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Abstract

This paper studies the problem of tracking a mobile device in mixed line-of-sight (LOS) and non-line-of-sight (NLOS)
conditions. NLOS error is assumed to be Gaussian with unknown mean and variance. An adaptive Rao-Blackwellized
particle filter (RBPF) is proposed for mobile tracking in such scenarios. An extended Kalman filter is used to
approximately estimate the mobile state, and the particle filter is applied to estimate the posterior distribution of sight
conditions and the unknown static parameters, the distribution of which is updated by sufficient statistics. To improve
the efficiency of the particle filtering, we use the approximate optimal proposal distribution for particle inference.
Algorithm performance is investigated in the scenario of mobile tracking using signals of opportunity from digital TV
(DTV) network. Simulation results show that the adaptive RBPF method is effective to infer the unknown NLOS
parameter and can achieve good tracking accuracy using a small number of particles.

Keywords: Parameter estimation; Bayesian inference; Signal of opportunity; Digital TV; Non-line-of-sight;
Rao-Blackwellized particle filter; Wireless positioning; Mobility tracking

1 Introduction
Accurate and reliable positioning in non-line-of-sight
(NLOS) conditions is a challenging task in many wire-
less positioning systems. In typical NLOS circumstances,
e.g. indoors and urban canyons, the direct path from
the transmitter is blocked by buildings and other obsta-
cles and the propagation wave may actually travel excess
path lengths due to reflection, refraction and scattering.
In terms of range-based measurements such as time of
arrival (TOA), time difference of arrival (TDOA) and
received signal strength (RSS), these extra propagation
distances impose positive biases on the true path and
thereby cause large errors on the location estimations. The
NLOS effect is very common, especially in dense urban
scenarios. A field test in a Global System for Mobile Com-
munications (GSM) positioning system has shown that
the mean and standard deviation of NLOS range errors
are on the order of 513 and 436 m, respectively [1].
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Methods proposed to deal with NLOS can generally be
divided into two categories: methods for static position-
ing and methods for mobile tracking. Reference [2] gives a
thorough summary for NLOS detection and mitigation in
static positioning. However, these methods are not effec-
tive for mobile tracking.Methods tomitigate NLOS errors
in mobile tracking applications generally exploit the mea-
surements in time series. The proposed methods include
two-step Kalman filtering techniques for smoothing range
measurements and mitigating NLOS errors [3], a Kalman
filter-based interacting multiple model (IMM) smoother
[4], grid-based Bayesian estimation [5], particle filter (PF)
[6], a modified extended Kalman filter (EKF) bank [7],
the improved Rao-Blackwellized particle filter (RBPF) [8],
and the joint particle filtering and unscented Kalman fil-
tering (UKF) method [9]. A posterior Cramér-Rao lower
bound for this problem is further investigated in [10]. A
limitation of these methods is their assumption of com-
plete knowledge of the model parameters, especially the
statistical parameters of the NLOS errors, which is not
realistic in many practical situations because of the unpre-
dictable characteristics of the wireless channels in harsh
environments.
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By assuming all the measurement errors including the
LOS and NLOS errors as unknown, reference [11] intro-
duces the Dirichlet Process Mixtures (DPM), a hierar-
chical mixture model to describe the unknown density;
a Bayesian nonparametric method is further applied for
density estimation. Although it offers flexibility for mod-
eling, effectively tuning the hyperparameters of a DPM
model is difficult, and nonparametric Bayesian inference
on the infinite dimensional Dirichlet process is obviously
complicated.
In this study, we consider the mobile tracking problem

under the mixed LOS/NLOS conditions with a plausi-
ble assumption that the statistical properties of the LOS
errors are known while the statistics of NLOS error are
unknown. In essence, as assumed in [3-9], the LOS errors
are treated as measurement noise in the receiver with zero
mean Gaussian distribution and known variance. By con-
sidering a long period of observation, the distribution of
NLOS range errors can be modeled by a positively biased
Gaussian noise, while to be more reasonable, its mean and
variance are assumed (static) unknown because the statis-
tical parameters of the NLOS errors are highly dependent
on the surroundings, and therefore can not be known
beforehand [12].
Mobile tracking under such mixed LOS/NLOS con-

ditions comes down to the problem of sequential state
estimation with the inference of unknown static parame-
ters. To tackle this kind of problem, Liu andWest assumed
an artificial dynamic evolution for the unknown param-
eter vector, which could be further included in the state
vector [13]. In the literature of GPS (Global Position-
ing System), similar methods are applied in algorithms
adapting the density estimation by mean jump [14] or
variance jump [15] or both [16]. However, such treat-
ment would enlarge the estimation (co)variance of the
unknown parameter. Djurić et al. [17] suggested the use of
density-assisted particle filters (DAPFs) as an alternative
to jointly estimate the sequential state and the parame-
ter without introducing an artificial dynamic model for
the static parameters. However, in our situation, because
of the Markov property of the sight condition, the deriva-
tion of the density update function for all the state
variables, and the static parameter is not an easy task.
Storvik [18] proposed to marginalize the static parame-
ters out of the posterior distribution such that only the
state vector needs to be considered. The method is appli-
cable when the conditional posterior distribution of the
parameters (given the observations and the states) can
be compactly expressed in terms of a finite dimensional
statistic that can be recursively updated. Because the
analytical form of the marginal distribution is not avail-
able, we hereby perform an approximate (Monte Carlo)
marginalization by sampling from the joint posterior dis-
tribution of the states and the parameters. An adaptive

particle filtering method is therefore proposed, which
uses an EKF to approximately estimate the mobile state
and applies the particle filter to estimate the posterior
density of sight conditions and the unknown static param-
eters, the distribution of which is updated by sufficient
statistics.
The performance of the proposed algorithm is investi-

gated by simulations of positioning with signals of oppor-
tunity from digital television (DTV) networks. Recently,
research interest in positioning using DTV systems has
grown rapidly after the DTV systems have been put into
operation for massive use [19-28]. It has been recognized
that, compared with GPS [29], the DTV signals have a
range of potential advantages to achieve low cost and
accurate positioning: a higher transmission power [30],
larger signal transmission bandwidth [31], less Doppler
effects and ionosphere disturbance [32], lower carrier fre-
quency with better diffraction and better receiving quality
for urban and indoor propagation [19], wide coverage
of DTV transmitting stations to provide a substantially
superior geometry [25] and the economic benefit of mak-
ing use of existing facilities [27]. Rosum Company has
shown that the location accuracy could reach meter-
scale with the Advanced Television Systems Committee
(ATSC) DTV signals [19]. However, ATSC DTV is a
single-carrier modulation system, which is vulnerable to
multipath fading. In order to mitigate the effect of multi-
path fading for making the technique suitable for mobile
application [31], digital broadcasting signals based on
orthogonal frequency division multiplex (OFDM) mod-
ulation have been investigated and tested. As the stan-
dards based on OFDM modulation, e.g. DVB-T/H/T2,
T-DMB, etc, have been widely adopted in most coun-
tries, wireless position systems based on the multi-carrier
OFDM may have a massive number of potential users
in the future. Therefore, in this paper, we will focus
on mobile tracking in the multi-carrier OFDM DTV
networks.
The paper is organized as follows: Section 2 presents the

systemmodel of mobile tracking in the mixed LOS/NLOS
conditions; Section 3 formulates the problem within the
Bayesian framework; in Section 4, the RBPF based adap-
tive mobile tracking method is described in detail; numer-
ical results and performance comparison are presented
and discussed in Section 5; and Section 6 draws some
conclusions.

2 System description
2.1 Motion model

Assume the mobile device of interest moves in a plane.
The state at time instant tk is defined as the vector
xk = [

xk , yk , ẋk , ẏk
]T , where

[
xk , yk

]T are the east and
north coordinates of the mobile position;

[
ẋk , ẏk

]T are the
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corresponding velocities. The mobile state with random
acceleration can be modeled as:

xk+1 = �kxk + wk , (1)

where the transition matrix �k =
(
I2 �tk I2
0 I2

)
mod-

els the state kinematics with I2 the 2 × 2 matrix and
�tk = tk+1 − tk . The random process wk is a white
zero mean Gaussian noise with covariance matrix Qk =(

�t4k
4 Q �t3k

2 Q
�t3k
2 Q �t2kQ

)
, where Q =

(
σ 2
x 0
0 σ 2

y

)
. For a derivation

of this motion model see [33].

2.2 Measurement model
In DVB-T/H networks, different emitters are coordinated
to GPS time and transmit the same DTV signals at the
same time with the same frequency, which is called the
single frequency network (SFN) transmission [31]. The
feature of network synchrony makes the pseudorange
measurements available in practice for mobile tracking.
Moreover, the DTV signals are transmitted continuously,
which allows the receiver to track the arrival of the signals
in order to improve the measurement accuracy.
For the purpose of communications, the DTV receivers

are required to extract the timing measurements and
recover the frequency offset from the received signals,
which result in a synchronization problem. For reli-
able communications, the OFDM systems have stringent
requirements on the timing and frequency synchroniza-
tion. However, for the purpose of high accuracy posi-
tioning and navigation, an even finer synchronization is
required. To achieve a finer time delay estimation, meth-
ods to determine the time of arrival (TOA) of the OFDM
DTV signals include the coarse timing acquisition with
a sliding correlator, which detects the start of an OFDM
symbol by using the property of OFDM cyclic prefix (CP)
[34], and the fine timing tracking with a delay-locked loop
(DLL) [29], which achieves the accuracy within fractional
portion of chip duration.
Scatter pilots inserted in the OFDM symbols [22,23]

or full transmitted OFDM symbols [27] can be used for
DLL tracking, which are the variants to the process inside
conventional Global Navigation Satellite System (GNSS)
receivers. Time delay can also be obtained using the time-
domain synchronous OFDM signals [25] or the transmit-
ter signature waveforms [26]. In DVB-T/H systems, the
nominal signal bandwidth is designed as 6 to 8 MHz,
which leads to a much higher chip/code rate than that
in GPS L1 systems, thereby improving the precision of
timing.
Based on the above discussion, we consider the pseu-

dorange measurements for mobile tracking from differ-
ent DTV emitters. The pseudorange is the product of

the estimated time delay with the speed of the light.
Under possible NLOS propagation condition between the
transceivers, the distance measured at time tk is

zi,k = di,k + v(si,k), (2)

where di,k
�= hi,k(xk) = √

(xk − xbsi)2 + (yk − ybsi)2 rep-
resents the true distance between the receiver’s position[
xk , yk

]T and the location of the ith DTV transmitter[
xTxi , yTxi

]T , i ∈ {1, 2, . . . ,M}, and M is the number of
DTV transmitters. The Boolean variable si,k ∈ {0, 1} rep-
resents LOS/NLOS condition between the receiver and
Txi, with si,k = 0 for LOS and si,k = 1 for NLOS. In
mobile tracking, the sight conditions undergo dynamical
transitions, which can be further modeled as a time-
homogeneous first-order Markov chain si,k ∼ MC(πi,Ai)
with initial probability vector πi and the transition proba-
bility matrix

Ai =
[

p0 1 − p0
1 − p1 p1

]
,

where p0 = P(si,k = 0|si,k−1 = 0) and p1 = P(si,k =
1|si,k−1 = 1).
Assume that the measurement noise in the LOS con-

dition has a zero mean Gaussian distribution N(0, σ 2
n ),

while the NLOS error is modeled as a biased Gaus-
sian distribution N(μNLOS, σ 2

NLOS) [3,4,7]. Thus, v(si,k) ∼
N(m(si,k),R(si,k)) and

m(si,k) = si,kμNLOS

R(si,k) = σ 2
n + si,kσ 2

NLOS.
(3)

In this work, we assume that σn is known, while
{μNLOS, σ 2

NLOS} are static but unknown.
To sum up, the overall dynamic model of the mobile

tracking can be represented as follows:⎧⎪⎨
⎪⎩
xk = �k−1xk−1 + wk−1

si,k ∼ MC(πi,Ai)

zk = hk(xk) + vk(sk)
, (4)

where si,k is the ith component of vector sk , i ∈
{1, 2, . . . ,M}, k ∈ N.

3 Bayesian inference and sequential Monte Carlo
method

Denote the total observation sequence up to time tk as
z1:k , where zk

�= [z1,k , z2,k , . . . , zM,k]T . For brevity, let η
�=

σ 2
n + σ 2

NLOS and θ = {μNLOS, η}. The problem of mobile
tracking in unknown NLOS conditions is to infer the cur-
rent mobile state xk from the observation sequence z1:k .
Within the framework of Bayesian inference, the prob-
lem corresponds to computing the marginal posterior
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probability density function (pdf) p(xt|z1:k). The marginal
posterior is the mixture

p(xk|z1:k) =
∑
sk

∫
θ

p(xk , sk , θ |z1:k)dθ [marginalization]

∝
∑
sk

∫
θ

p(zk|xk , sk , θ)p(xk , sk , θ |z1:k−1)dθ

[Bayes’ law]
(5)

where the prior pdf p(xk , sk , θ |z1:k−1) can be obtained via
the Chapman-Kolmogorov equation:

p(xk , sk , θ |z1:k−1)=
∑
sk−1

∫
xk−1

p(xk , sk , θ |xk−1, sk−1, z1:k−1)

× p(xk−1, sk−1|z1:k−1)dxk−1

=
∑
sk−1

∫
xk−1

p(xk|xk−1)P(sk|sk−1)p(θ |xk−1, sk−1, z1:k−1)

× p(xk−1, sk−1|z1:k−1)dxk−1

(6)

In (5) and (6), the number of mixture components grows
exponentially with time. Thus, the analytical solution to
the posterior p(xk|z1:k) requires very high-dimensional
integrals, which is prohibitive to compute in practice. The
sequential Monte Carlo (SMC) method (also called parti-
cle filtering) has proven to be successful in tracking appli-
cations with nonlinear and non-Gaussian models [35].
Here, we resort to this kind of sample-based numerical
approximate method.
Denote yk = {xk , sk}, and suppose a set of N weighted

samples {y j
k−1, θ

j,w j
k−1}Nj=1 is used to approximate the

posterior p(yk−1, θ |z1:k−1) at time tk−1 with the following
point-distribution:

p(yk−1, θ |z1:k−1) ≈
N∑
j=1

w j
k−1δ(yk−1 − y j

k−1)δ(θ − θ j)

where δ(·) is the Dirac delta measure, and the multipli-
cation of Dirac deltas is the product measure of the one-
dimensional Delta functions in each variable separately
[36].
With the new reception of measurement zk , the new

samples at time tk are generated from a suitably designed
proposal distribution:

q(yk , θ |y j
k−1, z1:k) = q2(θ |y j

k−1, z1:k)q1(yk|y j
k−1, z1:k)

Accordingly, importance weights are updated as

wj
k ∝ p(zk|y j

k , θ
j)p(y j

k|y j
k−1)p(θ

j|y j
k−1, z1:k−1)

q2(θ |y j
k−1, z1:k)q1(yk|y j

k−1, z1:k)
w j

k−1

(7)

In standard particle filtering (SPF), transition priors are
used as the proposal distribution:

q(yk , θ |y j
k−1, z1:k) = p(xk|x j

k−1)p(sk|s jk−1)

× p(θ j|y j
k−1, z1:k−1).

Thus, the weight update equation (7) can be simplified as:

wj
k ∝ w j

k−1p(zk|y j
k , θ

j).

In SPF, since {xk , sk , θ} constitutes a high-dimensional
state estimation space, a large number of particles should
be used to achieve good estimation results, which is com-
putationally expensive. Additionally, using the transition
prior as the proposal, which fails to consider the informa-
tion of current measurements, would easily suffer from
the ‘particle impoverishment’ problem. In order to over-
come these two limitations, we re-formulate the inference
problem using a RBPF.

4 Adaptive RBPF algorithm for mobile tracking
Factorize the posterior density of the hidden state
p(xk , sk , θ |z1:k) according to the chain rule:

p(xk , sk , θ |z1:k) = p(xk|sk , θ , z1:k)p(sk , θ |z1:k). (8)

If the marginal posterior density p(sk , θ |z1:k) is repre-
sented by a set of weighted samples {sjk , θ j,w j

k}Nj=1, i.e.,

p(sk , θ |z1:k) ≈
N∑
j=1

w j
kδ(sk − sjk)δ(θ − θ j), (9)

then the marginal density p(xk|z1:k) can be approximately
expressed by a mixture of densities:

p(xk|z1:k) ≈
N∑
j=1

w j
kp(xk|s jk , θ j, z1:k). (10)

Based on the systemmodel in (4), the mixture component
p(xk|sjk , θ j, z1:k) can be calculated by an EKF.
Thus, the decomposition (8) leads to developing a

more efficient algorithm, with only the posterior density
p(sk , θ |z1:k) approximately calculated through a sampling
method, while the mobile state p(xk|sk , θ1:k) is analytically
computed. This method, motivated by the decomposition
(8), is known as RBPF. In what follows, the method is
illustrated in detail.

4.1 Inference for the mobile state
Let a set of weighted samples {sjk , θ j,wj

k}Nj=1 represent
the marginal posterior density of p(sk , θ |z1:k). The sam-
pling method and parameter update will be described
in Sections 4.2 and 4.3. Then, the marginal posterior
p(xk|z1:k) in (10) is approximated by a mixture of Gaussians,
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with the component p(xk|sjk , θ j, z1:k) approximately con-
forming to Gaussian distribution N(x̂jk , P̂

j
k), where

x̂jk = x̂jk|k−1 +
M∑
j=1

Kj
i,k(zi,k − ẑji,k|k−1) (11)

P̂j
k =

[
(P̂j

k|k−1)
−1 +

M∑
i=1

(Hj
i,k)

TR(sji,k)
−1

Hj
i,k

]−1

(12)

x̂jk|k−1 is the predicted mean of xjk−1:

x̂jk|k−1 = �x̂jk−1 (13)

and P̂j
k|k−1 is the corresponding predicted covariance:

P̂j
k|k−1 = �k−1P̂

j
k−1�

T
k−1 + Q (14)

The predicted mean of measurement ẑji,k|k−1 is

ẑji,k|k−1 = hi(x̂
j
k|k−1) + m(sji,k) (15)

The Kalman gain is

Kj
i,k = P̂j

i,k(H
j
i,k)

TR(sji,k)
−1

(16)

and Hj
i,k = ∂hi

∂x |x=x̂jk|k−1
. In LOS conditions, m(sji,k) = 0

and R(sji,k) = σ 2
n , while in NLOS, m(sji,k) = μ

j
NLOS and

R(sji,k) = ηj.

4.2 Particle sampling and weights updating
The proposal trial distribution is said to be optimal if it
minimizes the variance of the important weights [37]. To
sample {sjk , θ j}, conditioned upon sjk−1, x

j
k−1, θ

j, and z1:k ,
the optimal proposal distribution is:

q(θ |sjk−1, x
j
k−1, z1:k)opt

= p(θ |sjk−1, x
j
k−1, z1:k)

= p(zk|sjk−1, x
j
k−1, θ)p(θ |sjk−1, x

j
k−1, z1:k−1)

p(zk|sjk−1, x
j
k−1)

∝
∑
sk

P(sk|sjk−1)

∫
xk
p(zk|sk , xk , θ)p(xk|xjk−1)

× p(θ |sjk−1, x
j
k−1, z1:k−1)dxk (17a)

q(sk|sjk−1, x
j
k−1, θ , z1:k)opt

= p(sk|sjk−1, x
j
k−1, θ , z1:k)

= p(zk|sk , xjk−1, θ)P(sk|sjk−1)

p(zk|sjk−1, x
j
k−1, θ)

∝ P(sk|sjk−1)

∫
xk
p(zk|sk , xk , θ)p(xk|xjk−1)dxk (17b)

Accordingly, the weight is updated as:

wj
k ∝ p(sj1:k , θ |xj1:k−1, z1:k)

q(sj1:k , θ |xj1:k−1, z1:k)

= w j
k−1

p(zk |sjk , xjk−1, θ
j)p(sjk |sjk−1)p(θ

j|sjk−1, x
j
k−1, z1:k−1)

q(sjk |sjk−1, x
j
k−1, θ

j, z1:k)optq(θ
j|sjk−1, x

j
k−1, z1:k)opt

= wj
k−1p(zk |sjk−1, x

j
k−1)

= wj
k−1

∑
sk

P(sk |sjk−1)

∫
θ

∫
xk
p(zk |sk , xk , θ)p(xk |xjk−1)

× p(θ |sjk−1, x
j
k−1, z1:k−1)dxkdθ

(18)
Obviously, the importance weight update equation in

(18) involves a high-dimension integral and it is difficult to
get the closed-form solution. To approximate the integral
in (18), we use the mean-value point approximation∫

θ

∫
xk
p(zk |sk , xk , θ)p(xk |xjk−1)p(θ |sjk−1, x

j
k−1, z1:k−1)dxkdθ

≈
∫

θ

∫
xk
p(zk |sk , xk , θ)δ(xk − x̂jk|k−1)δ(θ − θ̂

j
)dxkdθ

= p(zk |sk , x̂jk|k−1, θ̂
j
)

(19)

where

x̂jk|k−1 = E(xk|xjk−1) (20a)

θ̂
j = E(θ |sjk−1, x

j
k−1, z1:k−1) (20b)

where E(·) is the expectation operator.
Then, substituting (19) and (20) into (18), the impor-

tance weight update is approximated by:

wj
k ≈ wj

k−1

∑
sk

p(zk|x̂jk|k−1, sk , θ̂
j
)P(sk|sjk−1) (21)

Applying the same mean-point approximation (20) into
(17), the optimal proposal distribution can be approxi-
mated as

q(θ |sjk−1, x
j
k−1, z1:k)opt ∝

∑
sk

p(zk |sk , x̂jk|k−1, θ)P(sk |sjk−1)

× p(θ |sjk−1, x
j
k−1, z1:k−1) (22a)

q(sk |sjk−1, x
j
k−1, θ , z1:k)opt ∝ p(zk |sk , x̂jk|k−1, θ)P(sk |sjk−1)

(22b)

4.3 Update of the static parameters
In this work, the NLOS error is modeled as a Gaussian
random variable with positive mean. To infer the statisti-
cal parameter θ , we specify on them the Gaussian inverse
chi-square prior, which is conjugate prior distribution and
has computational convenience in Bayesian inference [38].
Suppose at time tk−1,

p(θ |sjk−1, x
j
k−1, z1:k−1)=N-inv-χ2(μ̆

j
k−1, κ̆

j
k−1, ν̆

j
k−1, η̆

j
k−1)
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that is,

p(μNLOS|η, sjk−1, x
j
k−1, z1:k−1) = N(μ̆

j
k−1, η/κ̆

j
k−1)

p(η|sjk−1, x
j
k−1, z1:k−1) = χ−2(ν̆

j
k−1, η̆

j
k−1)

(23)

where the four hyperparameters {μ̆j
k−1, κ̆

j
k−1, ν̆

j
k−1, η̆

j
k−1}

can be identified as the location and scale of μNLOS and
the degrees of freedom and scale of η.
At time tk , the sampling density for θ is updated accord-

ing to

p(θ |xjk|k−1, s
j
k , z1:k) ∝ p(zk |θ , xjk|k−1, s

j
k)

× p(θ |xjk−1, s
j
k−1, z1:k−1)

= N-inv-χ2(μ̆
j
k , κ̆

j
k , ν̆

j
k , η̆

j
k)

(24)

where the hyperparameters are updated as

μ̆
j
k = κ̆

j
k−1

κ̆
j
k−1 + njk

μ̆
j
k−1 + njk

κ̆
j
k−1 + njk

ε̄
j
k

κ̆
j
k = κ̆

j
k−1 + njk

ν̆
j
k = ν̆

j
k−1 + njk

ν̆
j
k η̆

j
k = ν̆

j
k−1η̆

j
k−1 +

M∑
i=1

(ε
j
i,k − ε̄

j
k)

2 · δ(sji,k − 1)

+ κ̆
j
k−1n

j
k

κ̆
j
k−1 + njk

(ε̄
j
k − μ̆

j
k−1)

2

(25)

where {njk , εjk , ε̄jk} are computed as

njk =
M∑
i=1

δ(sji,k − 1)

ε
j
i,k = zi,k − hi(x

j
k|k−1)

ε̄
j
k =

⎧⎨
⎩

1
njk

∑M
i=1 ε

j
i,k · δ(sji,k − 1) if njk �= 0

0 if njk = 0

(26)

The njk is the total number of NLOS conditions in sjk ,
and ε̄

j
k is the mean of the innovation in NLOS condi-

tions. Intuitively, the updated hyperparameters in (25)
combine the prior information and the information con-
tained in {njk , ε̄jk}. Obviously, for njk = 0, which means
there is no NLOS condition inferred in sjk , the hyperpa-
rameters remain unchanged from time tk−1 to tk because
there is no innovation to update. Thus, {njk , ε̄jk} derived
from {sjk , xjk , zk} are the sufficient statistics to infer the
parameter θ .
To get the samples θ j from the proposal distribu-

tion (22a), first sample sjk ∼ P(sk|sjk−1). Then update
the hyperparameters according to (25-26), and gener-
ate the particles θ j from the Gaussian-Inverse-chi-square,

which corresponds to ηj ∼ χ−2(ν̆
j
k , η̆

j
k) and μ

j
NLOS ∼

N(μ̆
j
k , η

j/κ̆
j
k). To get the weights at each time epoch in

(21), the mean of θ j is computed as:

E(μNLOS|xjk , sjk , z1:k) = μ̆
j
k (27a)

E(η|xjk , sjk , z1:k) = ν̆
j
k

ν̆
j
k − 2

η̆
j
k (27b)

4.4 Algorithm description

The importance weight wj
k in (18) only depends on the

current measurement zk and the particles of tk−1, i.e.
{x̂jk−1, s

j
k−1}Nj=1, while {xk , sk , θ} are all marginalized out.

Thus, to improve the sample effectiveness, the particles
of tk−1 could be first selected (resampled) based on the
current measurement zk , and the fittest particles could
be allowed to propagate. Then, {θ j, sjk}Nj=1 is sampled from
the (approximately) optimal distribution, with an EKF
attached to every particle to further update the mobile
state xjk . Thus, the whole algorithm infers the sight condi-
tions, the mobile state and adaptively learns the unknown
statistical parameters of the biased NLOS errors. The
proposed method is summarized in Algorithm 1.

Algorithm 1 RBPF-based adaptive mobile tracking
algorithm

Input
[{

wj
k−1, s

j
k−1, x̂

j
k−1, P̂

j
k−1, μ̆

j
k−1, κ̆

j
k−1, ν̆

j
k−1, η̆

j
k−1

}N
j=1

]

Output
[{

wj
k , s

j
k , x̂

j
k , P̂

j
k , μ̆

j
k , κ̆

j
k , ν̆

j
k , η̆

j
k

}N
j=1

]
for k = 1, 2, . . . do

for j = 1, 2, . . . ,N do
1. Predict mean x̂jk|k−1 and covariance P̂j

k|k−1
according to (13) and (14)

2. Predict measurement mean ẑjk|k−1 = h(x̂jk|k−1) and
the linearized matrixHj

k

3. Calculate the predict prior mean θ̂
j
according to (27)

4. Compute the new weight wj
k using (21)

end for
Resample particles

{
wj
k , s

j
k−1, x̂

j
k|k−1, P̂

j
k|k−1, μ̆

j
k−1, κ̆

j
k−1,

ν̆
j
k−1, η̆

j
k−1

}N
j=1

using new weights wj
k to obtain{

wl
k , s

l
k−1, x̂

l
k|k−1, P̂

l
k|k−1, μ̆

l
k−1, κ̆

l
k−1, ν̆

l
k−1, η̆

l
k−1

}N
l=1

,

where wl
k = 1

N .
for l = 1, 2, . . . ,N do

1. Update
{
μ̆l
k , κ̆

l
k , ν̆

l
k , η̆

l
k

}N
l=1

according to (25) and (26)

2. Sample θ l according to (22a)
3. Sample slk according to (22b)
4. Update {x̂lk , P̂l

k}Nl=1 according to (11) to (16)
end for

end for
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5 Simulation results
Computer simulations are performed in a DVB-T-based
positioning system to evaluate the proposed adaptive
mobile tracking algorithm in the mixed LOS/NLOS con-
ditions.
It is assumed that at every epoch, the signals can be

received from five transmitters. By considering the SFN
coverage in 4K mode of DVB-T/H, which supports the
application of the mobile reception [31], the DTV trans-
mitters are set at [−2 km, −1 km], [−2 km, 6 km], [5 km,
−1 km], [6 km, 5 km] and [1 km, −2 km], respectively.
The receiver’s trajectories are generated according to the
motion model described in Section 2.1, in which the ini-
tial position is set to [−1.5 km, 1.5 km], and the initial
velocity is set at [10 m/s, 0 m/s]. The random acceleration
variances σ 2

x , σ 2
y are both chosen to 0.5 (m/s2)2. The sim-

ulated trajectory has L = 1, 000 time steps, and the time
step size is �t = 0.2 s. The measurement data are gen-
erated by adding the measurement noise and the NLOS
noise to the true distance from receiver to each trans-
mitter. The measurement noise is assumed to be a white
Gaussian random variable with zero mean and standard
deviation σn = 15 m, which is in agreement with the
theoretical analysis of the 4K mode in the DVB-T sys-
tem in [23] and the simulation results in [27]. The NLOS
measurement errors are usually much larger than LOS
errors [1]. Thus, the parameters of the positive Gaussian
distribution of the NLOS errors are assumed with mean
μNLOS = 50m and standard deviation σNLOS = 40m. The
mode transition probability is chosen to be p0 = p1 = 0.8.
The LOS or NLOSmode is generated bymaking aMarkov
chain transition every 10 steps, which simulates a highly
dynamic environment during the tracking process.
In the algorithms, the initial estimation of sight condi-

tion is set to P(si,0 = 0) = P(si,0 = 1) = 0.5, where i =
1, · · · , 5. The initial position is calculated by Chan’s algo-
rithm [39] using the first five rangemeasurements. For the
lack of definitive prior information on the mobile state,
the initial velocity is set as [0 m/s, 0 m/s] and the covari-

ance matrix Ct0 =
[
152 · I2 0

0 102 · I2
]
corresponding to a

standard deviation of 15 m for the position and 10 m/s (36
km/h) for the velocity of each coordinate. For vague prior
information on NLOS parameter θ , the initial values of
the hyperparameters are set as {μ̆0 = 1, 000, κ̆0 = 1, ν̆0 =
1, η̆0 = (5σn)2} in the algorithm. The simulation results
are obtained based on nMC = 20Monte Carlo realizations
with the same parameters.
We compare the performance of the adaptive RBPF

method with the following three reference methods. The
first is the RBPF method [8], where the NLOS param-
eters θ is assumed known and only the mobile state xk
and the sight condition sk have to be inferred. The second
reference method assumes the sight conditions known for

the whole trajectory and the adaptive RBPF is modified
only to infer the mobile state xk and the static parameters
θ (adaptive RBPF with sk known). The aim of the compar-
isons with these two methods is to show how the different
parameters affect the final inference for the mobile track-
ing. In addition, to show the superiority of the RBPF
method over the SPF method mentioned in Section 3, we
also compare the results obtained by the SPF, which uses
the transition prior as the proposal to sample the high
dimensional state space {xk , sk , θ}, and applies the same
parameter update method for θ in Section 4.3. In what
follows, the third reference method is called adaptive SPF.
The accuracies are compared in terms of root

square error (RSE), position root-mean-square error
(RMSE) and average RMSE. RSE is defined as RSE �=√

(x̂k − xk)2 + (ŷk − yk)2 and the position RMSE at time

tk as: RMSEk
�=

√
1

nmc

nmc∑
m=1

[ (x̂k,m − xk)2 + (ŷk,m − yk)2],

while average RMSE �= 1
L

∑L
k=1 RMSEk .

5.1 Tracking accuracy of the proposed algorithm
In the algorithms of RBPF, adaptive RBPF with sk known
and adaptive RBPF, the number of the particles is set to
10. To achieve a comparable accuracy, 1,000 particles are
used in the adaptive SPF. Figure 1 shows comparison of the
CDF of RSE, in which the positioning accuracy of 66.7%
and 99% errors are also marked and the comparison of
the position RMSE versus time is in Figure 2. Figures 3
and 4 show one realization of updating the static param-
eters μNLOS and √

η; 3-σ confidence intervals are also
shown. In all these figures, the numbers in the brackets
denote the number of particles used.
From Figures 1 and 2, the adaptive RBPF with sk known

achieves the smallest positioning errors with the 67% error
6.0 m and 95% error 10.0 m, while RBPF and adaptive
RBPF has approximately the same accuracy. Although
using 1000 particles, the adaptive SPF still has the largest
error statistics. In Figures 3 and 4, the true values of the
static parameters are within the 3-σ confidence inter-
val, which suggests a good inference of the unknown
parameters of all three algorithms. By further compar-
isons, the sequential estimations by the adaptive RBPF
with sk known are slightly better than the adaptive RBPF.
Both of the above two algorithms achieve better estima-
tions than the adaptive SPF method, which is obvious in
Figure 3.
From Figures 1, 2, 3 and 4, among all the algorithms,

the adaptive RBPF with sk known achieves the best accu-
racy. The reason is that, in the proposed algorithm, the
sufficient statistics for updating θ and the mobile state
inference for xk are largely dependent on the density esti-
mation of sk . When the sight conditions are known during
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Figure 1 CDF of RSE.

the whole trajectory, the algorithm could have more accu-
rate estimation on NLOS parameter θ , which further
improves the estimation for the mobile state. Therefore,
to improve the estimation accuracy, the accurate inference
on the sight condition has the most importance. RBPF
achieves slightly better performance over adaptive RBPF,
which is reasonable, since in RBPF, the NLOS parame-
ter is known and the parameter updating is not included.
But the improvement is slight, as shown in Figures 1 and
2. Combined with the results of Figures 3 and 4, it is
clear that the proposed adaptive RBPF can effectively esti-
mate the unknown mean and variance. Even with 100
times more particles and having the most computation
complexity, the adaptive PF still has the worst accuracy
among all the algorithms, which suggests that using the

Figure 2 Position RMSE vs. time.

prior transition as the proposal distribution is not effec-
tive to get the fittest particles in mobile tracking and the
unknown parameter inference.

5.2 Complexity comparison
Table 1 compares the relative complexity and accuracy of
the algorithms. It is clear that with the increase of the par-
ticle numbers, the computing time of the adaptive RBPF
increases proportionally. Accordingly, the accuracy also
increases. But the improvement is slight when the number
is larger than 50. Also, the accuracy improvement can be
omitted when considering the large increase of complex-
ity between 100 and 1,000 particles. Thus, the adaptive
RBPF (10) achieves a good tradeoff between complexity
and accuracy.

Figure 3 One realization of updating μNLOS with 3-σ confidence
interval.
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Figure 4 One realization of updating
√

η with 3-σ confidence
interval.

In this section, we compared the performance of adap-
tive RBPF with the other three algorithms, i.e. the adaptive
RBPF with sk known, the RBPF which assumes the static
parameters are known and the adaptive SPF method. Sim-
ulation results show that the accurate estimation of sight
condition has an important effect on the ultimate accu-
racy of mobile tracking and parameter estimation. By
applying the approximate optimal proposal distribution
to sample the posterior distribution of the sight condi-
tions, the adaptive RBPF method is effective to infer the
unknown NLOS parameter and achieves a good tracking
accuracy with small number of particles.

6 Conclusions
We have considered the problem of mobile tracking in
the mixed LOS/NLOS conditions, where the statistical
parameter of NLOS error is unknown. Under the sequen-
tial Monte Carlo Bayesian framework, an adaptive RBPF
method is developed, which uses an analytical method to
estimate the mobile state while applying the particle fil-
ter to estimate the posterior density of sight conditions
and the unknown static parameters. The distribution of
the static parameters is updated by sufficient statistics
from the mobile state, the sight condition and the mea-
surements at current step. To improve the efficiency of
the particle filtering, the approximate optimal proposal
distribution is used for particle inference.

Table 1 Complexity vs. accuracy

Adaptive RBPF

1 10 50 100 1,000

Complexity 1 7.5 35.2 70.7 749.8

Accuracy 1 1.8 2.1 2.3 2.5

Complexity is based on the CPU running time of the algorithms and the value is
proportion to that of adaptive RBPF with 1 particle. The accuracy is the
reciprocal of the average RMSE that each algorithm achieves, and also the
accuracy of adaptive RBPF (1) is normalized.

Simulation tests of positioning with signals from DTV
networks show that the adaptive RBPF method is effec-
tive to infer the mobile state and the unknown NLOS
parameters simultaneously. With only 10 particles, the
adaptive RBPF achieves a good accuracy of the mobile
tracking while the complexity has not been increased
much.
To achieve more accurate and robust mobile tracking,

future work will investigate the impact of NLOS in the
case of non-Gaussian distribution. We will also compare
the unscented Kalman filter or the cubature Kalman filter
with the current EKFmethod in the adaptive particle filter
scheme.
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