
Tornai and Cserey EURASIP Journal on Advances in Signal Processing 2014, 2014:30
http://asp.eurasipjournals.com/content/2014/1/30

RESEARCH Open Access

Initial condition for efficient mapping of level
set algorithms on many-core architectures
Gábor János Tornai* and György Cserey

Abstract

In this paper, we investigated the effect of adding more small curves to the initial condition which determines the
required number of iterations of a fast level set (LS) evolution. As a result, we discovered two new theorems and
developed a proof on the worst case of the required number of iterations. Furthermore, we found that these kinds of
initial conditions fit well to many-core architectures. To show this, we have included two case studies which are
presented on different platforms. One runs on a graphical processing unit (GPU) and the other is executed on a
cellular nonlinear network universal machine (CNN-UM). With the new initial conditions, the steady-state solutions of
the LS are reached in less than eight iterations depending on the granularity of the initial condition. These dense
iterations can be calculated very quickly on many-core platforms according to the two case studies. In the case of the
proposed dense initial condition on GPU, there is a significant speedup compared to the sparse initial condition in all
cases since our dense initial condition together with the algorithm utilizes the properties of the underlying
architecture. Therefore, greater performance gain can be achieved (up to 18 times speedup compared to the sparse
initial condition on GPU). Additionally, we have validated our concept against numerically approximated LS evolution
of standard flows (mean curvature, Chan-Vese, geodesic active regions). The dice indexes between the fast LS
evolutions and the evolutions of the numerically approximated partial differential equations are in the range of
0.99 ± 0.003.

Introduction
The use of level-set (LS)-based curve evolution has
become an interesting research topic due to its versatility
and accuracy. These flows are widely used in various fields
like computational geometry, fluid mechanics, image pro-
cessing, computer vision, and materials science [1]. In
general, the method entails that one evolves a curve, sur-
face, or image with a partial differential equation (PDE)
and obtains the result at a point in the evolution. There
is a subset of problems where only the steady state of the
LS evolution is of practical interest like segmentation and
detection. In this article, only this subset is considered. In
addition, we do not form any operator or speedfield (F) for
driving the evolution of the LSs. However, two theoretical
worst-case bounds of the required number of iterations
are proposed to reach the steady state for a well-defined
class of LS-based evolution. These bounds depend only

*Correspondence: tornai.gabor@itk.ppke.hu
Faculty of Information Technology and Bionics, Pázmány Péter Catholic
University, Práter str. 50/a, Budapest 1083, Hungary

on the initial condition. Furthermore, the bounds only
allow an extremely small number of iterations if the evolu-
tion is calculated with a properly chosen initial condition.
These kinds of evolutions are calculated very quickly on
many-core devices.
The subject of this paper is both theoretical and practi-

cal. The theoretical side is clearly the two new theorems
on the worst case of the required number of iterations
of the Shi LS evolution [2]. This evolution omits the
numerical solution of the underlying PDE and success-
fully approximates it with a rule-based evolution. It is
based on the sign of the driving forces (F) normal to the
curves to be changed. The first theorem gives a general
bound, and the second one assumes a special kind of dis-
crete convexity defined in subsection ‘Basic definitions’.
The practical side is presented through two case studies,
namely, the LS evolution of Shi is mapped in a straightfor-
ward way on two completely different many-core archi-
tectures. With a lot of small curves in the initial condition,
which would be infeasible on a conventional single-core
processor, the proposed theorems ensure small number

© 2014 Tornai and Cserey; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly credited.

Tornai and Cserey EURASIP Journal on Advances in Signal Processing 2014, 2014:30 Page 2 of 11
http://asp.eurasipjournals.com/content/2014/1/30

of iterations. Additionally, with the change in the initial
condition (instead of one curve, a lot of small curves are
used), the computing width of the many-core platform are
utilized.
The first successfulmethod to speed up the LS evolution

was introduced in [3]. A local method was proposed in [4]
with better characteristics. These methods are labeled as
narrow banding methods. However, we are not present-
ing any PDE operators and do not design any speedfield.
Instead, we direct the reader to the work of Sapiro [5]
who gives a detailed picture from the art of PDE operator
design for a given purpose. Furthermore, there are several
results [6-9] regarding region- and model-based evolu-
tions. In [10] the authors used Sobolev norm instead of the
standard inner-product-based L2 norm and showed that
this norm allows new energies to implement otherwise
considered infeasible.
There are multiple results reporting successful mapping

of LS evolution to many-core platforms. An interactive
3D solver for GPU is presented in [11]. This realization
uses a graphics application programming interfaces (API)
(OpenGL) and the rendering pipeline. Two later works
[12,13] applied the computing-unified device architecture
(CUDA) of NVIDIA (NVIDIA Corporation, Santa Clara,
CA, USA). Both papers worked with 3D volumes. In [12]
the authors mapped a sparse solver, while in [13] a higher-
order scheme was used to evolve the LSs. Cellular neural
networks (CNN) [14] proved to be an inspiring construct.
There have been results regarding the mapping of LS-like
evolutions to CNN [15-17]. Cserey et al. [15] successfully
mapped the nonlinear histogram modification to CNN.
A later work [17] realized an online boundary detection
algorithm based on LS curve evolution to extract the vol-
ume of the right atrium. These papers and results indicate
that various LS evolutions can be mapped and used on
different many-core platforms. In this paper, not a new
numerical variant or many core, parallel implementation
of the narrow band algorithm is presented. Instead, we
are focusing on the given type of evolution on many-
core devices and for this evolution, we give two theorems
upperbounding the required number of iterations of the
evolution process.
This paper is organized as follows. The next section

summarizes the theory for curve evolution realized as
LS motion, then some definitions follow and the two
theorems on worst-case bound of the required number
of iterations with their proofs close the theoretical part.
Section ‘Many-core hardware platforms’ describes the
hardware platforms used in the two case studies. Section
‘Experiments’ presents the experimental results. In
section ‘Validation,’ we validate our method against three
numerically solved PDE of LS flows. It is followed by
section ‘Discussion’ in and the last section concludes our
paper.

Theory
Basic curve evolution
Let us consider a family of closed curves γ (s, t) (or sur-
faces) in Rk , (k = 2, 3) where s parameterizes the curve
and t the (artificial) time. Our aim is to trace γ (s), which
moves normal to itself, with a given speed function F. If
there are no restrictions on the sign of F, then the motion
of γ can be complex. Furthermore, it is hardly trackable by
curve-based (Lagrangian) methods since these methods
cannot handle topological changes and become unstable
near singularities. However, the initial curve γ (s, t = 0)
can be embedded as the zero LS of a higher dimensional
function so the evolution of this function is linked to the
propagation of the front through the time evolution of
this initial value problem. This family of methods is called
level set methods (LSM). The evolution equation of these
methods is as follows:

∂φ

∂t
= F|∇φ| (1)

γ is embedded into a function that is called LS func-
tion. It is denoted by φ. The uniformly sampled domain
of φ is denoted by D and a point x ∈ D is characterized
by its coordinates (x = (x1, ..xk)). The region enclosed
by γ is referred to as the object region and is denoted
by �. Similarly, the region outside γ is referred to as the
background region and is denoted by �. Let �∗ and �∗
denote the true object region and true background region,
respectively. φ is chosen to be negative inside � and pos-
itive in �. The zero LS is represented implicitly by φ.
The LS evolution process of [2] is used throughout in
this work. In the neighborhood of the zero LS, two sets
are defined uniquely with respect to the selected discrete
neighborhood:

Lin = {x|φ(x) < 0 and ∃y ∈ N(x) that φ(y) > 0} (2)
Lout = {x|φ(x) > 0 and ∃y ∈ N(x) that φ(y) < 0} (3)

where N(x) is the selected neighborhood defined by
Equation 4, but can be any discrete neighborhood known
from discrete topology.

N(x) = {y ∈ D|
K∑

k=1
|yk − xk | = 1} ∀x ∈ D} (4)

The sets Lin and Lout are referred to as active front, and φ

is defined as an approximated signed distance function:

φ(x) =

⎧⎪⎪⎨
⎪⎪⎩

−3, if x ∈ �, and x /∈ Lin inner points
−1, if x ∈ Lin
1, if x ∈ Lout
3, if x ∈ �, and x /∈ Lout outer points

(5)

The LSM of Shi uses only the sign of the speed func-
tion F to determine the motion of the active front at a
given point. The speed function itself is chosen accord-
ing to the requirements and can be arbitrary (Chan-Vese,

Tornai and Cserey EURASIP Journal on Advances in Signal Processing 2014, 2014:30 Page 3 of 11
http://asp.eurasipjournals.com/content/2014/1/30

geodesic active contour, geodesic active region (GAR) -
gaussian mixture model (GMM), nonparametric mixture
model, etc.). It is (re)calculated in each cycle for the active
front, but its sign at every point of the active front deter-
mines the action on these points. Furthermore, from an
implementation point of view, both sets of the active front
are realized as two separate lists. The motion of the active
front is realized by two local switch operators, one for out-
ward and one for inward motion. By applying switch_in()
to any points in Lout having positive sign F at that point,
the active front is moved outward one grid point from that
location. Namely, the point is moved from Lout to Lin, its
exterior neighbors are put to Lout, and its interior neigh-
bors are deleted from Lin. The switch_out() procedure
operates similarly in the other direction.
One iteration of the evolution of the algorithm per-

forms four scans. Firstly, it scans Lout for switch_in()
then it scans Lin for elements that are not in the active
front any more (all neighbors reside in �), afterwards,
Lin is scanned for switch_out(). Lastly, Lout is scanned for
elements that are not in the active front any more. Basi-
cally, the algorithm makes one step inward or outward
according to the sign of the speed function. If it contains
a curvature-dependent smoothing term, then sharpened
gaussian filtering (shock-filtered heat diffusion) can be
applied just on the active front itself in a different cycle
after a given number of evolution cycles. For further
details see [2,18,19].

Basic definitions
A path p between x and y is a sequence of points xl(l =
0, 1, . . . , L) ∈ D subject to xl ∈ N(xl+1) and x = x0 and
y = xL. A set of pointsA forms a connected region if and
only if there exists a path p between every x, y ∈ A subject
to ∀xl ∈ p is an element ofA.
The length of a path is a non-negative integer (L) and

L = |p| − 1, where |.| denotes the number of points in
the path. Aminimum path pmin is a shortest path meaning
there are no shorter p′ paths between x and y. Minimum
path is usually not unique and can depend on the chosen
discrete neighborhood. The distance between x and y is a
non-negative integer that is exactly the length of a mini-
mum path between the two points. This is a real metric
and is going to be referred to as dd.
Within a connected regionA, a minimal path p between

x and y is minimal if and only ifA∩p = p and there are no
shorter p′ paths withinA between x and y. Like the mini-
mum path, the minimal path may not be unique and may
depend on the chosen neighborhood. The diameter B of
a connected region is the longest minimum path having
at least its endpoints within the connected region. A con-
nected region is considered as convex if all minimal paths
are minimum paths at the same time. A configuration
C = {D× φ} is the actual state of the LS function, namely,

the shape of the zero LS and the connected regions
(�p,�q) composing the object and the background
region.
Now we have all the necessary tools to establish proper

worst-case bounds on the number of iterations required
by the Shi LSM to converge.

Theoretical results: worst-case bounds

Theorem 1 (General bound). Let the true object region
�∗ be composed of P-connected regions �∗

p (where p =
1 . . .P) and the true background region �∗ be composed of
q connected regions �∗

q (where q = 1 . . .Q). Assume that
F > 0 in �∗ and F < 0 in �∗. At initialization, C is chosen
such that � = ∪i�i, � = ∪j�j and �∗

p ∩ �
= ∅, ∀p =
1 . . .P and (D \ �) ∩ �∗

q
= ∅, ∀q = 1 . . .Q. Then, the Shi
LSM converges to�∗ in Nit ≤ max(maxi(|�i|), maxj(|�j|))
iterations, where |.| denotes the number of elements in the
region.

Theorem 2 (Convex bound). If either �∗ or �∗ is
convex, then the Shi LSM converges to �∗ in Nit ≤
max(maxi(B�i), maxj(B�j)) iterations, where B denotes the
diameter of the given region.
Proof of Theorem 1 on general bound. Let�a = �∗∩� =⋃P
p=1 �a

p. These are fixed sets and will not change during
the evolution process. Furthermore, F(xk) > 0, ∀xk ∈ �a

which ensures that �a ⊆ � as � evolves.
At initialization for each �i two cases are possible. First

case: �i ∩ �∗ = ∅. Therefore, �i ⊆ �∗ so, F(x) < 0. On
the boundary of�i, Lin,i, a switch_out operation is applied
so the diameter of �i becomes smaller with two in every
iteration. Second case:�i∩�∗
= ∅. Therefore, the longest
possible path in�i gives the upperbound of the number of
iterations that is obviously upperbounded by the number
of points in �i. Following similar arguments, we can also
show this for �j. Taking themaximum of the upperbounds
completes the proof of Theorem 1. �
Proof of Theorem 2 on convex bound. Obviously, the

first case of the proof of Theorem 1 obeys the desired
bound. The second case is as follows. Since �∗ is convex,
the length of the longest path is bounded by the diame-
ter of �i. In worst case, �i ∩ �∗ is one of the endpoints
of the diameter. Following similar arguments, we can also
show this for �j. Taking the maximum of the diameters in
each initial and background region completes the proof of
Theorem 2. �
Theorem 1 gives a general upperbound on Nit, and

the iteration cycle checking the stopping condition is not
necessary if the number of iteration has reached this
upper bound. This worst-case bound is approached if
�∗ or �∗ are degenerated in some sense (see Figure 1D
and Table 1 for example). However, in many cases the
stricter bound can be applied. We shall emphasize that

Tornai and Cserey EURASIP Journal on Advances in Signal Processing 2014, 2014:30 Page 4 of 11
http://asp.eurasipjournals.com/content/2014/1/30

Figure 1 Example of initial condition and test objects. (A and B)
Initial conditions belonging to n = 1, 2. This chessboard-like initial
pattern partitions the domain to several convex pieces. It ensures the
theoretical bounds to decrease as n increases. (C) Convex test object.
(D) Concave test object. Required number of iterations are presented
for (C) and (D) in Table 1.

the worst-case bound is a quantity derived from the initial
condition.
The possibility of choosing the initial shape of the

regions �i and �j is essential to minimize the required
number of iterations. It shall be noted that according
to the Shi LSM, all calculations are done in the active
front that have direct connection with the initial shape
of the aforementioned regions. Making both �i and �q
smaller, the smaller the worst-case bounds can be. This
statement leads us to section ‘Experiments’, namely, how
to construct initial conditions that are minimal in the
sense of worst-case bounds and can be mapped and pro-
cessed efficiently on a many-core architecture. It should
be noted that the presentation above does not depend on
the dimensionality of the data so the theorems are general
from this point of view and the dimension can be arbitrary.

Many-core hardware platforms
CNN universal machine
The CNN universal machine (CNN-UM) [20] is a virtual
machine construct like the Turing machine. It is Turing
complete and it is universal in the sense that a CNN-
UM can present all the behaviors that a predefined CNN
dynamics can show. A CNN consists of nonlinear dynam-
ical systems called cells. Each cell has a state, an input,
and an output that is a nonlinear function of the state. The
cells are arranged in a rectangular grid and each cell is
connected to its (nearest) neighbors within a given range
(Nr). The connections are weighted and these weights are
called templates. The templates define the operator that is
applied on the input and the state, hence, they define the
output dynamics.

d
dt

xij(t) = −xij(t)+
∑

kl ∈ Nr

Akl,ijykl(t)+
∑

kl ∈ Nr

Bkl,ijukl(t)+zij

(6)

Here xij, uij, yij stand for the state, input, and output of
the cell ij, respectively;A,B, z are the template parameters:
A for feedback, B for input, and zij for bias. The CNN-
UM, in addition to the standard CNN, contains memories
and control units to allow performing series of template
operations and branching.
The experiments were done on an Eye-RIS v1.3 vision

system (VS) (Anafocus Ltd., Seville, Spain). It consists of
a Q-Eye, Altera NIOS-II 32-b RISC microprocessor and
on chip RAM. The Q-Eye is a quarter common intermedi-
ate format (QCIF) monochrome image sensor processor
with 7- to 8-b de facto accuracy. It is a fine-grain CNN-
UM implementation with nearest neighborhood capable
operations. The microprocessor handles the memory, the
I/O ports and organizes the execution. The consumption
of the complete VS is below 750 mW.

GPU
Recent GPUs are feasible for nongraphic operations as
well and programmable through general purposeAPIs like
C for CUDA [21] or OpenCL [22]. In this paper, OpenCL
nomenclature is used. The description below is a brief

Table 1 Experimental validationof the theorems

Values

Number of circles (n) 1 22 42 82 162 242 322 642

Bound according to Theorem 1 642 322 256 64 16 9 4 1

Bound according to Theorem 2 127 63 31 15 7 5 3 1

Circle Nit 26 16 9 6 4 3 3 1

Degenerate Nit 145 68 18 7 6 3 3 1

The imagewas 1282 pixels. Configuration C was set as squares arranged into n rows and n columns in a chessboard-like pattern (see Figure 1A,B). Two different
objects were tested: a circle in the center with radius 11 pixels and a snake-like degenerate object. Configuration and objects are presented in Figure 1.

Tornai and Cserey EURASIP Journal on Advances in Signal Processing 2014, 2014:30 Page 5 of 11
http://asp.eurasipjournals.com/content/2014/1/30

overview of GPUs and, in addition to the basics, gives only
those details that have great influence on the LS evolution.
A function that can be executed on the GPU is called

a kernel. Any call to a kernel must specify an NDRange
for that call. This defines not only the number of work-
items to be launched, but also the arrangement of groups
of work-items to work-groups and work-groups to the
NDRange. The dimensionality of a work-group can be
one, two, or three.
Physically, the elementary computing element is the

computing element. A few computing element together
with a given amount of SDRAM, scheduling unit, and spe-
cial function unit forms a computing unit (CU). A device
consists of several CUs and a global memory (off-chip).
The experiments were done on an NVIDIA 780 GTX

GPU. It has 12 CUs, 192 computing elements, and 48KB
sharedmemory in each CU, and 3 GB global memory. The
hosting PC runs on Intel core i7-2600CPU@3.4 GHzwith
8 GB systemmemory, the operating system is Debian with
Linux kernel the GPU driver version is 325.15.

Experiments
Theorems 1 and 2 give upperbounds on the required num-
ber of iterations (Nit). A practical proposal of this paper
is to construct configurations that have as low worst-case
bounds on Nit as feasible and can be computed efficiently
on many-core architectures. This scenario is presented
through two case studies. The first one is on an Eye-
RIS v1.3 VS that is a hardware implementation of the
CNN-UM and the second one is on a GPU.
The whole image is covered with many-many small

active fronts, and as a consequence, the intersection con-
dition (�∗

p ∩ �
= ∅) is automatically fulfilled. During the
case studies, the speedfield F has been very simple, +1 for
the object region and −1 for the background regions.

A case study on CNN-UM
In subsection ‘CNN universal machine,’ a short overview
was given on the CNN-UM. Now the details of the
mapped algorithm are described. The perspective in this
scenario is the precedence of locality which becomes
increasingly important as the technology feature size
decreases, and the delay together with power consump-
tion of global communication increases.
The mapped algorithm is based on the set theoretic

description of the LS function. In addition to Lin and Lout
two other sets are defined.

Fin = {x ∈ D| φ(x) < 0 ∧ x /∈ Lin} (7)
Fout = {x ∈ D| φ(x) > 0 ∧ x /∈ Lout} (8)

In other words, the neighbors of each point in these sets
are in the same region as the point itself. Figure 2 shows

the universal machine on flows (UMF) diagram of the
algorithm. It is a special flowchart description of the algo-
rithms executable on CNN-UM so that it is complete and
unique [20].
Templates AND, OR denote elementary logic, AND-

NOT performs logic subtraction (Op1∧¬Op2), DIL4 and
ERODE4 are the four connected dilatation and erosion
(spatial logic). All templates are of the nearest neighbor
kind. In the ‘Update Lout’ phase, foutmask is computed
first. It contains the points that are going tomove outward.
foutmask is used in three different ways. It is subtracted
(ANDNOT) from Lout, added (OR) to Lin and dilated
(DIL4, ANDNOT, AND) to generate its own outer neigh-
bors. This is the new stepped Lout part and the unchanged
parts are added with an OR operation. The resulting set
is finalized as the new Lout (black rectangle in Figure 2).
From the old Fout the new Lout is subtracted (ANDNOT)
to get the new Fout (again, black rectangle in Update Lout
phase). Finally, the modified Lin is added to Fin. In the
‘Clean Lin’ phase, the merged foutmask, Lin, and Fin is the
only input. The new Lin is the outer pixel layer of this
merged input. The new Fin is obtained by a simple four
connected erosion while Lin is the result of a subtraction.
‘Update Lin’ and ‘Clean Lout’ are nearly identical, only the
input of the operations are switched, and another mask is
used (finmask).
The algorithm is implemented on an Eye-RIS 1.3 VSoC.

One step of the algorithm is performed in 400 to 440 µs on
a QCIF image. It must be noted that the actual comput-
ing is finished within 60 to 70 µs and the remaining time
(340 to 370 µs) is required for the data movement from
the main memory of the Eye-RIS (on the Altea NIOS-II
microprocessor) to the Q-Eye chip memory.

A case study on GPU
The evolution process is divided into two steps. The first
one is the planner step and the second is the evolution
step. The planner creates the so-called plan. It contains
the position offsets of the 16 × 16 tiles that are calculated
actually in the iteration step. The planner works on the
indicator image. The indicator is a tiny image and each
pixel of the indicator is true if the corresponding tile on
the input image shall be processed in this iteration and
false otherwise. The size of the plan is calculated by local
prefix-sum work-group wise, and global atomic addition
is used to correctly determine the offset of the work-
group within the plan. The source of the planner kernel is
provided as Additional file 1.
The evolution kernel processes only those tiles of the

LS function that are inserted in the plan. The evolution
kernel makes a step either inward or outward direction
depending on the sign of the force field on the LS function.
This is done simultaneously unlike in the sequential algo-
rithm. Each work-group processes a 16 × 16 tile provided

Tornai and Cserey EURASIP Journal on Advances in Signal Processing 2014, 2014:30 Page 6 of 11
http://asp.eurasipjournals.com/content/2014/1/30

Figure 2 UMF diagram of LS evolution on CNN. Rectangles denote memories, bold short horizontal lines with capital operator names on the left
denote template operations. Dashed lines indicate the phases corresponding to the four cycles of the Shi LSM. Black rectangles denote final forms
of sets in that phase. Thin lines ending with arrows denote dataflow from memory to an operation, from an operation to an operation, or from an
operation to a memory.

in the plan and writes the complete tile back to the global
memory. First, each work-item calculates the new value of
the pixel of the LS function. Then the neighbors of each
pixel are updated as the switch_out() and switch_in() oper-
ations require, and the active front is cleaned to maintain
the two pixel width. If there is no activity inside the tile,
then set the corresponding pixel of the indicator image
to false. The boundary of the tile requires special care,
namely, to properly update the corresponding neighbor-
ing pixels of the LS function and the indicator. The source
of the evolution kernel is provided as Additional file 2.
Table 2 shows execution time measurements of the

work-efficient parallel algorithm on NVIDIA 780 GTX
GPU compared to a baseline single-threaded implemen-
tation on Intel core i7-2600 CPU. The execution time
was measured by the gettimeofday() C-function
which has microsecond resolution. The table specifies the
image resolution, the initial condition configuration, and
presents the mean of the execution time of an iteration
on GPU, on CPU, and the speedup. The iteration time on
the GPU contains the execution time of both kernel func-
tions (planner, iteration). The two kernels evenly share the
execution time in the case of conventional, sparse initial
condition; however, in the case of dense iteration step, the

ratio of the evolution kernel can shift to 30:1 with respect
to the planner.

Number of iterations
In the experiments more initial configurations were
tested. In each configuration, regions of � and � were
placed in a chessboard like pattern as it is showed
in Figure 1A,B. Two sample objects are presented in
Figure 1C,D that shall be detected. Additionally, the two
objects represent the two object families: the degenerate
and convex ones having worst-case bounds stated in the
theorem 1 and 2.
Iteration results are presented in Table 1 together with

the two different bounds of the given configuration. The
number of iterations (Nit) was measured on the original
sequential algorithm of Shi and these values are presented
in the table. It is below or equal to the worst-case bounds
in every cases.
In the case of CNN-UM, Nit coincides with the values

presented in the table, while in the case of GPU implemen-
tation, Nit is consistently higher with one iteration. This
means that it exceeded the bounds in the case of n = 32
and n = 64. However, the reason is as follows: the bound-
ary pixels of the subregion have one iteration delay in the

Tornai and Cserey EURASIP Journal on Advances in Signal Processing 2014, 2014:30 Page 7 of 11
http://asp.eurasipjournals.com/content/2014/1/30

Table 2 Timemeasurements on NVIDIA GTX 780 GPU compared to Intel core i7 CPU

Data size Initial condition T̄iteration on GPU (µs) T̄iteration on CPU (µs) Nit Speedup

256 × 256 1 × 1 129 1,610 32 12.5

256 × 256 2 × 2 126 2,242 59 17

256 × 256 8 × 8 140 3,164 20 22

256 × 256 32 × 32 143 8,874 8 62

512 × 512 1 × 1 317 3,190 64 10

512 × 512 4 × 4 167 8,724 40 52

512 × 512 16 × 16 157 12,897 25 82

512 × 512 64 × 64 123 16,246 18 132

1, 024× 1, 024 1 × 1 534 6,431 129 12

1, 024× 1, 024 8 × 8 548 27,461 55 50

1, 024× 1, 024 32 × 32 590 43,739 32 74

1, 024× 1, 024 128 × 128 490 84,078 12 171

2, 048× 2, 048 1 × 1 560 14,972 210 26

2, 048× 2, 048 16 × 16 703 79,920 79 113

2, 048× 2, 048 64 × 64 830 198,980 28 239

2, 048× 2, 048 256 × 256 684 327,541 7 478

Presented results are the mean value of 100 runs.

cleaning process. This causes the additional iteration so it
is not a violation of the theorems.

Validation
In this section, we compare the result of the exact numer-
ical implementation and the Shi LSM for three different
speed functions: mean curvature motion, Chan-Vese, and
GAR. The quantitative comparison is made by the dice
coefficient. Given the state of the two LS functions �1 and
�2 of the two different methods, the coefficient is defined
as

d(�1,�2) = 2Area(�1 ∩ �2)

Area(�1) + Area(�2)
(9)

Its value is in the range of 0 and 1; 0 means complete
difference and 1 means complete agreement.

Mean curvature flow
In this case, the speed function is defined as

F = −κ (10)

where κ is the (euclidean) curvature of the LS. It is the
norm of the second derivative of γ with respect to the
(euclidean) arc length (κ = ‖γss(s)‖, s is the arc length
parametrization of the curve). Another possible, precise,
and more easy way to calculate the curvature of an LS
from φ is as follows:

κ = div grad
∇φ

‖∇φ‖ (11)

This force term appears in almost every LS flow as a
smoothing and regularizing term. The steady-state solu-
tion is a circle with infinitesimal diameter. In practice, the
object region vanishes. In this case, not only the steady
state but the evolution itself is also investigated. This is an
autonomous motion and does not have any control term
from an external image.
The details of the numerical approximation are as fol-

lows. The LS function φ is a signed distance function.
It was recalculated after every 30 iterations. The time
(Tmaximum) run to 800 units. The time step (�t) size has
been set to 0.4. The curvature has been calculated from
the LS function from Equation 11.
In the case of the fast LS evolution, the curvature was

calculated according to the work Merriman, Bence, and
Osher (MBO) [23,24], namely, by G ⊗ φ, where G is a 2D
gaussian of a given variance.
Figure 3 shows the test initial condition for mean curva-

ture motion and the state of the evolution after 20, 40, 60,
and 80 iterations of the fast LS evolution.
Figure 4 shows the dice coefficient between the first 80

steps of the fast LS evolution and the corresponding state
of the numerical approximation.

Chan-Vese flow
This method was proposed in [6] and its speed term is
defined as

F = μκ − λ1(c1 − I)2 + λ2(c2 − I)2 (12)

The parameters are set as follows: μ = 1, λ1 = 0.8, λ2 =
0.8. I represents the input image intensities, the constants

Tornai and Cserey EURASIP Journal on Advances in Signal Processing 2014, 2014:30 Page 8 of 11
http://asp.eurasipjournals.com/content/2014/1/30

Figure 3 Comparison ofmean curvature evolution of PDE approximation and fast LS evolution. This shows the initial condition and
evolution of fast LS (white line) and numerical PDE approximation (black line). (A) Test initial condition for validation of mean curvature motion fast
LS evolution against numerical PDE approximation. The test region contains positive, negative, and zero curvature regions and singularities as well.
(B) State of evolution fast LF at Nit = 20 and PDE approximation at T = 56.8. (C) State of evolution fast LF at Nit = 40 and PDE approximation at
T = 190.8. (D) State of evolution fast LF at Nit = 60 and PDE approximation at T = 405.6. (E) State of evolution fast LF at Nit = 80 and PDE
approximation at T = 706.8.

c1 = 0.5 and c2 = 0 are simply the means of pixel inten-
sities inside and outside the zero LS. The artificial time
parameter runs to 180 units, the time step is 0.5 units.
The total number of iterations are 360. The initial condi-
tion is 25 circles arranged uniformly in five rows and five
columns each with diameter 27 pixels. The LS function
(signed distance) is recalculated in each 30 iterations for
the numerical solution. The initial condition is 5 × 5 cir-
cles each with diameter 27 pixels. The steady states of the
two Cahn-Vese evolutions are shown in Figure 5A. The
dice index of the two states is 0.998.

Geodesic active regions flow
This method was proposed in [7]. This method combines
boundary and region-based information to segment an
image. In this method, the pixel intensities are modeled
with a GMM. The speedfield is as follows:

F = −α log
(
P(I|R1)

P(I|R2)

)
+ (1 − α)

(
bκ + ∇b

∇φ

|∇φ|
)

(13)

0 20 40 60 80
0.986

0.988

0.99

0.992

0.994

0.996

0.998

1

Iteration number Nit of fast LS

d
(Ω

1,
 Ω

2)

Figure 4 Dice index of mean curvature evolution. �1 is the state
of the fast LS evolution, and �2 is the state of the numerical solution.
The similarity between the two states is very high.

where R1 and R2 are the regions to be separated, b is a
strictly decreasing function of boundary probability, and
α is a balancing constant. In our case α = 0.3, and b is
defined as follows:

b = 1
1 + ‖∇G ⊗ I‖ (14)

Here G is a 2D gaussian with σ = 3. The GMM param-
eters are calculated from the image histogram with a
recursive expectation maximization algorithm. The arti-
ficial time runs to 6 units, the time step is 0.02 units.
The total number of iterations are 300. The LS function
(signed distance) is recalculated in each 30 iterations for
the numerical solution. The initial condition is the same as
in the case of Chan-Vese evolution, 5×5 circles each with
diameter 27 pixels. Steady states are shown in Figure 5B.
The dice index of the two states is 0.998.

Discussion
In this paper, given our investigation of the initial condi-
tion and the required number of iterations as a function
of it, we presented two bounds on the required number
of iterations of an LS evolution. The bounds were proven
theoretically and validated experimentally with the origi-
nal algorithm and also with two different mappings of the
algorithm on many-core machines (GPU, CNN-UM). The
bounds depend only on the initial configuration of the LS
function. The many-core realizations required not only a
very small number of iterations less than or equal to the
bounds, but the execution of an iteration was also fast (see
Table 2 for detailed measurement data).
In addition to the drastic decrease of the required num-

ber of iterations, the total execution time decreases as well
if dense initial condition is used for the evolution. The
total execution time on CPU with sparse initial condition
is comparable to the total execution time with dense initial
condition. For the smaller images, the dense initial condi-
tion was less effective by 30% to 15%; but in the case of the
biggest image, the dense iteration was the faster by 35%. In
the case of the dense initial condition on GPU, there is a

Tornai and Cserey EURASIP Journal on Advances in Signal Processing 2014, 2014:30 Page 9 of 11
http://asp.eurasipjournals.com/content/2014/1/30

Figure 5 Validation of fast LS evolution. (A) CV and (B) GAR flow. Red corresponds to the numerical PDE solution while blue corresponds to the
fast LSM. The two curves are nearly the same and the dice index is 0.998 in both cases.

significant speedup compared to the sparse initial condi-
tion in all cases since our proposed dense initial condition
together with the algorithm utilizes the properties of the
underlying architecture. Therefore, greater performance
gain can be achieved on GPU if dense initial condition is
used.
A great property of the results is the scalability. This is

true for the performance as a function of cores and for
the number of iterations as a function of size of the dis-
joint active fronts. Considering the chessboard-like initial
configuration with increasingly finer regions, the general
bound is proportional to the area of the regions and the
convex bound is proportional to the half perimeter of the
regions. This is changed in three dimensions to the vol-
ume of region in the case of general bound and half of the
longest perimeter of the volume in the case of a convex
bound.
The assumption on F is stronger in Theorem 1 than

the one that was given in the convergence analysis in [2].
In the examples presented there, our stronger assumption
stands for at least one of the regions �∗,�∗. However,
there may be cases when for a short period of iterations
the sign of F changes. Typically, this is the case when
inside the true object region, the actual state of the LS
function contains a concave background region with high
negative curvature. In these cases, the curvature-based
term can be greater than the region term (the pixel-
intensity-based terms), but this is a temporary effect. As
soon as the local concavity is vanished, the region term
becomes again greater and the sign of F changes back.
Furthermore, as it was declared in the introduction, the
construction of the speedfield and its components is out of
the scope of this paper. Additionally, the validations indi-
cate that the method converges de facto to the same state
as the exact numerical solutions.
The fact that the active front of the initial condition cov-

ers the whole image has a special consequence, namely,

separate, disjoint regions of the same object or multiple
target objects can be found automatically without user
interaction. For example, the grey matter of the brain on
an MRI slice is disconnected and may be composed of 8
to 20 disjointed regions on the given slice. The problem of
detecting all regions is greatly simplified with our dense

Figure 6 Initial condition dependence of evolution. (A) The
original image to be segmented (grey matter of the brain). (Figure 6A
is reproduced from [25]). (B) The reached solution of evolution
started from a single circle initial condition. (C) The reached solution
with our proposed initial condition (32 × 24 curves with diameter 3
pixels). (D) The reached solution of evolution with slightly modified
parameters compared to the evolution shown on Figure 6C.

Tornai and Cserey EURASIP Journal on Advances in Signal Processing 2014, 2014:30 Page 10 of 11
http://asp.eurasipjournals.com/content/2014/1/30

Figure 7 Histology image from the skin.

initial condition. Similarly, the selected group of cells on a
histology image shows this property as well. Additionally,
histology images can be extremely large (2 to 30 Mpixel),
and the performance gain of our proposedmethod (initial
condition together with the parallel algorithm) becomes
more expressed on larger images. A conventional sparse
initialization can easily fail this task, with wrongly cho-
sen initial condition, see for instance the initialization
and evolution of a gold standard LS implementation of
[25], which is a widely used framework for medical image
segmentation and analysis.
Figures 6 and 7 show an example. The evolution from

a single-circle initial condition is presented on Figure 6B,
while our result is presented in Figure 6C,D. It demon-
strates its potential and it may be an initial condition
for fine-tuning the segmentation with another method.
Of course, the dense iteration may have the drawback of
increased false-positive rate, for example see Figure 6D
where the evolution runs with slightly different parame-
ters, but this could be handled with more sophisticated
speed functions or building a priori information into the
initial condition. Figure 7 shows a histology image from
the skin, where one class of cells is to be segmented.
It must be emphasized that the case studies presented

here are not necessarily optimal mappings of the Shi LS

evolution by any means. The purpose of presenting them
is twofold: (1) to highlight the advantage of the proposed
initial condition concept especially on thosemachines and
(2) to give a proof of concept mapping of this fast evo-
lution on two totally differently organized (virtual and
physical) many-core machines.

Conclusions
To automatically detect segment object on an image or on
a region of it, the LS-based algorithms are feasible tools. In
this paper, it was shown theoretically and experimentally
through two case studies that the initial condition plays
an essential role in decreasing the execution time. It must
be emphasized that this is only validated on many-core
architectures where the computations can be distributed
among the cores. Furthermore, based on the initial condi-
tion configuration, two worst-case bounds were given on
the required number of iterations depending on the con-
vexity of the object to be found. The bounds are proven
theoretically and validated experimentally. Additionally,
the execution time of one iteration was measured on both
architectures. It was below 70+370 µs on the Eye-RIS sys-
tem handling a QCIF image (where 70 µs is the processing
time and 370 µs is the outer memory delay). The timing
results of the GPU is presented in Table 2 in details. In
the case of the proposed dense initial condition on GPU,
there is a significant speedup compared to the sparse ini-
tial condition in all cases since our dense initial condition
together with the algorithm utilizes the properties of the
underlying architecture. Therefore, greater performance
gain can be achieved (up to 18 times speedup compared
to the sparse initial condition on GPU).
The results and tools presented in this paper provide

a method to efficiently map LS algorithms on many-core
architectures and ensure bounds on the execution time
through the two theorems.

Additional files

Additional file 1: The OpenCL source of the planner kernel.

Additional file 2: The OpenCL source of the evolution kernel.

Competing interests
The authors declare that they have no competing interests.

Acknowledgements
This research was supported by the European Union and the State of Hungary,
cofinanced by the European Social Fund in the framework of TÁMOP
4.2.4.A/1-11-1-2012-0001 (National Excellence Program). The support grants
TÁMOP-4.2.1.B-11/2/KMR-2011-0002 and TÁMOP-4.2.2/B-10/1-2010-0014 are
also gratefully acknowledged. The authors would like to thank Ádám Rák for
his help and suggestions.

Received: 17 September 2013 Accepted: 20 February 2014
Published: 10 March 2014

http://www.biomedcentral.com/content/supplementary/1687-6180-2014-30-S1.ocl
http://www.biomedcentral.com/content/supplementary/1687-6180-2014-30-S2.ocl

Tornai and Cserey EURASIP Journal on Advances in Signal Processing 2014, 2014:30 Page 11 of 11
http://asp.eurasipjournals.com/content/2014/1/30

References
1. JA Sethian, Level Set Methods and Fast Marching Methods: Evolving

Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision,
andMaterials Science. (Cambridge University, New York, 2000)

2. Y Shi, W Karl, A real-time algorithm for the approximation of
level-set-based curve evolution. IEEE Trans. Image Process. 17(5), 645–656
(2008) [http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=4480128]

3. D Adalsteinsson, JA Sethian, A fast level set method for propagating
interfaces. J. Comput. Phys. 118(2), 269–277 (1995) [http://www.
sciencedirect.com/science/article/pii/S0021999185710984]

4. D Peng, B Merriman, S Osher, H Zhao, M Kang, A PDE-based fast local level
set method. J. Comput. Phys. 155(2), 410–438 (1999) [http://www.
sciencedirect.com/science/article/pii/S0021999199963453]

5. G Sapiro, Geometric Partial Differential Equations and Image Analysis.
(Cambridge University, New York, 2001)

6. T Chan, L Vese, Active contours without edges. Image Process. IEEE Trans.
10(2), 266–277 (2001)

7. N Paragios, R Deriche, Geodesic active regions: a new framework to deal
with frame partition problems in computer vision. J. Vis. Commun. Imag.
Rep. 13(1–2), 249–268 (2002) [http://www.sciencedirect.com/science/
article/pii/S1047320301904754]

8. N Joshi, M Brady, Non-parametric mixture model based evolution of level
sets and application to medical images. Int. J. Comput. Vis. 88, 52–68
(2010) [http://dx.doi.org/10.1007/s11263-009-0290-5]

9. L Bertelli, S Chandrasekaran, F Gibou, BS Manjunath, On the length and
area regularization for multiphase level set segmentation. Int. J. Comput.
Vis. 90(3), 267–282 (2010) [http://www.springerlink.com/index/10.1007/
s11263-010-0348-4]

10. G Sundaramoorthi, A Yezzi, A Mennucci, G Sapiro, New possibilities with
Sobolev active contours. Int. J. Comput. Vis. 84, 113–129 (2009)
[http://dx.doi.org/10.1007/s11263-008-0133-9]

11. AE Lefohn, JE Cates, RT Whitaker, Interactive, GPU-based level sets for 3D
segmentation. ed. by Ellis RE, Peters TM, Medical Image Computing and
Computer-Assisted Intervention - MICCAI 2003, Lecture Notes in
Computer Science. vol. 2878 (Springer, Berlin Heidelberg, 2003)
pp. 564–572, [http://dx.doi.org/10.1007/978-3-540-39899-8_70]

12. M Roberts, J Packer, MC Sousa, JR Mitchell, in Proceedings of the
Conference on High Performance Graphics. A work-efficient GPU algorithm
for level set segmentation (ACM, New York, 2010), pp. 123–132

13. O Sharma, Q Zhang, Q Anton, C Bajaj, in 2010 IEEE Conference on,
Computer Vision and Pattern Recognition (CVPR). Multi-domain, higher
order level set scheme for 3D image segmentation on the GPU (San
Francisco, 13–18 June 2010), pp. 2211–2216

14. LO Chua, L Yang, Cellular neural networks: applications. Circuits Syst. IEEE
Trans. 35(10), 1273–1290 (1988)

15. G Cserey, C Rekeczky, P Földesy, PDE based histogram modification with
embedded morphological processing of the level-sets. J. Circuits, Syst
Comput. 12(04), 519–538 (2003)

16. C Rekeczky, T Roska, in Proceedings of the European Conference on Circuit
Theory and Design, Volume 2. Calculating local and global PDEs by
analogic diffusion and wave algorithms (Helsinky University of
Technology, Espoo, 2001), pp. 17–20

17. D Hillier, Z Czeilinger, A Vobornik, C Rekeczky, Online 3-D reconstruction
of the right atrium from echocardiography data via a topographic cellular
contour extraction algorithm. Biomed. Eng. IEEE Trans. 57(2), 384–396
(2010)

18. Y Shi, WC Karl, in Proceedings on IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP’05), vol. 2. A fast level set method
without solving PDEs (Philadelphia, 18–23 March 2005, 2005), pp. 97–100

19. Y Shi, Object based dynamic imaging with level set methods. PhD Thesis,
Boston University College of Engineering 2005

20. LO Chua, T Roska, PL Venetianer, The CNN is universal as the Turing
machine. Circuits Syst. I: Fundam. Theory Appl. IEEE Trans. 40(4), 289–291
(1993)

21. NVIDIA: CUDA C Programming Guide 2011. [https://developer.nvidia.com/
cuda-toolkit-archive]. Accessed 23 January 2012

22. OpenCL specification 1.1 2011. [http://www.khronos.org/opencl/].
Accessed 1 April 2012

23. B Merriman, J Bene, S Osher, in Computational Crystal Growers Workshop.
Diffusion generated motion by mean curvature. Edited by Taylor J,
(Providence, RI 1992) pp.73–83.

24. B Merriman, JK Bence, SJ Osher, Motion of multiple junctions: a level set
approach. J. Comput. Phys. 112(2), 334–363 (1994). [http://www.
sciencedirect.com/science/article/pii/S0021999184711053]

25. The insight toolkit 2012. [www.itk.org]. Accessed 20 November 2012

doi:10.1186/1687-6180-2014-30
Cite this article as: Tornai and Cserey: Initial condition for efficient mapping
of level set algorithms on many-core architectures. EURASIP Journal on
Advances in Signal Processing 2014 2014:30.

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4480128
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4480128
http://www.sciencedirect.com/science/article/pii/S0021999185710984
http://www.sciencedirect.com/science/article/pii/S0021999185710984
http://www.sciencedirect.com/science/article/pii/S0021999199963453
http://www.sciencedirect.com/science/article/pii/S0021999199963453
http://www.sciencedirect.com/science/article/pii/S1047320301904754
http://www.sciencedirect.com/science/article/pii/S1047320301904754
http://dx.doi.org/10.1007/s11263-009-0290-5
http://www.springerlink.com/index/10.1007/s11263-010-0348-4
http://www.springerlink.com/index/10.1007/s11263-010-0348-4
http://dx.doi.org/10.1007/s11263-008-0133-9
http://dx.doi.org/10.1007/978-3-540-39899-8_70
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
http://www.khronos.org/opencl/
http://www.sciencedirect.com/science/article/pii/S0021999184711053
http://www.sciencedirect.com/science/article/pii/S0021999184711053
www.itk.org

	Abstract
	Introduction
	Theory
	Basic curve evolution
	Basic definitions
	Theoretical results: worst-case bounds

	Many-core hardware platforms
	CNN universal machine
	GPU

	Experiments
	A case study on CNN-UM
	A case study on GPU
	Number of iterations

	Validation
	Mean curvature flow
	Chan-Vese flow
	Geodesic active regions flow

	Discussion
	Conclusions
	Additional files
	Additional file 1
	Additional file 2

	Competing interests
	Acknowledgements
	References

