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Abstract

In this paper, rate distortion performance of nested sampling and coprime sampling is studied. It is shown that with
the increasing of distortion, the data rate decreases. With these two sparse sampling algorithms, the data rate is
proved to be much less than that without sparse sampling. With the increasing of sampling spacings, the data rate
decreases at certain distortion, which is because with more sparse sampling, less number of bits is required to
represent the information. We also prove that with the same sampling pairs, the rate of nested sampling is less than
that of coprime sampling at the same distortion. The reason is that nested sampling collects a little less number of
samples than coprime sampling with the same length of data, which is a little sparser than coprime sampling.
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1 Introduction
The twenty-first century is awash with data. Data are
flooding in at rates never seen before, doubling almost
every 18months [1], as result of new information gathered
from Radar, Web communities, newly deployed smart
assets, and customer data from public, proprietary, pur-
chased sources, and so forth. For example, oil companies,
telecommunication companies, and other data-centric
industries have had huge data for long time. Data is being
collected and transmitted at unprecedented scale [2,3] in
a wide range of application areas nowadays. The phrase
‘Big Data’ as defined by US National Science Foundation
in its recent solicitation, refers to large, diverse, complex,
distributed data sets generated from instruments, sensors,
Internet transactions, email, video, click streams, and all
other digital sources available today and in the future.
Unstructured data is data that does not follow a speci-

fied format, which is really most of the Big Data. Radar or
sonar data is one typical example, which includes meteo-
rological, vehicular, and oceanographic seismic informa-
tion, such as in [4], Big Data from O’Reilly radar was
described.
And many efforts have been made to develop suitable

compression techniques for Big Data. However, tradi-
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tional compression methods [5,6] are all based on Nyquist
rate, which will have poor efficiency in terms of both
sampling rate and computational complexity. Unlike tra-
ditional compression techniques, some sparse sampling
algorithms have been proposed to overcome Nyquist
sampling requirement, like compressive sensing, nested
sampling, and coprime sampling.
Nested sampling [7] is an non-uniform sampling, using

two different samplers in each period. Although the signal
is sampled sparsely and non-uniformly, the autocorrela-
tion of signal could be estimated at all lags. Therefore,
although the samples can be arbitrarily sparse, it keeps
the signal’s statistical information [8].While coprime sam-
pling uses two uniform samplers, with sample spacings P
and Q coprime integers. The authors in [8] have already
proved that these two sets of samples of the signal could
fully estimate all lags of autocorrelation of the original sig-
nal. As both nested sampling and coprime sampling could
keep the statistical property of the original signal, these
two sampling algorithms could be applied to Big Data to
highly reduce the transmission or storage cost of Big Data.
Information rate distortion function is a measure of dis-

tortion between the original source and its representation.
In this paper, we will provide theoretical rate distortion
performance, because of these two sparse sampling algo-
rithms, either nested sampling (NS) or coprime sampling
(CS). We will show that with these two sparse sampling
algorithms, the data rate is much less than that without
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sparse sampling for a given distortion. With the increas-
ing of sampling spacings, the data rate decreases at certain
distortion, which is because with more sparse sampling,
less number of bits is required to represent the informa-
tion. We will also prove that with the same sampling pairs,
the rate of nested sampling is less than that of coprime
sampling at the same distortion.
The rest of this paper is organized as follows. In

Section 2, we give a brief introduction of nested sampling
and coprime sampling separately. Theoretical derivation
of rate distortion performance of nested sampling and
coprime sampling is detailed in Sections 3.1 and 3.2.
Also, the theoretical analysis and comparison of these
two sparse sampling is given in Section 3.3. In Section 4,
numerical results are provided to verify the theoretical
rate distortion results derived in Section 3. Conclusions
are given in Section 5.

2 Preliminaries
2.1 Nested sampling
The nested array was first introduced in [7] as an effec-
tive approach to array processing with enhanced degrees
of freedom [9,10]. In time domain, the signal’s autocor-
relation could also be obtained from nested sampling
structure [11]. And although the samples from this nested
sparse sampling are sparsely and non-uniformly located,
the samples of the autocorrelation can be computed at
any specified rate. Some applications which depend on the
difference co-array, or autocorrelation, like Direction-of-
arrival (DOA) estimation and beamforming could be done
based on nested sampling.
In the simplest form, there are two levels of sampling

density in nested sampling [11-14], with the level 1 sam-
ples at the N1 locations and the level 2 samples at the N2
locations.

1 ≤ l ≤ N1, for level 1

(N1 + 1)m, 1 ≤ m ≤ N2, for level 2
An example of periodic sparse sampling using nested

sampling structure is shown in Figure 1, with N1 = 3 and
N2 = 5. The cross differences are given by

k = (N1 + 1)m − l, 1 ≤ m ≤ N2, 1 ≤ l ≤ N1. (1)

The cross differences (2) are in the following range with
the maximum value (N1 + 1)N2 − 1 [9,11], except the
integers and the corresponding negated versions shown
in (3).

−[(N1 + 1)N2 − 1]≤ k ≤ [(N1 + 1)N2 − 1] (2)

(N1 + 1), 2(N1 + 1), · · · , (N2 − 1)(N1 + 1) (3)

For example, consider the example in Figure 1, where
N1 = 3, N2 = 5, 1 ≤ m ≤ 5 and 1 ≤ l ≤ 3, the cross
differences k = (N1 + 1)m − l will achieve these values

1, 2, 3, (), 5, 6, 7, (), 9, 10, 11, (), 13, 14, 15, (), 17, 18, 19.

The difference 0 is also missing, for the reason that m
and l are nonzero. Meanwhile, we notice that all of the
missing differences could be covered by the self differ-
ences among the second array,

(N1 + 1)(m1 − m2), 1 ≤ m1,m2 ≤ N2. (4)

Combining the cross differences and the self-differences
is the difference-co-array, which is a filled difference co-
array as shown in (2). This indicates that using nested
array structure, although sparse samples are obtained, the
degrees of freedom is enhanced,

2[(N1 + 1)N2 − 1]+1 = 2(N1 + 1)N2 − 1. (5)

Based on the principle above, a sparse non-uniform
sampling using nested sampling structure could be per-
formed as in Figure 1. There are two levels of nesting, with
N1 level-1 samples and N2 level-2 samples in each period,
with period (N1 +1)N2. It is obvious that nested sampling
is non-uniform and the samples obtained are very sparse.
We could notice that, in (N1 +1)N2T seconds, there are

totally N1 + N2 samples. Therefore, the average sampling
rate is

fs,nested = N1 + N2
(N1 + 1)N2T

≈ 1
N1T

+ 1
N2T

<
1
T

(6)

Here, T = 1/fn, fn ≥ 2 fmax is the Nyquist sam-
pling frequency. As the Nyquist sampling rate is 1/T , the

N1 N2 N1 N1N2 N2

1)N22(N1 1)N23(N11)N2(N1

5,3
21

NN

Figure 1 Nested sampling with N1 = 3,N2 = 5.
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average sampling rate of nested sampling is smaller than
the conventional Nyquist sampling rate.

2.2 Co-prime sampling
Different from nested sampling, coprime sampling
involves two sets of uniformly spaced samplers [8,12-14]
as shown in Figure 2, each of them are sparsely sampled.
The coprime sampling uniformly sample the source sig-

nal using two sub-Nyquist samplers, with sample spacing
PT and QT respectively, where P and Q are coprime
integers with P < Q. 1/T Hz is the Nyquist rate for a ban-
dlimited process, i.e., 1/T = 2 fmax, fmax being the highest
frequency.

x(n) = xc(nT). (7)

Consider the product

x(Pn1)x∗(Qn2), (8)

where x(Pn1) and x(Qn2) comes from the first and the
second sampler. Let the difference as

k = Pn1 − Qn2. (9)

It has been shown that k can achieve any integer value
in the range 0 ≤ k ≤ PQ− 1 in [11], if n1 and n2 are in the
ranges 0 ≤ n1 ≤ 2Q − 1 and 0 ≤ n2 ≤ P − 1.
For coprime sampling, the two samplers totally collect

P + Q samples in PQT seconds, so the average sampling
rate is

fs,coprime = P + Q
PQT

= 1
PT

+ 1
QT

<
1
T
. (10)

Same as in nested sampling, T = 1/fn, fn ≥ 2 fmax is the
Nyquist sampling frequency. It is obvious the average sam-
pling rate of coprime sampling is also much smaller than
the conventional Nyquist sampling rate. However, the sig-
nal’s second-order statistics, like the autocorrelation, is
kept, which allows us to sample a signal sparsely and esti-
mate some aspects of the signal (spectra, DOA, and so on)
at a significantly higher resolution.

3 Rate distortion performance
Information rate distortion function is a measure of dis-
tortion between the original source and its representa-
tion. Our purpose is to construct a distortion function

which can measure the distortion because of these two
sparse sampling algorithms, either nested sampling (NS)
or coprime sampling (CS). Sparse sampling can cause
possible distortion because less number of samples are
used. A wide variety of distortion functions, such as
Euclidean distance, Hamming distance, Mahalanobis dis-
tance, and Itakura-Saito distance have been used. In this
paper, squared error distortion is used. The original sam-
ples are denoted as xi, i = 1, · · · , L, where L is the total
number of samples. Assume that all original informa-
tion from L samples is XL = [x1, x2, · · · , xL], the selected
information after sparse sampling can be represented
as [15]

X̂L′ = S(XL), (11)

where S(·) denotes sparse sampling, either nested sam-
pling or coprime sampling. X̂L′ = [x̂1, x̂2, · · · , x̂L′ ] and
L′ < L. The distortion associated with the sparse sampling
between all original samples and the selected samples is

D = Ed(XL, X̂L′
), (12)

where d(·) is the distortion function.
The expectation in (12) is with respect to the probability

distribution on XL. The rate distortion function R(D) is
the minimum of data rates R such that (R,D) is in the rate
distortion region for a given distortion. From [16,17], we
know that information rate distortion function is defined
as

R(D) = min
Ed(XL,X̂L′

)≤D
I(XL; X̂L′

), (13)

where I(XL; X̂L′
) is the mutual information between XL

and X̂L′ .

I(XL; X̂L′
) = H(XL) − H(XL|X̂L′

)

= H(XL) − H(XL − X̂L′ |X̂L′
)

(a)≥ H(XL) − H(XL − X̂L′
),

(14)

where inequality (a) follows from the fact that condition
reduces the entropy.
From formula (13), we know that

Ed(XL, X̂L′
) ≤ D (15)

PT

QT

x (Pn)

x (Qn)
0

0 2PP 3P P4 P5 P6

Q3Q2Q Q4 Q5

xc (t)

Figure 2 Coprime sampling.
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For squared error distortion,

Ed(XL, X̂L′
) = E(XL − X̂L′

)2

=
∑

E(xi − x̂j)2

(b)=
∑
k

Dk ≤ D,

(16)

where i = 1, · · · , L and j = 1, · · · , L′, and (b) follows from
the definition that E(xi − x̂j)2 = Dk .
Since Gaussian assumption is a classical modeling

assumption heavily used in areas such as signal process-
ing and communication system [18], from [16], the rate
distortion function for a single Gaussian source N(0, σ 2)
with squared error distortion is

R(D) =
{

1
2 log

σ 2

D 0 ≤ D ≤ σ 2,

0 D > σ 2
(17)

For L-independent zero mean Gaussian sources
x1, · · · , xL with variance σ 2

1 , σ 2
2 , · · · , σ 2

L , the rate distor-
tion performance with squared error distortion is given
by [16,17,19,20]

R(D) =
L∑

i=1

1
2
log

σ 2
i
Di

, (18)

where

Di =
⎧⎨
⎩

λ if λ < σ 2
i ,

σ 2
i if λ ≥ σ 2

i

(19)

where λ is chosen so that
∑L

i Di = D, andDi = E(xi−x̂i)2.
This gives rise to a kind of reverse waterfilling. We choose
a constant λ and only describe those random variables
with variance greater than λ, and no bits are used to
describe random variables with variance less than λ.

3.1 For nested sampling
Theorem 1. (Rate distortion for nested sampling of

Gaussian source) Let xi ∼ N(0, σ 2
i ), i = 1, 2, · · · , L,

be independent Gaussian random variables, and under
squared error distortion. The rate distortion between the
original Gaussian source and after nested sampling of these
Gaussian random variables is given by

RNS(D) =
L∑

i=1

1
2
log 2πeσ 2

i −
KNS∑
k=1

1
2
log 2πeDk , (20)

where KNS is given in (24) and

Dk =

⎧⎪⎨
⎪⎩

λ if λ < σ 2
k ,

KNS
L

σ 2
k if λ ≥ σ 2

k .
(21)

where λ is chosen so that
∑KNS

k=1 Dk = D.

Proof 1. For nested sampling (NS), all L original infor-
mation is XL = [x1, x2, · · · , xL].
And less number of samples L′ will be selected based on

nested sampling as described,

X̂L′
NS = [x̂1, x̂2, · · · , x̂L′ ]

= [x1, · · · , xN1 , x(N1+1), · · · , xN2(N1+1), · · · ]
(22)

Therefore, (16) becomes

Ed(XL, X̂L′
NS) =

KNS∑
k=1

Dk , (23)

where the length of KNS could be determined based on the
following formula, here we assume Y = L(mod (N1+1)N2)

KNS =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
� L
(N1 + 1)N2

	N1(N2 − 1), if Y ≤ (N1 + 1)

� L
(N1 + 1)N2

	N1(N2 − 1) + Z, if Y > (N1 + 1),

(24)

where

Z = �( Y
N1 + 1

− 1)	 ∗ N1 + U (25)

in which U = (Y − (N1 + 1))(mod (N1 + 1)).
If all samples are assumed to be independent Gaussian

N(0, σ 2
i ), hence, the corresponding rate distortion function

for nested sampling will be

RNS(D) = min
Ed(XL,X̂L′

NS)≤D
I(XL; X̂L′

NS)

≥ min
Ed(XL,X̂L′

NS)≤D
H(XL) − H(XL − X̂L′

NS)

(c)≥ min∑KNS
k=1 Dk=D

H(XL) − H(N(0,E(XL − X̂L′
NS)

2)

= min∑KNS
k=1 Dk=D

L∑
i=1

1
2
log 2πeσ 2

i −
KNS∑
k=1

1
2
log 2πeDk ,

(26)

where inequality (c) follows from the fact that the nor-
mal distribution maximizes the entropy for a given second
moment, and

∑KNS
k=1 Dk = D.

To find the minimum value, we could use Lagrange
multipliers

J(D) =
L∑

i=1

1
2
log 2πeσ 2

i −
KNS∑
k=1

1
2
log 2πeDk +

KNS∑
k=1

Dk

(27)
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and differentiating with respect to Dk and setting equal to
0, we have

∂J
∂Dk

= − 1
Dk2 ln 2

+ λ = 0 (28)

or

Dk = 1
λ2 ln 2

= λ′ (29)

which results in an equal distortion for each random vari-
able, if the constant λ′ is less than σ 2

i for all i. As the
increase of the total allowable distortion D, the constant
λ′ increases until it exceeds σ 2

i for some i. Kuhn-Tucker
conditions could be used to find the minimum in (26)
if we increase the total distortion D. In this case, the
Kuhn-Tucker conditions yield

∂J
∂Dk

= − 1
Dk2 ln 2

+ λ. (30)

Therefore,

Dk =

⎧⎪⎨
⎪⎩

λ if λ < σ 2
k

KNS
L

σ 2
k if λ ≥ σ 2

k ,
(31)

where λ is chosen so that
∑KNS

k=1 Dk = D.

3.2 For coprime sampling
Theorem 2. (Rate distortion for coprime sampling of

Gaussian source) Let xi ∼ N(0, σ 2
i ), i = 1, 2, · · · , L,

be independent Gaussian random variables, and under
squared error distortion. The rate distortion between the
original Gaussian source and after coprime sampling of
these Gaussian random variables is given by

RCS(D) =
L∑

i=1

1
2
log 2πeσ 2

i −
KCS∑
k=1

1
2
log 2πeDk , (32)

where KCS is given in (36) and

Dk =

⎧⎪⎨
⎪⎩

λ if λ < σ 2
k

KCS
L

σ 2
k if λ ≥ σ 2

k ,
(33)

where λ is chosen so that
∑KCS

k=1 Dk = D.

Proof 2. For coprime sampling (CS), we still assume
the original information with length L, i.e., XL =
[x1, x2, · · · , xL].
And based on coprime sampling, less number of samples

L′′ will be selected,

X̂L′′
CS = [x̂1, x̂2, · · · , x̂L′′ ]

= [xP, xQ, x2P , x2Q, · · · ] .
(34)

Similarly, (16) becomes

Ed(XL, X̂L′′
CS) =

KCS∑
k=1

Dk , (35)

where the length of KCS could be determined based on the
following formula

KCS = L − �L
P

	 − � L
Q

	 + � L
PQ

	. (36)

Therefore, the corresponding rate distortion function
for coprime sampling of independent Gaussian source
N(0, σ 2

i ) is

RCS(D) = min
Ed(XL,X̂L′′

CS)≤D
I(XL; X̂L′′

CS)

≥ min
Ed(XL,X̂L′′

CS)≤D
H(XL) − H(N(0,E(XL − X̂L′′

CS)
2)

= min∑
Dk=D

L∑
i=1

1
2
log 2πeσ 2

i −
KCS∑
k=1

1
2
log 2πeDk .

(37)

The minimum value could be obtained using the similar
procedure as described in nested sampling.

3.3 Theoretical analysis
Without sparse sampling, the rate distortion function
would be

RWSS(D) = min
Ed(XL,XL)≤D

I(XL;XL)

≥ H(XL) − H(N(0,E(XL − XL)2)

=
L∑

i=1

1
2
log 2πeσ 2

i − 0

=
L∑

i=1

1
2
log 2πeσ 2

i

(38)

which is much greater than that with sparse sampling.
From the above derivation of rate distortion function of

nested sampling and coprime sampling, we could notice
that if the sampling spacings are assumed to be the same,
i.e., N1 = P and N2 = Q for these two sparse sam-
pling methods, then the minimum value of KNSmin could
be achieved when Y = L(mod (N1 + 1)N2) = 0, therefore

KNSmin = N1(N2 − 1)L
(N1 + 1)N2

= P(Q − 1)L
(P + 1)Q

= (P2Q − P2)L
PQ(P + 1)

.

(39)
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Table 1 KNS and KCS with respect to sampling intervals
when N1 = P, N2 = Q, and L = 1, 000

N1 = P N2 = Q KNS KCS

3 4 561 500

3 5 600 533

3 7 642 572

3 11 681 607

3 13 690 616

3 17 705 628

3 23 717 638

5 23 794 765

7 23 833 821

11 23 873 870

While for coprime sampling, the minimum value
of KCSmin could be achieved when L (mod P) = 0,
L(modQ) = 0, and L(modPQ) = 0, therefore

KCSmin = (P − 1)(Q − 1)L
PQ

= (P2Q − P2 − Q + 1)L
PQ(P + 1)

.

(40)

As we know that for these two sparse sampling algo-
rithms, the sampling interval is for sure greater than
Nyquist sampling spacing, which indicates that Q > 1,
therefore,

KNSmin > KCSmin (41)

which indicates that in most cases, KNS > KCS. Table 1
shows some example of KNS and KCS with respect to sam-
pling intervals when N1 = P, N2 = Q, and L = 1, 000. It
is clear that with the increase of sampling spacings, sam-
ples are selected more sparsely by both nested sampling
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Figure 3 Rate distortion performance-nested sampling.
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Figure 4 Rate distortion performance-coprime sampling.

and coprime sampling, which results in a increase of KNS
and KCS. In addition, we could notice that KNS > KCS as
proved.
With our assumption that all samples are independent

Gaussian N(0, σ 2
i ), we could conclude that

RNS(D) < RCS(D) < RWS(D) (42)

which indicates that both nested sampling and coprime
sampling use less number of bits to describe the informa-
tion compared that without sparse sampling (WS).
As we know from the introduction part, in (N1 +1)N2T

seconds, there are totally N1 + N2 samples for nested
sampling, while coprime sampling totally collect P + Q
samples in PQT seconds. If the sampling intervals are the
same, i.e., N1 = P and N2 = Q, it is obvious that nested
sampling is a little sparser than coprime samplingmethod.
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Figure 5 Comparison of nested sampling and coprime sampling.
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RNS(D) < RCS(D) is because nested sampling collects a
little less number of samples than coprime sampling with
the same length L of data. The rate R(D) at a given dis-
tortion for both sparse sampling algorithms is less than
that without sparse sampling. The reason is that with
sparse sampling, less number of bits is used to describe
the original information.

4 Numerical results
The total length of the information is set to be L = 1, 000.
Each sample is assumed to follow a Gaussian distribution
N(0, 1) with zero mean and unit variance. We also assume
Dk = λ < σ 2 = 1, which is equal distortion for each
random variable.
Figure 3 shows the rate distortion performance of nested

sampling with different sampling spacings. It is clear that
with the increasing of distortion, the rate decreases.When
the sampling intervals N1 and N2 becomes larger, i.e., less
samples are acquired, the rate becomes smaller. For exam-
ple, when D = 0.3, N1 = 3,N2 = 5, the data rate
R(D) ≈ 1, 350, while with the increase of sampling pairs
to N1 = 3,N2 = 11, then R(D) ≈ 1220, which is much
smaller. This is because with more sparse sampling, less
number of bits is required to represent the information.
The rate distortion performance of coprime sampling

with different sampling spacings is shown in Figure 4.
Similarly as nested sampling, with the increasing of distor-
tion, the rate R(D) decreases.When the sampling intervals
P and Q becomes larger, the rate becomes smaller.
Figure 5 compares the rate distortion performance

between nested sampling and coprime sampling, where
D is the distortion between the original source and its
sparse-sampled representation, and R(D) is the corre-
sponding rate at a particular distortion D. With the same
sampling spacings chosen, N1 = P, and N2 = Q, at the
same distortion, the rate of nested sampling is less than
that of coprime sampling. For example, whenN1 = P = 3,
and N2 = Q = 17, when D = 0.3, the rate for nested
sampling is RNS(D) ≈ 1, 200, while the rate for coprime
sampling is RCS(D) ≈ 1, 300. This verifies the result that
RNS(D) < RCS(D), because nested sampling collects a lit-
tle less number of samples than coprime sampling with
the same length L of data, which is a little sparser than
coprime sampling.

5 Conclusions
Information rate distortion function is a measure of dis-
tortion between the original source and its representation.
Our purpose in this paper is to construct a distortion func-
tion which can measure the distortion because of these
two sparse sampling algorithms. Information theoretical
rate distortion performance for these two sparse sampling
methods, nested sampling and coprime sampling, is stud-
ied in this paper. It is showed that with these two sparse

sampling algorithms, the data rate is proved to be much
less than that without sparse sampling at a given distor-
tion. With the increasing of sampling spacings, i.e., data
are more sparsely acquired, the data rate decreases at cer-
tain distortion. This is because with sparser sampling, less
number of bits is required to represent the information.
We also show that with the same sampling pairs, the rate
of nested sampling is less than that of coprime sampling at
the same distortion.
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