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Abstract

computational complexity.

This paper presents a novel procedure, named Hierarchical Compressive Sampling Matching Pursuit (CoSaMP), for
reconstruction of compressively sampled sparse signals whose coefficients are organized according to a nested
structure. The Hierarchical CoSaMP is inspired by the CoSaMP algorithm, and it is based on a suitable hierarchical
extension of the support over which the compressively sampled signal is reconstructed. We analytically demonstrate
the convergence of the Hierarchical CoSaMP and show by numerical simulations that the Hierarchical CoSaMP
outperforms state-of-the-art algorithms in terms of accuracy for a given number of measurements at a restrained

1 Introduction

The burgeoning field of compressive sampling (CS)
addresses the recovery of signals which are sparse either
in the original domain or in a different representation
domain achieved by a suitable invertible transform. The
CS theory establishes conditions for sparse signals recov-
ering from measurements acquired without satisfying
the Nyquist criterion, provided that suitable relations
between the number of measurements and the signal spar-
sity are satisfied. CS studies encompass different issues,
ranging from measurement acquisition via random pro-
jections to signal recovery algorithms; besides, CS recon-
struction algorithms possibly leverage specific signals
underlying structure. The reconstruction algorithm Com-
pressive Sampling Matching Pursuit (CoSaMP) by Needell
and Tropp [1] represents a starting point in the defini-
tion of reconstruction procedures. The reason is manifold.
Firstly, its solid analytical derivation is viable of differ-
ent extensions accounting for peculiar signal structures
[2]. Secondly, its iterative structure may be extended to
encompass prior knowledge on the signal to be recon-
structed [3]. Besides, the CoSaMP gracefully degrades
with noise, since the reconstruction error is bounded by a
value proportional to the energy of the noise vector, for a
sufficiently large number of measurements.
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In principle, the minimal number of measurements for
the CoSaMP algorithm to converge on sparse noise-free
signal is the least required by CS theory [1]. Still, in [4],
it is observed that procedures exploiting the sparse signal
structure can converge with a number of measurements
of the order of the signal sparsity [5], whereas numerical
examples show that the CoSaMP may require a number
of measurements about four times larger than the signal
sparsity. Thereby, it is argued that in specific applications,
the number of measurements may be in principle suffi-
cient to recover the signal under concern, exactly or in
an approximate form, while still not being enough for
the CoSaMP to converge. This limits the accuracy and
applicability of CoSaMP in a variety of resource-limited
applications, such as CS in sensor networks [6].

Several studies have been so far proposed to overcome
the gap between the minimum number of measurements
as predicted by CS theory and those required by the
CoSaMP to converge. A fundamental study by Baraniuk
et al. [2] proposes to exploit knowledge about peculiar
structures exhibited by the sparse signal. Specifically, the
authors focus on the reconstruction of K-compressible
signals, e.g. signals that are approximately reconstructed
by K coefficients, and show that if the signal presents
a suitable structure, the reconstruction procedure can
exploit this knowledge to constrain the recovered signal
subspace and improve the accuracy for a given number of
measurements.
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The analysis in [2] introduces the concept of nested
approximation property of a signal sparsity model to
derive theoretical bounds for CS reconstruction. Further,
a priori constraints on the structure of the compressible
signal, e.g. the organization in blocks or in a tree structure,
are then invoked to take advantage of the signal spar-
sity model and reduce the solution space of the recovery
algorithm.

Herein, in the light of the work in [2], we concern
ourselves with signals whose coefficients are organized
according to a nested structure. For such signals, we
introduce a modified version of the CoSaMP algorithm,
referred to as Hierarchical CoSaMP (HCoSaMP), that
exploits the underlying assumption that the signal is
hierarchically structured. Specifically, in HCoSaMP, the
estimated support is progressively extended from a hier-
archical layer to another throughout different estimation
stages. Different from the analysis in [2], only the assump-
tion on the nested signal structure is needed to formally
state the convergence of the HCoSaMP. Thereby, the
herein presented analysis imposes mild assumptions on
the signals, and it applies in general cases where struc-
tured sparsity cannot be claimed. Besides, we provide
application examples on images obtained by oceano-
graphic monitoring [6,7] and natural images [8], as well
as on texture images [9]. For the former cases, we select
the well-known discrete wavelet transform as a sparsifying
transform, whereas for the latter, we resort to the graph-
based transform, originally established for depth map
encoding, as a sparsity-achieving representation within
the reconstruction procedure. In both cases, we show that
our procedure outperforms state-of-the-art reconstruc-
tion algorithms and proves extending the feasibility of the
reconstruction in the presence of a reduced number of
measurements.

The structure of the paper is as follows. In Section 2, we
recall the CS basics, while in Section 3, we discuss the CS
of a sparse signal with nested structure. In Section 4, we
describe the HCoSaMP and outline the demonstration of
its convergence, and in Section 5, we report the numerical
simulation results. Finally, Section 6 concludes the paper.

2 Compressive sampling basics

Let us consider an image x[ n1, 2], and let us denote by
x the N x 1 vector built by collecting its samples in lexi-
cographic order; besides, let us assume that x is K-sparse.
Let y denote the M x 1 vector of CS measurements, given

by
y=&>x+n (1)

where @ is a suitable M x N random sensing matrix,
and n is the M x 1 acquisition noise. For perfect
reconstruction of x given y, the sensing matrix @ is
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supposed to satisfy the restricted isometry property
(RIP) [10]:

(1 =80 IIxII3 < 1®xI13 < (1 + 8x) lIxII3. (2)

It can be proved that a matrix ® with iid. random
entries drawn from a Gaussian distribution with zero
mean and variance 1/M satisfies the RIP with high proba-
bility [11,12] provided that
K log(N/K)

52
Similar results have been derived for different classes of
random sensing matrices. The relation (3) binds the signal
sparsity K and the minimal number of measurement M
for the matrix @ to obey the RIP with a given RIP constant
value 8k; conversely, for a K-sparse signal, the RIP con-
stant value g with which a selected matrix ® satisfies the
RIP depends on the available number of measurements
M (see [13] for a detailed discussion), and being fixed the
value of M, the value of §; increases with K.

Often, the signal is assumed to be sparse under a spar-
sifying transformation identified by a transform basis
matrix W. Then, x is expressed as x = W« where the vec-
tor « collects the transform coefficients and it is defined
on a set L of cardinality |L| = N. With these posi-
tions, and because of the decomposition in (5), we can

rewrite the acquisition process in (1) via a sensing matrix

P def @V 35 follows:

M > Mg = Cy (3)

y = ®a +n. (4)

In the following, we refer to a K-sparse signal such that
only K out of its N transform coefficients are non-zero
valued; besides, we denote by Q the support of the K
non-zero coefficients of «, satisfying & C L and having
cardinality |2] = K < N.

3 CS of a sparse signal with nested structure

Let us consider a group of L + 1 subsets L;,i = 0,...,L
of the overall set I, such that Lo C L; C ...L; = L. We
also consider a partition of the support 2 of the non-zero

terms of « into a finite number of sets Q;,/ = 0,...,L of
cardinality K; = ||]|,/ = 0,..., L, defined as follows:
Qo = Q2N Lo,

Q=@NL) \ 1, I=1,...,L

The sets ;s are disjoint, i.e. 2; N Q; = @,j # i and the
union of the ;s up to the L-th, is UI.LZOSZi = Q.

The above partition is found, for instance, in the L
decomposition levels of the wavelet transform of a natural
image, where the set Ly can be associated to the indexes
of the scaling coefficients, and the sets L;,/ = 1,...,L can
be formed by progressively including the indexes corre-
sponding to the increasing wavelet decomposition levels.
In this example, the set Q9 = 2NLy is built by the indexes
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of the non-zero scaling coefficients, and the sets Q;,/ =
1,...,L correspond to the incremental supports of the
non-zero coefficients found in each of the L;’s. Although
the most familiar, the wavelet domain is not the sole one
in which a hierarchical organization of the transform coef-
ficients is observed. In Section 5, we show with the help
of numerical examples that the graph-based transform
(GBT) transform of texture images reveals a hierarchical
structure, too.

The signal x satisfies the nested approximation prop-
erty (NAP) if the support of the best (in the least squares
sense) K-term approximation in L; includes the support
of the best K’-term approximation in IL;_; for all K > K,
and for i = 1, ... L. This property, referred to as the NAP,
is invoked in [2] on structured sparse signal models to
derive a tight bound on the number of CS measurements
required for signal reconstruction. The therein presented
recovery algorithm exploits a priori knowledge on the
structured nature of the signal. Herein, we drop further
hypotheses on the signal structure, and we elaborate on
the nestedness of the signal support.

Let us then consider a signal x represented by a spar-
sifying transform W, and let us assume that it satisfies
the NAP in the transform domain. We rewrite the vec-
tor o as o = ) o, where ag, denotes a vector whose
entries coincide with « for indexes in ; and are zero
otherwise. Each subset o, of the elements of « has spar-
sity Kj, and the union of the Q;’s up to the /-th, namely
Ul_,Qs, of cardinality K; = Zi;o K;, yields the best
K;j-term approximation of the signal itself.

The vector x can then be expressed as the sum of the
contributions due to the different transform domain layers

X = \I’ZO{QI = Z‘I’QI(IQI (5)
I I

where Wq, denotes the restriction of W to the column
indices of W pertaining to different disjoint sets €2;.

Because of the decomposition in (5), we can rewrite the
acquisition process in (4) as follows:

y= Z dag, +n. (6)
!

For simplicity sake, and without loss of generality, let us
first refer to a nested decomposition encompassing only
two layers, i.e. [ = {0,1}. Under this position, we can
rewrite (6) as

Y = ®Pag, + Pagq, +n = Pag, + €. (7)

The formulation in (7) gives a simple and yet interesting
insight on the CS acquisition process. To elaborate, the M
measurements collected in (7) can be interpreted as either
(i) the acquisition of the K-sparse vector o with a mea-
surement noise n of energy ||n||2 or (ii) the acquisition of
the Ko-sparse vector aq, with a measurement noise eg of
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energy |/eo||2, suitably bounded? because of the RIP of the
matrix ®.

4 Hierarchical CoSaMP

Here, we propose a modified version of the CoSaMP pro-
cedure for reconstructing sparse signals exhibiting the
above introduced nested structure. In short, we show
that a signal endowed by such nested hierarchical struc-
ture can be reconstructed by recursive application of the
core stage of the CoSaMP algorithm on progressively
expanded supports. Furthermore, we show that the result-
ing procedure, which we refer to as Hierarchical CoSaMP
(HCoSaMP), requires a lower number of measurements
than the original CoSaMP to incrementally reconstruct
the signal up to its best K-term approximation.

Before turning to mathematics, we make two observa-
tions. Firstly, the reformulation (7) of the relation in (6)
hints to recover the coefficients of ag, starting from the
measurements y, instead of trying to recover the whole
signal «. The requirement on the number of measure-
ments for the CoSaMP convergence in reconstructing the
Ko samples of g, is indeed looser than that for recon-
struction of the K samples of aq. Specifically, the number
M must satisfy the RIP for 84, but not for 84 [1]. If the
RIP for 84k, is satisfied, the samples ag, can be recovered
by the CoSaMP algorithm [2] and numerical bounds relat-
ing the estimation error to the signal energy out of Q¢ are
provided.

Specifically, in [1], the accuracy achieved at conver-
gence by the CoSaMP algorithm is characterized by the
following mean square error bound:

lo —agllz < 15 <1~1|| Z(m,llz + ||n||2> . 8)

l

From (8), we recognize that the performance of such
CoSaMP-based stage degrades gracefully as the energy
out of Qg increases, just as it occurs when CoSaMP
recovers noisy signals or compressible signals.

Secondly, let us assume to have recovered, to a cer-
tain degree of accuracy, the samples agq, starting from
the measurements collected as in (7), so as to have the
best Kp-term approximation of the sparse signal o. Then,
this coarse estimate can be adopted as a better initial-
ization of a CoSaMP procedure, in order to recover the
remaining K7 —Kj coefficients providing the best Kj-term
approximation of the « itself.

Stemming on these observations, it is fair to ask if the
recovery of the signal on the /-th support can exploit
the partial knowledge of the signal on the supports up
to the (/ — 1)-th one. In the following subsection, we
prove that if the signal under concern satisfies the NAP
property, it is indeed possible to recover all the coeffi-
cients « by (i) first recovering the coefficients ag, and
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then (ii) recursively injecting the coefficients recovered
on the support €;_; as initialization for recovering the
coefficients ag, on the support ;.

The recovery stages (i) and (ii) are respectively realized
according to Algorithms 1 and 2, where we denote by &7
the pseudo-inverse of ®, i.e. (tI>*<I>)71 ®*; by xy the
restriction of x to its N largest-magnitude components; by
X|T (A1) the restriction of x (4) to the elements (columns)
of indices in the set T; and by |T| the cardinality of the
set T.

To sum up, the outline of the HCoSaMP is as follows:

(a) Recovery of the first decomposition layer. The
outline of this partial estimation stage appears in
Algorithm 1; this stage encompasses all the steps of
the CoSaMP, plus an additional step (namely step 3
in Algorithm 1, which tailors the support estimated
at each iteration to the predefined support Ly .

(b) Recovery of the [-th decomposition layer. The outline
of the estimation stage providing the reconstruction

Algorithm 1 Hierarchical CoSaMP - recovery of first
decomposition level

Initialization:

L o =0

2. r =y (starting residual)

loop on j

1. Evaluate proxy
u= ®*r

2. Compute the best 2K support set of the proxy
w = supp(uk)

3. Restrict such a support to LLg
wy=LoNw

4. Merge wp with previous support
T =wy U supp(aéjil))

5. Least-squares estimation

b7 = Q-‘I.Ty bj7c =0
6. Update ozg ) as the coefficients of b inside Lo

ozg ) = by,
7. Evaluate next residual

r=y—<I>ag)

Upon expiration of a maximum number of iterations ]

1. Output reconstruction of «g

5{():06(()])
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of the signal up to the support 2; given its previous
estimate up to the support €2;_; appears in
Algorithm 2. We recognize that this stage still
reproduces the steps encompassed by the CoSaMP
from which it differs because it is initialized with the
reconstructed version of ag, , and it limits the
estimate to the support UQZOQ)\.

Algorithm 2 Hierarchical CoSaMP - recovery of the /-
th decomposition level

Initialization:

1. Initialize with the reconstruction of (/ — 1)-th layer
o = éq 1)
2. Starting residual
r=y— @y
3. Initialize the support set
T = supp(@(-1))
loop on j
1. evaluate proxy
u=®r
2. Compute the best 2K support set of the proxy
w = supp(uzx)
3. Restrict w to I}
w=L;Nw
4. Merge w; with previously evaluated supports
T=aw U supp(al(j_l))
5. Least-squares estimation
bir =@y bje =0
6. Update al(i) as the coefficients of b inside L;
ozl(j) = by,
7. Evaluate next residual
r=y-— <I>ozl(j)

Upon expiration of maximum number of iterations ]

1. Output reconstruction of @ up to the I-th
decomposition level

-1
f= Y !
k=0
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In the following subsection, we formally prove the con-
vergence of the HCoSaMP algorithm on NAP signals.

4.1 HCoSaMP convergence on a sparse signal with nested
structure

The convergence theorem is presented in two parts,

respectively establishing the convergence in Algorithm 1

(PartI) and in Algorithm 2 (Part II).

Theorem 4.1 ( Part I: Convergence of Algorithm 1). Let
us consider g € Lo with Lo = |Lo|, and a set of M CS
noisy measurements y obtained asy = ®og+ ep according
to (7). If ® exhibits a RIP constant 5., < 0.1 for the value
of M at hand, then it can be proved that the mean square
error on the estimate otg ) obtained at the j-th iteration of
the HCoSaMP algorithm can be upper bounded as follows:

lao — all2 < 47 ol + 15]leo]la- 9)

Proof. (Proof of Theorem 4.1, Part I) To prove the con-
vergence of Algorithm 1, we follow the guidelines in [1],
by adapting them to the nested signal structure invoked by
the Hierarchical CoSaMP algorithm. Specifically, we show
that the reconstruction error at the j-th iteration of the
algorithm

llao — a2 (10)

is upper bounded by a term that, in the case of noise-free
acquisition, decays asymptotically to zero. Towards this
aim, we prove a series of inequalities providing the desired
result.

At each iteration of the algorithm, the reconstructed sig-
nal Ot(()] ) is selected as the restriction of the least squares
estimate b over the support L. Based on such a restric-
tion, considering that «g lives, by definition, over the
support Lo, we can write

lao — all2 = llo — bry ll2 < lleo — blla- (1)

O

The following Lemma 4.1 provides an upper bound over
the right-hand side of (11), representing the energy of the
error of the least squares estimation in Algorithm 1.

Lemma 4.1. Let us consider the set T estimated as in
Algorithm 1, and let b represent the LS estimate of the
signal samples evaluated on the support T:
bir = @7y = ®[7(®ag +eo)
blTC == 0

(12)

The energy of the estimation error is upper bounded by a
term proportional to the energy of the signal oo over the
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support T and by a term proportional to the measure-
ment noise energy:

lleoll

8co )+
1—8£0 /1—8£0

The proof of Lemma 4.1 is found in Appendix 1.
We recognize that the term [l 7c| in (13) represents
the energy of the original signal o rc outside the set T.

. (13)

lleo—bll2 < llag el (1 +

Since ag  has no energy over TC, we can write

letg el = ll(eto — et e |- (14)
In turn, the energy of the error is upper bounded by the
energy of the signal to be recovered at iteration j over the
set woC, that is with the energy

o — ad) el < @0 — @) pcll- (15)

In order to upper bound this latter term, we resort to
the following Lemma 4.2, whose proof can be found in
Appendix 2.

Lemma 4.2. Let a be a K-sparse signal with support L
and ag be the portion of a confined to the support Lo C L,
of cardinality Ly. Under these settings, the estimate of the
vector o obtained after the j-th iteration of the HCoSaMP
algorithm, namely oz(()] ), is the same as that obtained by
application of the CoSaMB, with the following positions:

s =g — ozg ) (Signal not yet recovered at iteration j)
r=y-— <I>oz(()j) = ®s+ ey (Residual at iteration j - it is

just a CS acquisition of the signal s)
u=®r

wo = Lo N supp(azx)

(Proxy at iteration j)

(16)

where the term ey encompasses not only acquisition noise
but also approximation error on the support L. It can then
be proved that:

252, o —ad la+2/ T+, lleoll
(1—5z,) '

)
(@0 — ) wycllz <

(17)

The result expressed by (17) shows that when the algo-
rithm selects the support wp from the proxy at iteration j,
it is able to identify most of the energy of the portion of
the signal that still has to be recovered at iteration j.
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Injecting (14), (15) and (17) in (13), we finally come up
with the desired upper bound to the reconstruction error
energy

oo — a2 < (2550”("0 — a2 + 2M||eo||z)

(1 —3gy)
5
x (1450 )+
1—234g,

By setting, as in [1,2], 8z, < 0.1, we can rewrite (18) as

lleoll

,/1—550.

(18)

llao — 12 < 0.25]lcrg — & || + 3.6eoll2

which, solving the recursion, resolves in the expression in

9)

leto — erg 12 < 47 ltollz + 15 o]l (19)
Having proved the convergence of Algorithm 1, we pro-
ceed to discuss the convergence of Algorithm 2, devoted
to the reconstruction of the i-th decomposition layer.

Theorem 4.1 (Part II: Convergence of Algorithm 2). Let
us assume to have recovered an estimate &1y of the orig-
inal signal a;_1). Then, it can be proved that the signal
a; € L; with L; = |L;| can be recovered at the j-th itera-
tion of the HCoSaMP algorithm with a mean squared error
bounded by

lew — @ ll2 < 47 lsll2 + 15]leill2 (20)
provided that the sensing matrix exhibits a RIP constant
8z, <0.1

Proof. (Proof of Theorem 4.1, Part II) We restrict our-
selves, for the sake of concreteness, to the case of a two-
layer decomposition, i.e. & = ap+a1. The extension to the
case of multiple decomposition layers is straightforward.

Let us then assume that the signal g has been correctly
recovered by running Algorithm 1; upon convergence, the
reconstructed signal can be written as

&o = ag + Mo (21)
where the noise term ng accounts for both convergence
inaccuracies due to a finite number of iterations and the
error floor due to the presence of the acquisition noise.
Algorithm 2 aims at recovering the signal «;. The algo-
rithm starts by initializing the output at the first iteration
with the reconstructed version of «, that is
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Under this setting, the starting residual rewrites as fol-
lows:

r=y—<I>&0
= ®(ap + 1) +n — ®(ap + ng)
= ®a; +e;

(22)

where we have compactly denoted e; = n—®ny. The rela-
tion in (22) shows that the selected initialization makes
Algorithm 2 equivalent to the execution of Algorithm 1
aimed at recovering «; with a null initialization. Hence,
following the steps in the proof of Part I,

we obtain

Y lle1ll
llex —bll2 < llaqrcll (1 + . )+
ur 1-46. — 0z,

(23)

where the set T now assumes a cardinality |T| < L;.
Let us now rephrase the positions in (16) as follows:

S=Ol1—0l¥)
— 0 _ .
r=y— ®a;" = ®s +ej;

(Signal not yet recovered at iteration ;)

(Residual at iteration j - it is
just a CS acquisition of the signal s)
u= ®*r
w1 = L1 N supp(ugx)
In this case, s is confined to L; so that its sparsity is

bounded by £; = |L;|. Then, stemming from the NAP
property we can write

a = we, I3 < lu — Wsupps) 13- (24)

Then, following the same derivations driving to (17), we
come up with the following inequality

28z llen — ol + 2T+ 3¢, le lz
. (25)
(1 =3dcy)
With this rephrasing, the overall convergence of
Algorithm 2 is proved according to the derivations already
exposed in Part L.

From the computational complexity point of view, with
respect to the original CoSaMP and to its adaptation to
the structured signal in [2], the HCoSaMP just exploits the
layered structure of the image transform and requires L+1
applications of the basic stage; the latter in turn retains the
computational complexity of the CoSaMP. O

I8, cll2 <

4.2 Related works

With respect to [2], the HCoSaMP poses milder assump-
tions since it does not invoke any constraint on the struc-
ture (e.g. tree-based, block-based) of the sparse signal.
Still, as shown in the next section, the HCoSaMP achieves
reconstruction accuracy performances comparable to that
achieved by CS recovery with a larger number of measure-
ments. In a nutshell, the reason is to be found in that the
hierarchical approach allows each stage of the reconstruc-
tion algorithm to separately recover signal components on
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supports 2; whose cardinality Kj is smaller than that of the
signal, i.e. K; < K; the increased ratio between the num-
ber of measurements M and the sparsity K; of the signal to
be actually recovered definitely improves the convergence
conditions. This capability is a merit of the HCoSaMP that
leverages the nested signal structure that can be found
in different domains depending on the application under
concern.

The problem of the convergence of greedy algorithms
on different subsets of the sparsity domain is debated
in [14], where the authors focus on the CS recovery
algorithm stability. The algorithm stability is said to be
locally nested if the algorithm convergence on an outer
set implies the convergence in all the inner subsets. In
[14], it is shown that this property does not pertain to
several greedy algorithms for CS recovery. Thereby, in
the absence of assumptions on the nested structure of
the signal, the algorithm convergence does not propagate
from the more comprehensive set to the inner subsets.
In our analysis, we instead prove the convergence on the
entire domain by proving the convergence on a selection
of hierarchically organized nested subsets, starting from
the inner one up to the outer one.

A relevant question naturally arises about how to select
the nested subsets. The first step is indeed the identifica-
tion of a domain in which the signal is either sparse or
compressible. Once the sparsity domain is identified, the
second step is in partitioning the coefficients into nested
subsets; in the sparsity domain, the support nesting often
naturally arises when the signal energy is much more
concentrated in lower frequency subsets and it decreases
towards higher frequency subsets. This is the case of
natural images, which typically are sparse and nested in
the discrete wavelet transform (DWT) domain. A sec-
ond example is found in video compressive sensing, where
nested approximation may be invoked when the video
data is suitably transformed in a 3D discrete cosine trans-
form domain [15]. In the following, we show with the help
of numerical examples that also texture images verify the
NAP in the graph-based transform (GBT) [16] domain.
Once a layered support structure allows to invoke the
NAP on the signal under concern, the size of each set
Q0 =0,...L — 1 shall be assigned according to a fun-
damental trade-off: smaller cardinality sets have looser
CS measurement requirements but may result into slower
convergence characteristics in case of high out-of-band
energy. Henceforth, the choice of the subset cardinality
depends on application-related issues, such as the acquisi-
tion noise level or the cost of the measurement acquisition
stage.

Moreover, in general, the acquisition phase itself could
in principle be designed so as to reduce the approximation
error on the inner nested subsets, by organizing the sens-
ing matrix so as to relate subsets of the measurements to
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subsets of the signal sparsity domain, much in the same
way as block diagonal matrices [17,18]; further analysis is
needed to investigate on the RIP of a CS matrix inducing
a nested structure on the acquired CS measurements.

Finally, the herein presented analysis draws a path for
hierarchical solution of different recovery algorithms,
such as the total variation minimization, which have been
proved effective in video CS applications [15]. Recent lit-
erature results [19] have shown that the total variation
(TV) minimization algorithm is guaranteed to converge
also in the presence of acquisition noise. This paves the
way to hierarchical application of the TV algorithm to
progressively extended nested sets, on which the approx-
imation error plays just the same role as the acquisition
noise. The extension of the hierarchical approach to TV
minimization is left for further study.

5 Numerical simulation

We now present numerical results assessing the perfor-
mance of HCoSaMP in reconstructing signals character-
ized by the NAP; we both investigate the case of signals
compressible in the DWT domain and the interesting case
of signals compressible in the so-called graph-based trans-
form domain, among which the texture images stand as an
example of paramount relevance.

5.1 Compressible signals in the DWT domain

Here, we show how the HCoSaMP can be employed to
obtain a high reconstruction quality from a reduced num-
ber of compressive measurements of signals compressible
in the DWT domain. Among such signals, both natural
images or spatially localized signals stand as interesting
cases. The class of spatially localized images suitably rep-
resents the physical fields measured by wireless sensor
networks devoted to environmental monitoring such as
temperature measurements for anomalous event detec-
tion or underwater current field estimation [6,7]. In all
of these cases, the sensed field exhibits a peculiar struc-
ture given by one or more peaks at levels relatively larger
than the field mean values: an example of spatially local-
ized signal is the one provided in Figure 1A, representing
the ‘Zonal Current’ data, sensed at Monterey Bay on 10
October 2012 (data available in [20]).

We have tested the HCoSaMP on the details shown in
Figure 1A,B representing respectively a cropped 64 x 64
pixel fragment of the Zonal Current field and of the test
image Peppers, i.e. with N = 4,096 samples. We form
the compressive sensing measurements via a full Gaussian
matrix ® with M = 900 or M = 1,500 measurements,
depending on the experiment at hand.

We have run the HCoSaMP algorithm considering the
hierarchical recovering over five supports L;,i = 0,...,4
corresponding to the DWT decomposition levels. We
remark that this is not the only possible choice for the L;s,
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from the test image ‘Peppers’.

Figure 1 Original images. (A) 64 x 64 fragment from the ‘Zonal Current’ field sensed at Monterey Bay on 10 October 2012. (B) 64 x 64 fragment

other options being possible provided that the signal to be
recovered satisfies the NAP within the progression of sets
L,l=0,...L.

We start by presenting results concerning the spatially
localized image in Figure 1A; in this experiment, we
have acquired M = 900 measurements and we have
assumed K = 256. In Figure 2, we show the mean
squared error (MSE) on the reconstructed image obtained
by the HCoSaMP at the different iterations. The hierar-
chical approach of the HCoSaMP is well recognized in
the plot of Figure 2, where the stepwise pattern of the
MSE is due to the partial recovery of the DWT coeffi-
cients over the increasing supports L;. The convergence
on the different layers can be clearly identified, as well as
the floor achieved on each layer. To provide a compari-
son, we have plotted also the MSE obtained by the classical

x10°

—+— CoSaMP {
gt
35l HCoSaMP
3l i
25t E
w |
w 2 L
E \
15F B
1. -
0.5 \ E
L}
Ww<
0 1 1 1 1 1 'l
0 5 10 15 20 25 30 35

iteration
Figure 2 CS acquisition of a spatially localized field with
N = 4,096, M = 900 and K = 256. MSE vs iterations obtained by
the HCoSaMP and by the classical CoSaMP.

CoSaMP, detailed in [1]. The hierarchical structure of
the HCoSaMP exploits the limited number of measure-
ments by separately reconstructing the different layers,
and it definitely outperforms the error floor of the classical
reconstruction.

To visually confirm these results, we show in Figure 3
the reconstructed image obtained at convergence. For the
sake of comparison, we report also the reconstruction
results obtained by the model-based compressive sensing,
described in [2], and by the work in [8]P. Both of these
works exploit the intrinsic structure of the DWT coeffi-
cients to devise a reconstruction procedure which is able
to obtain high reconstruction accuracy from a reduced
number of CS measurements.

The HCoSaMP therefore well suites spatially localized
images encountered in resource-constrained CS applica-
tions, such as field monitoring in sensor network. For
completeness sake, we also consider the case of natural
image acquisition. We have considered the CS acquisi-
tion of the fragment in Figure 1B extracted from the
test image ‘Peppers’ with M = 1,500 measurements and
K = 1,024. We show in Figure 4 the reconstruction
MSE obtained by HCoSaMP and CoSaMP, and in Figure 5
the reconstructed images obtained at convergence by the
HCoSaMP, the model-based CS [2], the work in [8], and
the classical CoSaMP. As for the case of spatially local-
ized fields, inspection of Figures 4 and 5 confirms that
the HCoSaMP still performs better than or equally to
selected state-of-the-art approaches when compared on
a fair basis. In particular, for fairness sake, it must be
noticed that the HCoSaMP competitor [8] relies on spe-
cific priors on the coefficients of a natural image in the
DWT domain. In order to employ such a priori knowl-
edge within stochastic annealing procedures, it requires a
high computational complexity; besides, it has the draw-
back to poorly perform when the starting assumptions fail
to hold, as we show in the following Section 5.2.
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Figure 3 CS acquisition of a spatially localized field with N = 4,096, M = 900 and K = 256. Reconstructed image obtained by (A) the
HCoSaMP, (B) the model-based CS [2], (C) the work in [8] and (D) the classical CoSaMP.

The herein presented HCoSaMP has the merit of relax-
ing any a priori assumption but the NAP property in the
sparsity domain. In the following, we investigate the case
of a texture image, where typical assumptions found in
dealing with natural images do not hold, and we show
that the HCoSaMP outperforms selected state-of-the-art

0251 —+— CoSaMP
—»#— HCoSaMP

02}

015+

MSE

>0

0 L ! hfiie o momom o SRS N RN

0 5 10 15 20 25 30
iteration

Figure 4 CS acquisition of a natural image with N = 4,096,
M = 1,500 and K = 1,024. MSE vs iterations obtained by the

HCoSaMP and by the classical CoSaMP.

works, due to its looser assumptions which best cope with
application cases where approaches designed for natural
image have poor performance.

5.2 Compressible signals in the GBT domain

The graph-based transform (GBT) has been recently
introduced in the framework of video coding [16] to
provide a novel representation domain which is able to
efficiently capture image discontinuities. The GBT relies
on an image-dependent basis suitably built to accom-
modate for image boundaries and abrupt luminance dis-
continuities; because of this peculiar structure, it has
been employed in the framework of depth map cod-
ing [21]. The GBT can be also applied as a sparsi-
fying representation for texture images [9], which are
hardly compressible in classical transformed domains
such as the DWT or the discrete cosine transform (DCT)
domains. Here, we show by numerical examples that tex-
ture images satisfy the NAP in the GBT domain and
are therefore viable of being reconstructed using the
HCoSaMP.

The GBT domain is identified by an image-dependent
orthonormal basis built up on the image edge map, and in
principle, it requires the knowledge of the image bound-
aries for its evaluation.
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Figure 5 CS acquisition of a natural image with N = 4,096, M = 1,500 and K = 1,024. Reconstructed image obtained by (A) the HCoSaMP,
(B) the model-based CS [2], (C) the work in [8] and (D) the classical CoSaMP.

This notwithstanding, the GBT, being strongly related
to the image structure, can be applied in all those applica-
tions where a class of images sharing the same structure
can be identified. In these cases, in fact, the GBT basis may
be built on a selected image, representative of the whole
class, and can then be applied also to the other images in
the class. This is indeed the case for texture image, where
classes of images sharing the same structure can be easily
found, and the GBT may be effectively employed to devise
a sparsifying basis for CS acquisition.

Before turning to the presentation of numerical simu-
lation results in this reference scenario, we give a brief
sketch on the GBT basis construction. The interested
reader can refer to [16] and [21] for more details. Given an
N pixel image x, the GBT orthonormal basis is given by

the eigenvectors r;,i = 1,..., N, diagonalizing the matrix
A built as follows:
N N N
A:diag Zlo,j, ll_j,...,ZlN,/‘ —L
j=1 =1 j=1

where L is a binary N x N adjacency matrix whose ele-
ment [, is set to 1 if the pixels # and v are not separated
by an image edges, and it is set to 0 otherwise. In Figure 6,
we show an example of a 64 x 64 fragment extracted from

the D104 Brodatz texture (available in [22]), along with
its GBT representation and a selected vector from the
GBT basis. Inspection of Figure 6 shows how the GBT
domain is able to compactly represent the texture image;
besides, the eigenvector in Figure 6C clearly confirms the
strong bind among the GBT basis elements and the image
structure.

To show how the GBT provides a better basis to pro-
vide compressibility for texture images, we plot in Figure 7
the coefficient vectors of GBT and DWT (the latter is
obtained by the Daubechies wavelet transform) of the tex-
ture D104 in Figure 6A. It easily recognized the higher
compressibility attained in the GBT domain.

Besides being a suitable representation basis to devise a
compressible representation for texture images, the GBT
domain is also characterized by the NAP. To assess this
property, we respectively show in Figure 8A a 64 x 64 pixel
fragment cropped from the D49 Brodatz texture along
with the reconstructed version obtained by retaining only
the first 1/8 (Figure 8B) and 1/16 (Figure 8C) of the GBT
coefficients.

As for natural images and spatially localized signals in
the DWT domain, texture images satisfy the NAP in the
GBT domain so that the HCoSaMP algorithm can be
effectively employed for CS texture acquisition.
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Figure 6 A 64 x 64 fragment from the D104 Brodatz texture with its GBT representation and a selected basis element. (A) Fragment
cropped from the D104 Brodatz texture. (B) GBT of the fragment. (C) Example of an element of the GBT basis.

For the running of the HCoSaMP, we have considered
the supports L; constituted by the first 1/256, 1/64, 1/16,
1/4 and 1/2 GBT coefficients.

To test the performance of the HCoSaMP, we have com-
pressively sampled the D49 Brodatz texture in Figure 8A
with M = 2,000 and K = 1,024. In Figure 9, we
plot the MSE attained by the HCoSaMP and by the clas-
sical CoSaMP. Results confirm the effectiveness of the
HCoSaMP in hierarchically recovering the GBT coeffi-
cients. Qualitative results are found in Figure 10 showing
the results obtained by the HCoSaMP algorithm at dif-
ferent iteration steps. In Figure 11, we also provide a
comparison of the reconstructed images obtained by the
different tested algorithms. Specifically, as for the case of
natural and spatially localized images, we have compared
the performance of the HCoSaMP with the model-based
CS [2], with the approach in [8] and with the classical
CoSaMP algorithm. Remarkably, since the structure of
the GBT coefficients differs from the DWT one, state-
of-the-art works relying on the DWT structure fail to
attain satisfactory reconstruction quality. Still, a disserta-
tion is in order. The work in [8] relies on the assumption
that the representation exhibits a tree structure such as
the one characterizing the DWT coefficients; whenever
this assumption fails to hold, as in the case of the GBT
representation, the recovery exhibits poor performance.
The work in [2] is more general and can accommo-
date for different structures in the transformed domain.
Here, we have employed the Matlab code provided by the
authors in [23], designed for tree-structured signals; bet-
ter results may be attained by adapting the model-based
CS to the specific structure of the coefficients in the GBT
domain.

We observe that the recovery of texture images from
compressive sampling measurements is an open research
challenge and could benefit from more complex texture
generation models, as those envisaged for texture classifi-
cation purposes [24,25]; the herein presented results pave
the way for further studies on this issue.

6 Conclusion

In this paper, we have presented a reconstruction proce-
dure, which we called HCoSaMDP, for recovery of com-
pressively sampled signals characterized by the so-called
nested approximation property. This property can be
found in a wide range of applications where other stronger
hypotheses - e.g. tree coefficients’ structures - fail to hold.
The convergence of the HCoSaMP procedure is analyt-
ically demonstrated. Besides, the HCoSaMP procedure
is validated by numerical simulation results and perfor-
mance comparison with state-of-the-art reconstruction
procedures. The adoption of the HCoSaMP is benefi-
cial in resource-constrained applications where the cost
of the measurements is high [6] and the number of col-
lected measurements does not suffice for the CoSaMP
procedure to converge. Finally, the herein presented anal-
ysis draws a path towards hierarchical solution of differ-
ent recovery algorithms for which robust convergence is
guaranteed.

Endnotes

2The energy of the error vector eg is bounded by
lleoll2 < (1 4 8x)lleeg, ll2 + |Inll2; as will be clarified in the
following, such error, in the HCoSaMP convergence,
plays much the same role played by the approximation
error in the CoSaMP convergence on non-sparse,
compressible signals.

To implement the reconstruction algorithms
described in [2] and in [8], we have employed the MatLab
codes provided by the authors, available respectively in
[23] and [26].

Appendix 1
Proof. (Proof of Lemma 4.1) Let us consider the set 7 =

QU supp(ag 71)), as in Algorithm 1, and let us define

bir = @7y = ®[7(Pxg + eo)
blTC = 0.

(26)
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Within these settings, b represents the LS estimate of
the signal samples evaluated on the support 7. We prove
that the energy of the estimation error is upper bounded
by a term proportional to the energy of the signal «g
over the support T¢ and by a term proportional to the
measurement noise energy:

l[eoll

e >+
_(SLO ,/1—5/;0

. (27)

lleo—bll2 < llagrcll (1 1

Let us start by noting that the set T is defined as the
union of two proper subsets of Lo, so that its cardinality
is upper bounded by L. Keeping this in mind, let us con-
sider the Euclidean distance between b and «y. We can
write

lleo — bll2 =llaojr +agre — bll2 < llegrell2 + lleor — byrll2,
=llagre 2+ o — ®|7 (®aroj7 + Botg e +e€0) Il2-
(28)
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Figure 8 NAP property for texture images in the GBT domain. (A) Original fragment of the D49 Brodatz texture. (B) Image obtained by
retaining only 1/8 of the GBT coefficients. (C) Image obtained by retaining only 1/16 of the GBT coefficients.

Appendix 2
Proof. (Proof of Lemma 4.2) Let us recall the starting
positions as found in (16):

Simple algebra leads to

llco = bllz < llegrellz + 19]7 (®etgzc + ) [,

+ + ‘

< llegircliz + 1@ Pagrcli2 + @ €02 s=ag— ozg) (Signal not yet recovered at iteration )
29 i
(29) r=y-— <I>otg) = ®s+ey (Residual at iteration j - it is

Finally, noting that |7 U supp(ao)| < Lo, we come up
with the following upper bound (cfr. also Lemmas 1 to 3

just a CS acquisition of the signal s)

u=&*r

(Proxy at iteration j)
in [1]):
wo = Lo N supp(uzk)

lleoll

J1-=26
£o Let us first denote that «g is confined to Ly by definition

Under the assumption that §., = 0.1, the expression in  and that ag) is confined to Lo by construction. Then, the
(13) is evaluated as follows signal s exhibits at most £y nonzero coefficients. Then, let
us define ¥ = supp(s). As s is at most L sparse, then we

(32)

o
leo—bll2 < llog7cll { 1+ — |+ . (30)
1—34g,

llo = blla < 1.112]leg rcll2 + 1.06] €2 G pave |Z| < Lo. Now, because of the NAP property (cfr.
This concludes the proof. ] [2]), the set wy is the one collecting the indices providing
the support of the best approximation of u within the set
Ly, so that, following the clear guidelines posed in [1], we
< 10° can write the following derivations:
TN 8 il 1 = w13 < flu = us i3 (33)
2 2
25 D () = upy(m)” < (w(n) — s (n)
n n
2r 2
D () — uey(m)” < (un) — us(n))
w n n
215 2 2
D @m)* = (un)
A newg nex
Do @m)?= Y (wm)? (34)
o5t newq nex
néwy (T n¢wg (X
2o 2
R e 2 yz ) o)
iteration newp\X neX\wo
Figure 9 CS acquisition of D49 texture with N = 4, 096, ||ll|w0\2 ||§ = ||u\2\w0 ||%
M = 2,000 and K = 1,024. MSE vs iterations obtained by the . . e . .
HCoSaMP and by the classical CoSaMP. Resorting to several disequalities provided in [1] (namely
Lemmas 1 to 3 in [1]), omitted here for the sake of
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. .
Figure 10 CS acquisition of D49 texture with N = 4,096, M = 2,000 and K = 1,024. Reconstructed image obtained by the HCoSaMP after (A)
5 iterations, (B) 10 iterations and (C) 20 iterations.

L

compactness, we derive the following bounds on the terms By injecting (35) and (36) in (34), we come up with®
in (34):
ooz ll2 < ey sl + 1+ 3z, leoll 35)  Scallslz + VT +3z,lnll
—V1+ 38 lleoll2
Isizwoll2 = ez < —Lel12 +2y/1+8lleoll2
= c

s ll2 = (1=820)lIsjz\aoll2 =32, lIsl2—v/1+8 2, lleoll2. Srwollz = lI8jpcll2 < e

(36) )

v

(I =8 lIsiR\wo l2 — 3, lIsll2
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Figure 11 CS acquisition of texture image. Reconstructed image obtained by (A) the HCoSaMP, (B) the model-based CS [2], (C) the work in [8]
and (D) the classical CoSaMP.
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where we have set |5\, = 8|0 C due to the fact that &
is defined as the support of s. As, because of (32), s =

ap — ag ), we obtain the expression in

25z, lleo — & lla+2/T+52, lleolla
(1—5z,) '

(@ — &) jmpcllz <
(38)
O
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