ ≥ 0 is a Lagrange multiplier. Usually, μ′ is
chosen in an ad hoc way, so that for

• μ′ = 1,H′
T,1 = H′

W, which is the Wiener filtering
matrix;

• μ′ = 0 [from Equation 82], H′
T,0 = H′

MVDR, which is
the MVDR filtering matrix;

• μ′ > 1, results in a filtering matrix with low residual
noise (as compared to Wiener) at the expense of high
speech distortion; and

• μ′ < 1, results in a filtering matrix with high residual
noise and low speech distortion (as compared to
Wiener).

We always have oSNR
(
H′

T,μ′
)

≥ iSNR, ∀μ′ ≥ 0. We
should also have for μ′ ≥ 1,

oSNR
(
H′

MVDR
) ≤ oSNR

(
H′

W
) ≤ oSNR

(
H′

T,μ′
)

≤ oSNR
(
H′

max
)

(83)

and for μ′ ≤ 1,

oSNR
(
H′

MVDR
) ≤ oSNR

(
H′

T,μ′
)

≤ oSNR
(
H′

W
)

≤ oSNR
(
H′

max
)
.

(84)

The case Q = M is interesting because for both
approaches, performance measures and optimal square
filtering matrices are identical. We can draw the same
conclusions for the case Q = P = 1.

1.5 Application examples
In this section, we show how the two approaches can be
applied to different applications of speech enhancement.

1.5.1 Single-channel noise reduction in the time domain
The single-channel noise reduction problem in the time
domain consists of recovering the desired signal (or clean
speech) x(t), t being the discrete-time index, of zero mean
from the noisy observation (microphone signal) [1]:

y(t) = x(t) + v(t), (85)
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where v(t), assumed to be a zero-mean random process,
is the unwanted additive noise that can be either white or
colored but is uncorrelated with x(t).
The signal model given in Equation 85 can be put into

a vector form by considering the Lmost recent successive
time samples, i.e.,

y(t) = [
y(t) y(t − 1) · · · y(t − L + 1)

]T
= x(t) + v(t), (86)

where x(t) and v(t) are defined in a similar way to y(t). We
define the desired signal vector as:

xQ(t) = [
x(t) x(t − 1) · · · x(t − Q + 1)

]T , (87)

that we can estimate from y(t) with either of the two
methods. Estimating the desired signal using conven-
tional, rectangular filters was considered in [24], while
[22] considers the orthogonal decomposition approach.
Simulation results showing the performance of the two fil-
teringmethods for single-channel noise reduction are also
found in [22,24].

1.5.2 Single-channel noise reduction in the time-frequency
domain

Using the short-time Fourier transform (STFT),
Equation 85 can be rewritten in the time-frequency
domain as [13,25]:

Y (k, n) = X(k, n) + V (k, n), (88)

where the zero-mean complex random variables Y (k, n),
X(k, n), and V (k, n) are the STFTs of y(t), x(t), and v(t),
respectively, at frequency bin k ∈ {0, 1, . . . ,K−1} and time
frame n. Here, the sample X(k, n) is the desired signal.
The simplest way to estimate X(k, n) is by apply-

ing a positive gain to Y (k, n) with the conventional
approach. However, the noise reduction performancemay
be limited.
A more general approach to estimate the desired sig-

nal is by filtering the observation signal vector of length P
[25]:

y(k, n) = [Y (k, n) Y (k, n − 1) · · · Y (k, n − P + 1)]T ,
(89)

and using the orthogonal decomposition to extract X(k, n)
from x(k, n), which is defined in a similar way to y(k, n).
Thanks to this approach, the non-negligible interframe
correlation is taken into account, which is not the case
when just a gain is used. As a consequence, we can
better compromise between noise reduction and speech
distortion.
The STFT-based filtering methods for single-channel

noise reduction was considered in, e.g., [26-28], where
experimental results can also be found.

1.5.3 Multichannel noise reduction in the time domain
In the multichannel scenario, we have a microphone array
withM sensors that captures a convolved source signal in
some noise field. In the time domain, the received signals
are expressed as [29,30]:

ym(t) = gm(t) ∗ s(t) + vm(t)
= xm(t) + vm(t), m = 1, 2, . . . ,M, (90)

where gm(t) is the acoustic impulse response from the
unknown speech source, s(t), location to the mth micro-
phone, ∗ stands for linear convolution, and xm(t) and
vm(t) are, respectively, the convolved speech and addi-
tive noise at microphone m. We assume that the signals
xm(t) = gm(t) ∗ s(t) and vm(t) are uncorrelated, zero
mean, real, and broadband. By definition, xm(t) is coher-
ent across the array. The noise signals, vm(t), are typically
only partially coherent across the array.
By processing the data by blocks of L time samples, the

signal model given in Equation 90 can be put into a vector
form as:

ym(t) = xm(t) + vm(t), m = 1, 2, . . . ,M, (91)

where

ym(t) = [
ym(t) ym(t − 1) · · · ym(t − L + 1)

]T (92)

is a vector of length L, and xm(t) and vm(t) are defined
similarly to ym(t). It is more convenient to concatenate the
M vectors ym(t), m = 1, 2, . . . ,M together as:

y(t) = [
yT1 (t) yT2 (t) · · · yTM(t)

]T
= x(t) + v(t), (93)

where vectors x(t) and v(t) of length ML are defined in a
similar way to y(t).
We consider x1(t) as the desired signal vector. Our prob-

lem then may be stated as follows: given y(t), our aim
is to preserve x1(t) while minimizing the contribution of
v(t). Both approaches can be used but the one based on
the orthogonal decomposition is more appropriate since
it will better exploit the correlation among the convolved
speech signals at the microphones for noise reduction.
The orthogonal decomposition approach for multichan-
nel noise reduction was considered in, e.g., [31,32], where
experimental results can also be found.

1.5.4 Multichannel noise reduction in the frequency domain
In the frequency domain, at the frequency index f ,
Equation 90 can be expressed as:

Ym(f ) = Gm(f )S(f ) + Vm(f )
= Xm(f ) + Vm(f ), m = 1, 2, . . . ,M, (94)
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where Ym(f ), Gm(f ), S(f ), Vm(f ), and Xm(f ) are the
frequency-domain representations of ym(t), gm(t), s(t),
vm(t), and xm(t), respectively.
It is more convenient to write theM frequency-domain

microphone signals in a vector notation:

y(f ) = g(f )S(f ) + v(f )
= x(f ) + v(f )
= d(f )X1(f ) + v(f ), (95)

where

y(f ) = [
Y1(f ) Y2(f ) · · · YM(f )

]T ,

x(f ) = [
X1(f ) X2(f ) · · · XM(f )

]T
= S(f )g(f ),

g(f ) = [
G1(f ) G2(f ) · · · GM(f )

]T ,

v(f ) = [
V1(f ) V2(f ) · · · VM(f )

]T ,

and

d(f ) =
[
1

G2(f )
G1(f )

· · · GM(f )
G1(f )

]T
(96)

= g(f )
G1(f )

.

Expression in Equation 95 depends explicitly on the
desired signal, X1(f ), that we want to estimate from y(f ).
There is another interesting way to write Equation 95.

First, it is easy to see that

Xm(f ) = γXmX1(f )X1(f ), m = 1, 2, . . . ,M, (97)

where

γXmX1(f ) = E
[
Xm(f )X∗

1 (f )
]

E
[∣∣X1(f )

∣∣2] (98)

= Gm(f )
G1(f )

, m = 1, 2, . . . ,M

is the partially normalized [with respect to X1(f )]
coherence function between Xm(f ) and X1(f ). Using
Equation 97, we can rewrite Equation 95 as:

y(f ) = γ xX1(f )X1(f ) + v(f ), (99)

where

γ xX1(f ) = [
1 γX2X1(f ) · · · γXMX1(f )

]T
= E

[
x(f )X∗

1 (f )
]

E
[∣∣X1(f )

∣∣2]
= d(f ) (100)

is the partially normalized [with respect to X1(f )] coher-
ence vector (of length M) between x(f ) and X1(f ). This
shows that the two approaches for noise reduction are

identical. More details on multichannel noise reduction in
the frequency domain as well as experimental results can
be found in [25,33].

1.5.5 Binaural noise reduction
Binaural noise reduction [34] consists of the estimation of
the received speech signal at two different microphones
with a sensor array of M microphones. One estimate is
for the left ear and the other for the right ear. This way
and thanks to our binaural hearing system, we will be
able to localize the speech source in the space. In the fre-
quency domain, we can estimate, for example, X1(f ) and
X2(f ). As explained above, the two methods are the same.
In the time domain, we can estimate, for example, x1(t)
and x2(t). The method based on the orthogonal decom-
position is more appropriate since it may distort less the
signals. Distortion in binaural noise reduction is prob-
lematic since it may affect the cues for localization and
separation. Experimental results and further theoretical
details on binaural noise reduction using the approaches
mentioned herein are found in [35,36].

2 Conclusions
In this paper, we have given a brief overview of linear
filtering methods for speech enhancement based on two
approaches: a so-called conventional approach and an
approach based on the orthogonal decomposition. In the
context of these two different approaches, various optimal
filters (e.g., MVDR, maximum SNR, and Wiener filters)
have been derived and their properties in terms of differ-
ent performance measures have been assessed and com-
pared. These performance measures, simply put, quantify
the properties of the filters and approaches in terms of
noise reduction and speech distortion and show how
they offer different tradeoffs between the two. We have
also demonstrated how the approaches can be applied in
various speech enhancement contexts, including single-
and multichannel enhancement in both the time and
frequency domains and in binaural noise reduction.

Endnotes
aThe upper bound comes from the fact that this

distortion is obtained when the filtering matrix only
contains zeros, which should be the maximum expected
distortion.

bIt is legitimate to consider xi as an interference, since
the desired signal is entirely in xd, and xi and xd are
uncorrelated.

cHere, the distortionless constraint is in the sense that
we can perfectly recover the desired signal vector, even
though the residual interference can add some
uncorrelated distortion to the desired signal.

dWe use the terminology MVDR because we can
completely extract the desired signal with this filter.
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