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Abstract

2D Fourier transform

In the paper, we consider the problem of two-dimensional (2D) phase retrieval, which recovers a 2D complex-valued
wave field from magnitudes of both wave field and its Fourier transform. Due to the absence of the phase
measurements, prior information on wave field is needed in order to recover phase, which is feasible when the phases
of the wave field are sparse. In this paper, we improve the phase retrieval accuracy by incorporating phase sparse
constraint of wave field. As a sequel to previous iterative projection approaches, iterative projection approaches with
phase sparse constraint are realized based on ‘soft thresholding'. It has superior performances in terms of
convergence, residual error, noise stability, and suitability in large-scale phase retrieval problems. Numerical
experiments illustrate that the proposed approach outperforms existing iterative projection approaches.
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1 Introduction

Recovery of a signal from the magnitudes of its Fourier
transform, also known as phase retrieval, is of great inter-
est in applications such as astronomy [1], optical phased
array [2], adaptive optics [3], and signal processing [4-6].
Up to now, there are two main categories of phase retrieval
approaches in existing approaches, namely, semi-definite
programming-based (SDP-based) approaches [7-11] and
iterative projection approaches (Fienup-type methods)
[12-18]. SDP-based approaches are not suitable for large-
scale problems, so we do not discuss them in the paper.
For iterative projection approaches, the first proposed
algorithm is the Gerchberg and Saxton approach (GS)
[12]. In 1982, Fienup systematized the earlier works and
introduced some types of phase-retrieval approaches:
error reduction (ER) and the hybrid input-output algo-
rithm (HIO) [13]. Besides, a few of iterative projection
variants have been proposed, such as solvent flipping
algorithm (SF) [14], averaged successive reflection algo-
rithm (ASR) [15], hybrid projection reflection algorithm
(HPR) [16], and relaxed averaged alternating reflectors
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algorithm (RAAR) [17]. In 2007, a comprehensive descrip-
tion about iterative projection approaches was reviewed
[18]. Despite tremendous progress, iterative projection
approaches are known to suffer from convergence issues
and often do not lead to correct recovery especially in one-
dimensional (1D) problems. Alternating projection phas-
ing approaches are plagued by stagnation and spurious
errors partly due to intrinsic non-uniqueness of the stan-
dard phase retrieval problem. Recently, many researchers
exploit the sparsity property of a signal as a priori
information to recover signal, and many sparse signal
processing approaches are proposed. Interested authors
are encouraged to read literatures [19-22]. Motivated
by sparse signal processing communities, many phase
retrieval approaches by incorporating sparsity property
of wave field are discussed [23-30]. However, it is just
assumed that the underling wave field is sparse in these
literatures. If the phases of a wave field are sparse but
the magnitudes of wave field are not [31] (it is called as
semi-sparse wave field in the paper), as far as we know,
existing phase retrieval approaches with sparse constraint
cannot utilize a priori information to recover the sparse
phase. This is the reason why we address the issue in
the paper. Different from existing sparse phase retrieval
approaches in [23-30], we propose an iterative projection
approach with phase sparse constraint for semi-sparse
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wave field. As phase sparse constraint is exploited, the
proposed approach has superior performances than the
existing iterative projection approaches in terms of rapid
convergence, smaller residual error, noise stability, and
suitability in large-scale phase retrieval problems. They
are the main contributions of the paper.

The organization of this paper is as follows. Section 2
contains the problem formulation. The proposed iterative
projection approach with phase sparse constraint is pre-
sented in Section 3. We demonstrate the performances
of the proposed phase retrieval approach by numerical
experiments in Section 4. Finally, the conclusions of the
paper are given in Section 5.

2 Problem formulation

We denote 2D complex-valued discrete wave field by
u(&,n), which is related to its discrete Fourier transform
(DET) U(x,y), by

Ux,y) = U, 9)] 0 exp{jr(x,7)}
= DFT{u}
1 M—-1N-1 . xE
= N D D MEmexp {—zzn (M
£=0 n=0

o)

(1)
where
(S;ﬂ)eré{(),l,yM—l}X{O,l,,N—l}

is a 2D spatial coordinate, and (x,y) € 1 £ {0,1,--- ,M —
1} x{0,1,---,N —1} is a 2D spatial frequency coordinate.
The symbol ‘o" denotes the Hadamard product. Mean-
while, we rewrite the complex-valued wave field u(§, n) in
polar form, which yields

u(&,n) = |u&,n)loexpljp(&,n)} ()

Moreover, we also present the inverse discrete Fourier
transform (IDFT) as

u(€,n) = |u, n)loexpljp§,n)}
= IDET{U)}
(3)

55 s [ (5477))
= x,7) ex b4 .
L Y)exp4J MTN
Phase retrieval task is to recover ¢(&,7n) from mea-
surements of both |U(x,y)| and |u(&,n)|. In the paper,
we assume that the phases of wave field are sparse, but
its magnitudes are not (i.e., semi-sparse wave field). As
the prior knowledge about ¢ (&, n) is employed in phase
retrieval, we can obtain an improved recovery quality.
Clearly, from the mathematical point of view, recovering
phases of wave field can be stated as an inverse problem.
Hereafter, we call |U(x, y)| and |u(&, n)| as Fourier plane
measurement and object plane measurement, respectively.
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3 Problem solution

3.1 Conventional iterative projection approaches

To the best of our knowledge, GS is the first success-
ful iterative projection approach for the phase retrieval
problem. Even more important, the work on GS approach
was continued and improved by many researchers. A few
modified iterative projection approaches have now been
proposed. These approaches try to find the intersection
between two sets (i.e.,, I' and IT in Section 2) [13-18].
Typically, those are the set of all the possible objects
with a given |U(x,y)| and the set of all the objects that
are constrained within I'. The search for the intersec-
tion is based on the information obtained by projecting
the current estimate on the two sets. An error met-
ric is obtained by evaluating the distance between the
current estimate and a given set. The block diagram
of the iterative projection approaches is illustrated in
Figure 1.

Besides GS, there are a few of other iterative projection
approaches, such as ER, HIO, SF, ASR, and RAAR [13-18].
All of them have the same block diagram as in Figure 1. In
the next, we take GS approach for an example to describe
the procedures of iterative projection approach, which are
shown in details in Algorithm 1.

Algorithm 1 GS-type approach (GS) for phase retrieval

Initialization: initial phase ¢°(&,7), object plane mea-
surement |u(&,7n)| and Fourier plane measurement
|U(x,y)|, spatial coordinate set (§,17) € I and spatial
frequency coordinate set (x,y) € I, residual error o and
maximum number of iterations I are given;

Repeat fori =0,1,2,---

Step 1: ith iterative wave field

u'(§,m) = [u(§, )| o exp{j'(§, M}

Step 2: Update of the wave field by the object plane
measurement on set I, i.e.,

- lu(&, | o expljp' (€, m} €,m) €T
Wi, m = { 0 otherwise
Step 3: Forward Fourier transform, i.e.,
U'(x,y) = DFT{u'} = |U'(x,y)| o exp{jy' (x, y)}
Step 4: Update of the Fourier image by the Fourier plane
measurement U (x, y)| on set I, i.e.,
i _ UG oexpljy'(x, )} (x,y) € I1
Ui y) = { 0 otherwise
Step 5: Backward Fourier transform (inverse Fourier
transform), i.e.,
u'(€§,1) = IDFT{U'} £ |u' (€, 1)| 0 exp{j¢*(£, n)} and
@' < wo @', where w is a window function.
Step 6: If phase residual error ¢ or a maximum number of
iterations I is reached, stop the procedure,
else return to Step 1.



Fan et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:24
http://asp.eurasipjournals.com/content/2014/1/24

Page30f13

Initial estimate for the
complex object;
Given initial phase @(&n)

Object domain
intensity | #(£.7)

Fourier domain
intensity | {/(x, )]

First iteration only |
Objective domain

constraints (£,m el

Fourier
Transform

Fourier domain
constraints (x.y) €Tl

¥

-

l

Inverse Fourier
Transform
A

Figure 1 Block diagram of the iterative projection approaches.

Remark 1. Noted that the presented GS-type approach
in Algorithm 1 is different from the standard GS approach
because there is an additional window operator in step 5.
Although it is a simple modification based on standard
GS approach by introducing window function, interest-
ingly, simulation experiment shows that it does improve
recovery performance in Section 4. For simplicity, we call
the GS-type approach with window function as the GS
approach in the paper.

Remark 2. The uniqueness of phase retrieval: In gen-
eral, the unique phase retrieval from Fourier transform
magnitude-only data is impossible. However, we utilize
magnitudes of semi-sparse wave field and its Fourier
transform; two measurements are used to resolve the
phase ambiguity. To recover M x N phases, there are
2M x N unknown variables, and hence, we can resolve all
unknown variables using two measurements. If the solu-
tion exists, it must be unique. This is the reason why there
is no phase ambiguity problem in the paper.

Remark 3. Explanations of window operator: For the
GS-type approach with window function in Algorithm 1,
we present some trivial explanations why window oper-
ator w is helpful to improve the reconstruction per-
formance. Because using window operator is actually
equivalent to introduce some prior information for the
phases of semi-sparse wave field, consider an extreme
case, for example, if the window operator is the phase sup-
port of the semi-sparse wave field, the phase support of
wave field is known exactly. Obviously, it improves the
reconstruction performance from the aspect with window
operator.

3.2 The proposed iterative projection approaches with
phase sparse constraint

In subsection 3.1, we discussed some existing iterative

projection approaches. However, all of them do not con-

sider the structure property about ¢ (&, n). As a matter of

fact, we can utilize this property to improve the recovery

performance when ¢ (&, n) is sparse.

In this subsection, we present a counterpart of iter-
ative projection approach with phase sparse constraint
for phase retrieval. The approach starts with a random
initialization of the phase in each iteration; the inverse
Fourier transform is computed as the same as the con-
ventional iterative projection approaches. The phase of
inverse Fourier transform filtered by a ‘soft thresholding’
operator is then computed to obtain the redefined phase
estimate. This procedure is repeated until phase residual
error or a maximum number of iterations is reached.

Next, we propose a soft thresholding strategy to
keep ¢(&,n) be sparse in each iterative step. The soft
thresholding operator is defined as

TH,,, = sign(w)(jw| — 1), where (-)™ = max(, 0).
(4)

The thresholding parameter A makes a fixed portion of
the elements of ¢ (&, n) be non-zero. As a matter of fact,
the soft thresholding strategy is popular in many other
iterative approaches such as alternative direction method
(ADM) [5]. Similar to conventional iterative projection
approaches, we present a block diagram of the iterative
projection approaches with phase sparse constraint in
Figure 2.
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In fact, it can be extended into a few of iterative pro-
jection approaches with phase sparse constraint. To dis-
tinguish from conventional ER, HIO, ASR, and RAAR,
we denote by iterative projection approaches with phase
sparse constraint ER-PhSparse, HIO-PhSparse, ASR-
PhSparse, RAAR-PhSparse, respectively. All of them have
the same block diagram as in Figure 2. For simplicity, we
take GS for example to describe the procedures of iterative
projection approach with phase sparse constraint, which
is shown in Algorithm 2.

Algorithm 2 GS-type iterative projection approach
with phase sparse constraint (GS-PhSparse) for phase
retrieval

Initialization: initial phase ¢° (£, 17), object plane measurement
|u(€, n)| and Fourier plane measurement |U(x, y)|, spatial
coordinate set (&, ) € I' and spatial frequency coordinate
set (x,y) € I, threshold parameter A and residual error o,
maximum number of iterations I are given and set i = 0;
Step 1: ith iterative wave field

W&, ) = Ju, )l o expligi (5, m);

Step 2: Update of the wave field by the object plane
measurement on set I" , i.e.,

e,y = | 146 Ml explis &) Em el
otherwise

Step 3: Forward Fourier transform, ie.,
U'(x,y) = DFT{u'} = [U'(x,y)| o exp{ji*(x, )}
Step 4: Update of the Fourier image by the Fourier plane
measurement |U (x,y)| on set H, ie.,

; |U(x, y)| o exp{jyr' (x, 1)} (x,9) € 1
Uixy) = { 0 otherwise
Step 5: Backward Fourier transform (inverse Fourier
transform), i.e.,
u(€,m) = IDFT{U;} £ |uj(§, )| o explj{ (€, n)} and
¢} < wo ¢,, where w is a window function.
Step 6: Update phase of the complex-valued signal,
¢E, ) < THL{@i(E, n)} = sign (6§, m) (185 mI — 1) "
where, ()" = max(-,0)
Step 7: If phase residual error ¢ or a maximum number of
iterations I is reached, stop the procedure, else i < i + 1
and return to Step 1.

3.2.1 Parameter A selection

It is noted that the thresholding parameter A in Algo-
rithm 2 is in the range [ 0, 1]. In order to select the param-
eter A properly, in the paper, we select different A values
within the range [0, 1] in ascending order and denote
them by {11, A, - - -, Ap} at first. And then, by given 1;, we
calculate relative error e(i) = ||¢x, (¥, n) — ¢, (s DIIF
with the procedures in Algorithm 2, where ¢, (1, n) is the
recovered phase given by A;,i = 1,2, - - -, P. Finally, we fit
a second-order polynomial function err(}) with (4;, e(i))
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fori = 1,2,---,P, and we select .* = argminerr(X) as

2
the optimal value.

The convergence of the proposed GS-PhSparse
approach cannot be guaranteed. It remains to be a dif-
ficult problem in the phase retrieval. A mathematical
rigorous analysis has not been found in many existing
approaches for conventional phase retrieval including ER,
HIO, ASR, and RAAR. However, we must point out that
the error reduction holds in the GS-PhSparse approach.
The main result of error reduction of the GS-PhSparse is
presented in Theorem 1.

Theorem 1. For the ith iteration, define the mean squared
error (MSE) as

E

N-1

[ G, 9)] — UG )1
=0

‘é 1
MN

X:

(5)

Il
=}
<

where U (x, y)| and |U(x, y)| are Fourier transform magni-
tude of u'(x, y) and Fourier domain measured magnitude,
respectively. u' (£, n) is the recovered signal in ith iteration.
ul(€,n) is defined the same as in step 5 in Algorithm 2. For

VE, Y, if
i i+1 )

sign (u & n) +2u Emn A, n)>
Ut (&, )

holds, then the error in (i + 1)th iteration is less than or
equals that in the ith iteration, i.e., E; > Ejy, for Vi.

| ©)
= sign (u' (&, 1) —

Proof 1. To consider

M-1N-1
Z Z U )| — UG )1 (7)
Since |L[f(x,y)| = |U(x, y)|, for Vi, yields,
1 M-1N-1 , , )
= iy 2 2 LUyl = L I, 8)
x=0 y=0

where |U(x,y)| is the observed Fourier magnitude. It is
noted that |U(x,y)| and |Uf(x,y)| have the same phase
¥i(x,y), and hence, we can rewrite that

1 M—-1N-1 )

NI LCE R UACEI)
x=0 y=0
M—-1N-1

1 i i 2

= N U (x,9) — Uf(x,y)] 9)
x=0 y=0
M-1N-1

= ' (€, m) — uy &, P,

n=0

o
Il
o
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Figure 2 Block diagram of the iterative projection approaches with phase sparse constraint.
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where the last equality above follows Parseval’s theorem.
Meanwhile, we also have a relationship as following:

M—-1N-1 )
DO WtE ) — ui &
§=0 n=0
1 M—-1N-1
= U, y) — Ui (%, 9)
b x=0 y=0
1 M—-1N-1 " . ) (10)
>y 2o 2 U eyl = e il
x=0 y=0
1 M—-1N-1 )
= U )| = (U, 9)]]
b x=0 y=0
= Ei+1)

where the above inequality follows as a direct conse-
quence of the triangle inequality. On the other hand,

since sign (”i(g’”)z”iﬂ(g’”) — ul(g, ’7)) = sign (u'(§,n)—
ut1(&,n)) for V&, Vn, and we have

Case 1. if “CPTTED < ule, ), and wi,n) <
u't1(&, ), we can get

(@& )+ u™E ) - (W) — uTE )

| | " (11)
= 2”;(5’ n - (ul(é’ n — u'™ &, 77))

for V&, Vn, equivalently,

lu' (&, > — 2ul(E, mu' (&, m) + b€, > > | (E, )
—2ul(&, ) - uTHE, ) + |ul(E, )P

(12)
for V&, Vn, yields

M—-1N-1 ) )
ARG
£=0 n=0

M—-1N-1 ) ) (13)

> lu'THE, ) — ub(E, )|
£=0 n=0

i i+1 : )
Case 2. 1f “EDTETED Syl ) and wiE, ) >
u'*t1(&, 1), in the same way, we can also have

M—-1N-1 ) )
D0 i ) — uiE )
£=0 n=0
M—-1N-1 ) ) (14)
> [T E, ) — ub(E, )|

o
Il
(=}
=
Il
o

Combined with (9) and (10), we know that E; > E;;; holds
for Vi, immediately.

Generally speaking, it is hard to prove whether Equation
(6) holds or not with mathematical analysis. However, the
above theorem presents a sufficient, but not a necessary
condition which ensures that the MSE decreases. It is very
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important in theory. As a matter of fact, the inequality
relationship (14) holds for general semi-sparse wave field,
which is confirmed in Section 4 by numerical simulations.
In the next, we present another meaningful result, which
tells us that the recovered phase error is bounded with the
proposed approach.

Theorem 2. Let ¢'(£,n) be the recovered phase of signals
in the ith iterative signal. ¢\(&,n) is an inverse Fourier
transform of U:(x,y), which is defined in step 5 of Algo-
rithm 2. ¢*+1(&, ) is the updated phase of the semi-sparse
wave field in the ith iteration. If phase ¢ (€, n) is a K-sparse
on support set S, namely, S 2 (§ (&, ) : |supp{ $(&,m)| =
K}, then there exists a thresholding parameter X, with the
phase update rule ¢"F1(E,n) <~ TH{$L(E,n)} = sign
(qﬁ,f(é, n)) (|¢f($, n)| — )»)+, the recovered relative phase

residual ||¢(€,1) — &, mIIE/|pE, )|F is bounded.

Proof 2. Consider ¢'t1(£, 1) is the best possible sparse
approximation with K-sparse (because it is formed by
retaining the K largest entries in ¢!(£, 1) and setting oth-
ers to zero) and qﬁi(f, n) is also K-sparse. And, thus, we
have

p"tE ) = arg _min_[|$(§,7) I

M—-1N-1
_ ; i 2
=arg_min Z Z &, m) — dLE, I
£=0 n=0
(15)
Since ¢'(£,1) € S, we have the inequality
M—-1N-1 ) )
DO IiE ) — ol P
£=0 =0
M—-1N-1 ) ) (16)
>3 letE ) — iE
£=0 n=0

Therefore, the phase residual in the (i + 1)th itera-
tion is less than or equals that in the ith iteration. In
the above inequality, the equality holds if and only if
(€, m) = ¢1(£,n). It shows that the recovered phase
residual is bounded, since there exists a one-to-one map-
ping between sparsity degree and thresholding param-
eter L. In other words, if |supp{¢(&,n)}| = K, there
must exist A and make the non-zero number of entries
in TH;{ ¢.(£,1)} equal to K. Therefore, using the phase
update rule in GS-PhSparse, the recovered phase resid-
ual [|¢(&,n) — ¢ (&, n)|F is bounded. Certainly, ||¢ (&, 1) —
& & mIle/ldE, n)|E is also bounded.

Once again, we point out that the corresponding iter-
ative projection approaches with phase sparse constraint
(i.e., ER-PhSparse, HIO-PhSparse, ASR-PhSparse, and
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RAAR-PhSparse) can be derived directly. Considering GS
is the first successful iterative projection approach for
phase retrieval and RAAR is the latest proposed version,
in the next section, we just employ GS and GS-PhSparse,
RAAR, and RAAR-PhSparse for comparison.

4 Numerical simulations

In this section, we provide several numerical simula-
tions to demonstrate the performance of the proposed
approach. Two images, ‘Lena’ and ‘phantom, are taken to
imitate the magnitude distribution and sparse phase dis-
tribution of wave field u(§, n), respectively. The wave field
size is 256 x 256. Magnitudes of wave field are nonnega-
tive and its phases are sparse. The magnitude distribution
and phase distribution of wave field u(&, n) are shown in
Figure 3a,b,c, respectively. Figure 3c is obtained by set-
ting all elements which are greater than 0.3 in Figure 3b
to 0. The range of true phases in Figure 3c is [0, 7/2]. To
estimate the recovery, we define normalized residual as

_ i@ m — gl

R_Error
[l &, mIlF

(17)

The approach is terminated if R_Error < 10™* or
a maximum number of iterations, 100, is reached. The

magnitude of object u(,n) phase of object u(g,n)

“.
b

phase of object u(g,n) Blackman window

c d

Figure 3 The magnitude distribution and phase distribution of
wave field u(&, n). (a) Original magnitudes of semi-sparse wave field.
(b) Original phases of semi-sparse wave field. (c) Original phases of
semi-sparse wave field. (d) 2D Blackman window function from top
view.
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reconstruction accuracy is characterized by relative
signal-to-noise ratio (RSNR), which is defined as

[b&m—oen|

RSNR = —20log 10
o &, mIlF

(18)

Under these assumptions, we do several experiments
from several aspects below.

Experiment 1. In order to illustrate that the recovery
performance can be improved with window function, in
this experiment, we calculate the RSNR with Blackman
window function and rectangle window function. The
Blackman window function and rectangle window func-
tion are presented in the following: The Blackman window
of length N is defined as w = Wpjackman ° lelackman' and
Whlackman(#) = 042 — 0.5cosQrn/(N — 1)) + 0.08
cos(dmrn/(N — 1)) for 0 < n < M — 1, where M is
N/2 for even N and (N + 1)/2 for odd N. The win-
dow function from the top view is shown in Figure 3d. In
this experiment, we use Figure 3a,b to imitate the magni-
tude distribution and sparse phase distribution of u(§, ),
respectively.

Assume that object plane measurement and the Fourier
plane measurement are contaminated by Gaussian noise
with SNR = 30 dB. The simulation result is shown in
Figure 4. Alternatively, keeping the same noise level and
changing the sparse phase of the wave field with Figure 3c,
we also calculate the RSNR of the GS approach using dif-
ferent window functions. The simulation result is shown
in Figure 5. According to Figures 4 and 5, the advantages
with window function are obvious.

12

Rectangle Window
Blackman Window

RSNR(dB)

0 I I I I I I I I I
10 20 30 40 50 60 70 80 920

iterative number

100

Figure 4 RSNR of Figure 3a,b with standard GS approach and GS
approach with window function.
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8 T T T

Rectangle Window -
- Blackman Window e

-
L -

1 . . . . . .
10 20 30 40 50 60 70 80 90

iterative number

100

Figure 5 RSNR of Figure 3a,c with standard GS approach and GS
approach with window function.

Experiment 2. As stated in Section 3, Theorem 1
tells us that the iterative residual decreases along with
the increase of the iterative number, provided that
Equation (6) holds. However, Equation (6) is a suffi-
cient, but not a necessary condition, which decreases
the MSE. It is not an easy problem to answer whether
Equation (6) satisfies or not. As a matter of fact, if
inequality (13) (certainly the same as (14)) is satis-
fied, then surely the MSE will decrease. Fortunately,
this requirement is not too strict, which is confirmed
by numerical simulation. In the experiment, we take
Figure 3a,b as magnitudes and phases of semi-sparse
wave field, respectively. Object plane measurement
and Fourier plane measurement are contaminated by

Gaussian noise with SI}\I/IR = 20 dB. We calculate the
—1IN-1 ,
iterative error between Y > |u!(€,1) — ul(,1)|* and
£E=0 n=0

M—1N-1 )

> utE, n) — ul(g,n)|* with GS, GS-PhSparse,
£=0 n=0

RAAR, and RAAR-PhSparse approaches, respectively.
Especially, the iterative error with GS and GS-PhSparse
is shown in Figure 6a, and the iterative error with RAAR
and RAAR-PhSparse is shown in Figure 6b. The results of

Figure 6 show that inequality (13) (or (14)) holds.

Experiment 3. Although it is difficult to set parameter
A, we present a practical method to select parameter A
in subsection 3.2. In this experiment, we use the method
proposed in subsection 3.2, which is required in the fol-
lowing experiments. For different noise levels, we evaluate
(e(?), ;) with the GS-PhSparse approach, where A; =
{0.01,0.11,0.22,0.33,0.44, 0.55,0.66, 0.77,0.88,0.99}, res-
pectively. The normalized e(i) versus A; is plotted in
Figure 7 in discrete black ‘x’. The fitted function err(}) is
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Figure 6 Iterative phase residual of semi-sparse wave field. (a) Iterative phase residual of semi-sparse wave field with GS and GS-PhSparse
after 30 iterations. (b) Iterative phase residual of semi-sparse wave field with RAAR and RAAR-PhSparse after 30 iterations.
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plotted in Figure 7 in red *-* line. Specifically, Figure 7a is
evaluated with SNR = 10 dB. Figure 7b is evaluated with
SNR = 20 dB. Figure 7c is evaluated with SNR = 30 dB,
and Figure 7d is evaluated with noiseless case. We can
obtain similar results with the RAAR-PhSparse approach.
Thus, we do not plot the results with the RAAR-PhSparse
approach. According to Figure 7, we select thresholding
parameter A = 0.5 properly.

Experiment 4. In the experiment, we compare two
iterative projection approaches for phase retrieval: GS
and the proposed iterative projection approach for phase
retrieval with phase sparse constraint (i.e., GS-PhSparse).
The approaches start with an all-zero initialization of the

a 1 b
3
- p —
g 0.5) XX g
0] 0]
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
A value A value
c 1 ¥ d 1
— K — 3 x
(o] (o]
= 05 = 05
o x X x x o X X x
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Figure 7 The normalized e(i) versus ;. (@) Errors vs. A at SNR = 10 dB.
(b) Errors vs. A at SNR = 20 dB. (€) Errors vs. A at SNR = 30 dB.
(d) Errors vs. A in noise-free case.

phase (i.e.,¢°(&,7) = 0 ) and thresholding parameter
A = 0.5 in simulations. Object plane measurement and
Fourier plane measurement are contaminated by Gaussian
noise with SNR = 30 dB. The results of recovery using
GS and GS-PhSparse are shown in Figure 8. Hereafter,
truth magnitudes of wave field and corresponding truth
phases are shown in Figure 3a,b, respectively. Exactly

GS-PhSparse, IT : 90

GS-PhSparse, IT : 90

GS,I1T:90

Figure 8 The results of recovery using GS and GS-PhSparse
(SNR =30 dB). (a) Magnitude recovery of semi-sparse wave field
with GS-PhSparse. (b) Phase recovery of semi-sparse wave field with
GS-PhSparse (RSNR = 17.90 dB). (€) Magnitude recovery of
semi-sparse wave field with GS. (d) Phase recovery of semi-sparse

wave field with GS (RSNR = 10.97 dB).
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Figure 9 Normalized phase residual of semi-sparse wave field
with GS and GS-PhSparse (SNR =30 dB).

speaking, magnitude recovery of semi-sparse wave field
with GS-PhSparse approach is shown in Figure 8a, and the
corresponding phase recovery is shown in Figure 8b. Mag-
nitude recovery of the semi-sparse wave field with GS is
shown in Figure 8c, and corresponding phase recovery is
shown in Figure 8d. Meanwhile, we also calculate the val-
ues of RSNR which are 17.90 and 10.97 dB in Figure 8b,d,
respectively, which show that the GS-PhSparse has higher
reconstruction accuracy than GS. According to the results
in Figure 8, the visual advantage of GS-PhSparse is obvi-
ous. Besides, normalized phase residuals of wave field
with GS and GS-PhSparse are also simulated. The sim-
ulation result in Figure 9 shows that the GS-PhSparse
approach has a faster convergence speed than the GS
approach.

Meanwhile, we compare another two iterative projec-
tion approaches for phase retrieval: RAAR and RAAR-
PhSparse. In the simulation, initialization of the phase and
thresholding parameter A are the same as in GS and GS-
PhSparse. The results of recovery using RAAR and RAAR-
PhSparse approaches are shown in Figure 10a,b,c,d. The
values of RSNR are 17.96 dB in Figure 10b, and 11.13 dB
in Figure 10d. According to the results of Figure 10, again,
the visual advantage of the proposed approach is obvi-
ous. Moreover, normalized phase residuals of semi-sparse
wave field with RAAR and RAAR-PhSparse are also calcu-
lated. The simulation result is shown in Figure 11. It shows
that the RAAR-PhSparse approach also has faster residual
convergence speed than the RAAR approach.

Besides, we also simulate the recovery performances of
GS, GS-PhSparse, RAAR, and RAAR-PhSparse for SNR =
20 dB. The results of recovery using GS and GS-PhSparse
approaches are shown in Figure 12a,b,c,d, and the val-
ues of RSNR are 4.67 dB in Figure 12b and 3.36 dB in

RAAR-PhSparse, IT : 76

RAAR-PhSparse, IT : 76

RAAR, IT : 76

| Ay

RAAR, IT : 76

1|

Figure 10 Results of recovery using RAAR and RAAR-PhSparse
approaches (SNR = 30 dB). (a) Magnitude recovery of semi-sparse
wave field with RAAR-PhSparse. (b) Phase recovery of semi-sparse
wave field with RAAR-PhSparse (RSNR = 17.96) dB. (c) Magnitude
recovery of semi-sparse wave field with RAAR. (d) Phase recovery of
semi-sparse wave field with RAAR (RSNR = 11.13) dB.

Figure 12d. The corresponding normalized phase residu-
als of semi-sparse wave field with GS and GS-PhSparse are
plotted in Figure 13, which shows that the GS-PhSparse
approach has smaller residual than the GS approach.
The results of recovery using RAAR and RAAR-PhSparse
approaches are shown in Figure 14a,b,c,d, and the val-
ues of RSNR are 5.31 dB in Figure 14b and 3.51 dB in
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R_Error
;
1
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Figure 11 Normalized phase residual of semi-sparse wave field

with RAAR and RAAR-PhSparse (SNR = 30 dB).
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GS-PhSparse, IT : 100 GS-PhSparse, IT : 100
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Figure 12 The results of recovery using GS and GS-PhSparse
(SNR =20 dB). (a) Magnitude recovery of semi-sparse wave field
with GS-PhSparse. (b) Phase recovery of semi-sparse wave field with
GS-PhSparse (RSNR = 4.67dB). (€) Magnitude recovery of semi-sparse
wave field with GS. (d) Phase recovery of semi-sparse wave field with
GS (RSNR = 3.36dB).

RAAR-PhSparse, IT : 100

RAAR-PhSparse, IT : 100

RAAR, IT : 100 RAAR, IT : 100

Figure 14 Results of recovery using RAAR and RAAR-PhSparse
approaches (SNR = 20 dB). (a) Magnitude recovery of semi-sparse
wave field with RAAR-PhSparse. (b) Phase recovery of semi-sparse
wave field with RAAR-PhSparse (RSNR = 5.31 dB). (c) Magnitude
recovery of semi-sparse wave field with RAAR. (d) Phase recovery of
semi-sparse wave field with RAAR (RSNR=3.51 dB).

Figure 14d. The normalized phase residuals of the semi-
sparse wave field with RAAR and RAAR-PhSparse are
plotted in Figure 15. According to the results of Figures 12
to 15, the visual advantages of the proposed approach are
obvious.

Experiment 5. In Experiments 1, 2, and 4, we assume
the same noise level for both object plane measurement

T T T

(dB)

R_Error

10 20 30 40 5 60 70 80 90 100
iterative number

Figure 13 Normalized phase residual of semi-sparse wave field
with GS and GS-PhSparse (SNR = 20 dB).

and Fourier plane measurement (SNR = 30 or SNR =
20 dB simultaneously). However, in this experiment, it
shows that there are different effects when different noise
levels are imposed on different measurements. Assuming
two measurements, one is SNR = 30 dB, and the other
is SNR = 20 dB. We calculate the RSNR of the recovered
phases for different combinations of noise levels, such as
(20 and 30 dB), (30 and 20 dB), (30 and 30 dB), and (20

T T T T T T

R_Error(dB)

10 20 30 40 50 60 70 8 90 100
iterative number

Figure 15 Normalized phase residual of semi-sparse wave field
with RAAR and RAAR-PhSparse (SNR = 20 dB).
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and 20 dB), respectively. For example, (20 and 30 dB), it
means that the SNR on the object measurement plane
is 20 dB and that on the Fourier measurement plane is
30 dB. The other combinations have the same meaning,
and the unit dB is ommitted for simplicity in Table 1.
According to the results in Table 1, we find that different
approaches have different sensitivities to different plane
noises. GS and GS-PhSparse approaches are more sen-
sitive to Fourier measurement plane noise level, but the
RAAR and RAAR-PhSparse approaches are more sensi-
tive to object measurement plane noise level. They have
different robustness to noise.

Remark 4. Robust to noise: In the above experiments,
Gaussian noise levels are with SNR = 30 and 20 dB. They
are so small as to be worthy of formal discussion. As a mat-
ter of fact, the proposed approach is also suitable for larger
noise level. In the case, we average multiple noisy mea-
surements from object plane and Fourier measurement
plane. We calculate the reconstruct performance of the
proposed approach in SNR = 10 dB, and we averaged 50
trial noisy measurements. The values of RSNR with GS-
PhSparse and GS are 11.61 and 7.51 dB, respectively. And,
the values of RSNR with RAAR-PhSparse and RAAR are
11.78 and 7.55 dB, respectively. Therefore, the proposed
approach with multiple measurements is suitable for lager
noisy cases.

Experiment 6. We discuss how to deal with the large-
scale phase retrieval problem in the experiment. In the
simulation, the wave field size is assumed be 1,024 x
1,024. The magnitude distribution and phase distribution
of the semi-sparse wave field are shown in Figure 16a,d,
respectively. All approaches terminate after a given num-
ber of iterations (30 iterations in RAAR-PhSparse and
RAAR, 60 iterations in GS-PhSparse and GS). Object
plane measurement and Fourier plane measurement are
contaminated by Gaussian noise with SNR = 30 dB. The
other parameters are the same as in Experiment 4. For
large-scale phase retrieval problem, one popular solution
is to divide wave field with 1,024 x 1,024 into several
smaller wave fields (say 16 wave fields with 256 x 256).
For each smaller wave field, we can use the same proce-
dures in Experiment 4 to reconstruct each smaller wave

Table 1 Recovered RSNR (dB) for different SNR
combinations

Approaches (20,30) (30,20) (30,30) (20,20)
GS 1043 3.95 11.84 339
GS-PhSparse 14.86 583 17.08 4.84
RAAR 4.01 10.52 11.16 347
RAAR-PhSparse 5.83 15.44 17.89 5.14
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Figure 16 The results of recovery with RAAR-PhSparse and RAAR
for large-scale phase retrieval problem. (a) Original magnitude of
semi-sparse wave field. (b) Magnitude recovery of semi-sparse wave
field with RAAR-PhSparse. (€) Magnitude recovery of semi-sparse
wave field with RAAR. (d) Original phase of semi-sparse wave field. (e)
Phase recovery of semi-sparse wave field with RAAR-PhSparse (RSNR
=16.94 dB). (f) Phase recovery of semi-sparse wave field with RAAR
(RSNR=9.67 dB).

field. Once all the smaller wave fields with 256 x 256
are reconstructed, the wave field with 1,024 x 1,024 is
determined.

However, considering the complexity of the iterative
projection-type approach, for the wave field size of 1,024
x 1,024, we need not divide it into several smaller wave
fields in the experiment. A wave field with 1,024 x
1,024 can be reconstructed with the proposed approach
directly. The results of recovery with RAAR-PhSparse and

magnitude of u(&,n) GS

—PhSparse
8 LIS,

% i

b
phase of uCn)  GS-PhSparse

d e
Figure 17 The results of recovery with GS-PhSparse and GS for
large-scale retrieval problem. (a) Original magnitude of semi-sparse
wave field. (b) Magnitude recovery of semi-sparse wave field with
GS-PhSparse. (€) Magnitude recovery of complex-valued wave field with
GS. (d) Original phase of semi-sparse wave field. (e) Phase recovery of
semi-sparse wave field with GS-PhSparse (RSNR = 16.89 dB). (f) Phase
recovery of semi-sparse wave field with GS (RSNR = 7.23 dB).
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RAAR are shown in Figure 16. And, the results of recov-
ery with GS-PhSparse and GS are shown in Figure 17.
Exactly speaking, the magnitude recovery of semi-sparse
wave field with RAAR-PhSparse approach is shown in
Figure 16b, and corresponding phase recovery is shown
in Figure 16e. The magnitude recovery of the semi-sparse
wave field with RAAR is shown in Figure 16c, and cor-
responding phase recovery is shown in Figure 16f. The
magnitude recovery of the semi-sparse wave field with the
GS-PhSparse approach is shown in Figure 17b, and cor-
responding phase recovery is shown in Figure 17e. The
magnitude recovery of the semi-sparse wave field with GS
is shown in Figure 17¢, and corresponding phase recovery
is shown in Figure 17f.

Experiment 7. In the experiment, we verify the pro-
posed approach which has the ability of enhancing the
resolution. The magnitude distribution and phase distri-
bution of wave field are the same as in Experiment 6,
which are shown in Figure 18a,d, respectively. In sim-
ulation, both noise level and iterations are the same as
those in Experiment 6, too. However, in order to illustrate
the ability of enhancing the resolution in the proposed
approach, only a half magnitude on the Fourier measure-
ment plane was utilized in the simulation. The results of
recovery using RAAR-PhSparse and RAAR are shown in
Figure 18. And, the results of recovery using GS-PhSparse
and GS are shown in Figure 19. From Figures 18 and 19,
the visual advantages of the proposed approach are obvi-
ous. Meanwhile, we calculate the values of RSNR with
RAAR-PhSparse and RAAR in Figure 18, which are 12.37

Figure 18 The results of recovery with RAAR-PhSparse and RAAR
using partial magnitude measurement. (a) Original magnitude of
semi-sparse wave field. (b) Magnitude recovery of semi-sparse wave
field with RAAR-PhSparse. () Magnitude recovery of semi-sparse
wave field with RAAR. (d) Original phase of semi-sparse wave field. (e)
Phase recovery of semi-sparse wave field with RAAR-PhSparse (RSNR
=12.37 dB). (f) Phase recovery of semi-sparse wave field with RAAR
(RSNR=1.31dB).
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Figure 19 The results of recovery with GS-PhSparse and GS
using partial magnitude measurement. (a) Original magnitude of
semi-sparse wave field. (b) Magnitude recovery of semi-sparse wave
field with GS-PhSparse. (€) Magnitude recovery of semi-sparse wave
field with GS. (d) Original phase of semi-sparse wave field. (e) Phase
recovery of semi-sparse wave field with GS-PhSparse (RSNR = 12.32
dB). (f) Phase recovery of semi-sparse wave field with GS (RSNR=1.19
dB).

and 1.31 dB, respectively. The values of RSNR with GS-
PhSparse and GS in Figure 19, which are 12.32 and 1.19
dB, respectively. Obviously, the proposed approach has
the ability of enhancing the resolution.

A more detailed simulation comparison between the
iterative projection approaches for phase retrieval and
those with phase sparse constraint is not reported in
this paper. As a matter of fact, all iterative projection
approaches for phase retrieval with phase sparse con-
straint have a good recovery quantity and faster residual
convergence speed than the counterparts.

5 Conclusions

The problem of 2D phase retrieval, namely, recovery of a
2D semi-sparse wave field from magnitudes of both wave
field and its Fourier transform is addressed in the paper.
The key aspect of our work is that the phase sparse con-
straint is applied in each iteration by retaining only phase
elements that are larger than thresholding parameter and
setting others equal to zero and thus refine the estimate of
the phase. Unlike the standard phase retrieval approaches,
this allows us to have variable phase support in each
iteration in the literature. Simulation experiments demon-
strate advantages of the proposed approach, including
rapid convergence, small residual error, noise stability,s
and suitability in large-scale phase retrieval problems.
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