
Asirvatham and Ramachandran EURASIP Journal on Advances
in Signal Processing (2015) 2015:18
DOI 10.1186/s13634-015-0197-y
RESEARCH Open Access
An optimised twin precision multiplier for ASIC
environment
Rosi Asirvatham* and Seshasayanan Ramachandran
Abstract

In this paper, we present the performance of twin precision technique in reduced computation modified booth
(RCMB) multiplier to achieve double throughput, and an algorithm is proposed. Twin precision technique is the
efficient way to obtain double throughput in the multipliers. We describe how to apply twin precision technique
to RCMB multipliers. Implementation of twin precision in RCMB multiplier requires lesser changes to be made in
partial product array for obtaining double throughput. Multiplexers usually do the signal selection for N and N/2
bit multiplication. In RCMB multiplier, [N/2] + 1 partial product are reduced to N/2 rows. Our idea of implementing twin
precision technique to RCMB results in less utilisation of multiplexers of about [N/2] + 3 which gave a way for
optimization in the twin precision (TP) multiplier. Thereby, we have achieved the drastic reduction in multiplexer
utilisation of about 40% to 50% (for N = 8 to 128) compared to the existing twin precision modified booth
multiplier. In our proposed optimised TP modified booth multiplier this reduction in multiplexers gave a way for
overall reduction in area, power and delay. Lesser utilisation of multiplexer results in the area reduction of about
5% to 18%, delay of 5% to 20% and a considerable reduction in power of 8% to 32% were noticed in the
proposed TP booth multiplier for N = 8 to 128. Our proposed optimised TP multiplier is implemented in FFT
complex multiplication which is taken as an application case study and achieves better performance (area, delay
and power) compare to prior TP multiplier. All our evaluation are made using cadence RTL compiler using TSMC
180 nm library.

Keywords: Twin precision; Multiplexer; Throughput; RCMB; FPGA; ASIC
1 Introduction
Multiplication is an influential arithmetic operation
in processor and digital signal-processing application,
and thus it plays a foremost role in digital computa-
tion. In multiplication, the processing delay is dir-
ectly proportional to the critical path. In order to
design an efficient multiplier, limits such as multi-
plier speed, power and area have to be thought thor-
oughly. In this paper, we narrowed our research
work towards achieving double throughput in signed
multipliers with lesser hardware complexity. Twin
precision (TP) is the technique that can be exploited
to obtain the dual output [1] in multipliers, and this
technique was implemented for both signed and un-
signed multipliers [2].
* Correspondence: arosyme@gmail.com
Department of Electronics and Communication Engineering, College of
Engineering, Guindy, Chennai 600025, India

© 2015 Asirvatham and Ramachandran; license
Creative Commons Attribution License (http://c
distribution, and reproduction in any medium,
Achieving double throughput multipliers in application-
specific integrated circuit (ASIC) environment is a chal-
lenging task where re-programmability is not possible like
in field-programmable gate array (FPGA). Two technolo-
gies such as FPGA and ASIC have their own pros and
cons [3]. One of the biggest advantages considered in
FPGA is re-programmability. Modern FPGA has many
variable precision embedded multipliers [4]. Though
FPGA has variable precision embedded multipliers, blindly
we cannot say it is more advantageous than ASIC multi-
pliers. Because further optimization in FPGA embedded
multipliers are not possible. In ASIC, re-programmability
is not possible but increased throughput in multipliers is
achieved efficiently by twin precision technique.
Initially, double throughput in very large scale inte-

gration (VLSI) multipliers is achieved by using several
multipliers and at least two share the same route,
e Springer. This is an Open Access article distributed under the terms of the
reativecommons.org/licenses/by/4.0), which permits unrestricted use,
provided the original work is properly credited.

mailto:arosyme@gmail.com
http://creativecommons.org/licenses/by/4.0

Asirvatham and Ramachandran EURASIP Journal on Advances in Signal Processing (2015) 2015:18 Page 2 of 18
which is adopted in [5,6]. However, these methods have
several disadvantages like increased multiplier area
and high fan-out that increases the overall delay and
area. This method uses multiplexers to connect the
active multiplier to the output. We can say twin pre-
cision is a subset of subword parallelism (SWP) if the
lower precision multiplications stop within two levels,
i.e., if a 16 bit multiplier performs two 8-bit multipli-
cation, then it is TP multiplication. SWP is capable of
performing four 4-bit multiplications or two 8-bit
multiplications in the same multiplier architecture,
and we referred it as multiple SWP. A subword is a
lower precision of data contained within a word. By
exploiting SWP in signed multipliers, multiple lower
precision multiplications can be performed. So unlike
TP, the throughput wont stop within two. But the
other case, we have to consider here is when multiple
(above two) SWP is performed on modified booth
multiplier many changes are to be made for obtaining
MB algorithm in all levels of lower precision multipli-
cation. While obtaining multiple (above two) SWP in
signed multiplier which adopts modified booth
algorithm, steps like sign extension and inversion of
bits and carry suppression are to be made in all levels
of lower precision operation. And multiplexers are
needed at all lower precision multiplication to select
appropriate partial products because sign extension
and inversion of the most significant bits (MSB) in
partial product rows will vary for multiple SWP and
full precision multiplication. Though SWP offers
more flexibility like multiple throughputs, their
hardware complexity increases with an increase in
multiplexer utilisation for implementing a signed multipli-
cation algorithm like modified booth (MB). Much archi-
tecture based on SWP has been implemented in [7-9].
These architectures are specially designed for media
processing.
In [2], double throughput is realised effectively

by adopting TP technique in MB multiplier. MB
algorithm [10] is a widely used signed algorithm since
it has reduced partial product row. The possibility of
combining N and N/2 bit (b) multiplication in the
same N b tree multiplier is called as TP multiplier
where N is the bit width of the multiplier. Here we
can split the partial product bits of the N b multiplier
in such a way that N/2 b multiplication can be
performed in the least significant part (LSP) of the
multiplier in parallel with another N/2 b multiplica-
tion in the most significant part (MSP). And this is
done in the partial product reduction tree without
inclusion of any additional logic as explained in [1].
Multiplexers (muxes) are generally employed in TP
multiplier to select appropriate partial product for N
and N/2 b multiplication.
While implementing TP technique in the signed
multipliers like MB [2], multiplexers are involved for
the selection of partial products during N and N/2 b
multiplication. This addition of multiplexers give rise
to an area overhead, and thereby significant delay is
added in the TP multiplier. By making the calcula-
tion of multiplexer utilisation, the TP implementa-
tion in MB multiplier [2] utilises N + 3 multiplexers
to select the partial products. The unwanted partial
products that are not in use for N/2 bit multiplica-
tion are set to zero by modifying two input AND
gate which produces partial products to three input
AND gate and the third input is the control signal.
Since the area overhead in TP multiplier is caused
by the multiplexers, we aimed at optimising the TP
multiplier by reducing the multiplexer utilisation.
Multiplexer will get reduced only when the changes
to be made in N/2 b multiplication are lesser. Our
goal of obtaining optimised TP MB multiplier is
achieved when implementing the TP technique in re-
duced computation modified booth (RCMB) that
consists of [N/2] rows and not [N/2] + 1 rows as in
modified booth algorithm and uses the simple sign
extension prevention scheme which requires lesser
changes to be made in TP implementation, i.e., for
N/2 b multiplication.
In this paper, our goal of obtaining optimised

double throughput signed multiplier has achieved
without inclusion of complex logic, which reflects in
reduced area, delay and power. We have implemented
twin precision in an efficient manner with less hard-
ware constraint compared to previous implementation,
and a suitable algorithm is proposed. Implementing
TP in RCMB [11] has achieved reduced area, delay
and power compared to prior TP technique applied
in MB algorithm. We have analysed that implement-
ing TP technique in RCMB results in better per-
formance, and it has been discussed in the rest of
our paper.

2 TP implementation in modified booth
MB algorithm is a widely used algorithm for signed mul-
tipliers, and it holds an advantage of producing half the
number of partial products. In this algorithm, X is multi-
plied by Y using modified booth encoding (MBE)
scheme [12]. This encoding scheme groups Y into three
bits as shown in Figure 1 and encodes it into one of the
following {−2, −1, 0, 1, 2}, and the MB decoder generate
partial products by multiplying encoded signal with the
multiplicand Y. In the TP implementation made in
MB, [2] adopts modified booth encoder and decoder
are shown in Figure 2(a) & (b). Different methodolo-
gies of implementing MB recoding logic are explained
in [13,14].

Figure 1 Encoding logic of 8-bit modified booth.

Asirvatham and Ramachandran EURASIP Journal on Advances in Signal Processing (2015) 2015:18 Page 3 of 18
To multiply the encoded {−2, −1} with multiplicand
X, two’s complement representation of partial products
is in need to indicate the change in sign bit. A ‘1’ should
be inserted in the least significant bit (LSB) of each
partial product row for sign change which is a normal
Y2i-1Y2i

Y1

Y2i+1Y2i

Z

Y2i-1Y2i

Y2

Y2i+1

Neg

NegXi
Neg

Xi-1

Y1 Z Y2

Pij

a

b

Figure 2 Modified booth encoder (a) and modified booth
decoder (b).
procedure in two’s complement representation. While
doing so, an irregular partial product array will be
obtained, and this can be overwhelmed by the idea
proposed in [15]. The idea is to precompute the two
LSB positions of recoded partial product row by the
insertion of 1 during the sign change. Actually,
precomputation calculates the addition of LSB with
potential ‘1’ whose sum is the new LSB and carry is
inserted in the second least significant bit position. Pre-
computation works according to the Equation 1 and its
carry is calculated as given by Equation 2, which is
adopted in [2].

PLSBi ¼ X0 Y 2i−1⊕Y 2ið Þ ð1Þ

ai ¼ Y 2iþ1 Y 2i−1 þ Y 2i þ XLSB þ Y 2i þ XLSB þ Y 2i−1ð Þ
ð2Þ

TP technique facilitates the increase in computa-
tional throughput by allowing narrow width operation
in parallel. Double throughput was obtained by the TP
technique and was implemented in signed algorithm
such as Baugh Woolley (BW) and MB [2]. Normally,
TP multiplier either performs N b multiplication or N/
2 b multiplication. If TP multiplier performs N bit
multiplication, then its output sum (S) bits are from
S0 to S15 as demonstrated in Figure 3, and when N/2
bit multiplication is performed, the output sum bits
are from S0 to S7 and S8 to S15, i.e., twin output is
taken as illustrated in Figure 4 and N = 8 for the illus-
trated example.
Implementation of TP technique is not similar for

BW and MB algorithm. Figure 3 illustrates the MB
multiplication for 8 × 8 which uses the sign extension
scheme proposed by Fadavi [16] and uses recoding
logic proposed in [15]. Achieving double throughput
in MB algorithm requires appropriate selection of
partial product signals in N and N/2 b multiplication,
i.e., looking after sign extension prevention in LSB
and MSB multiplication is to be taken care when
N/2 b multiplications are performed. Simply we can
say the steps performed for N b multiplication has
to be carried over for N/2 b multiplication. Apart
from booth encoding and decoding, the steps (changes) to
be performed in N/2 LSB and MSB multiplication for
MB algorithm [2] are precomputed LSB (PLSB) and
its carry ai has to be calculated separately. Likewise
inversion of MSB in each partial product row and
sign bit pattern 1 s and 0 s will differ for N/2 LSB
and MSB multiplication. Multiplexers will make these
changes in N b partial product array by selecting
appropriate partial products for N and N/2 b
multiplication.

Figure 3 Signed 8-bit multiplication using modified booth algorithm-N bit multiplication.

Asirvatham and Ramachandran EURASIP Journal on Advances in Signal Processing (2015) 2015:18 Page 4 of 18
Since the partial product generation of MB multipli-
cation is based on the encoding and decoding logic,
it is not possible to use the results of full precision
(N b multiplication) for narrow width (N/2 b) MB
multiplication. So changes are to be made in the
recoded N b partial product array to obtain double
throughput. Though the MB algorithm reduces N
number of partial product rows to N/2 rows, the in-
clusion of sign bit 1 s in the last row which is due to
negative decoding of MBE makes partial product
strength to [N/2] + 1. In [2] (N/2 + 1)th row is due to
sign bit and potential carry (ai, i = 0 to (N/2 − 1)) of
PLSB. The twin precision technique implemented in
MB multiplication [2] consisting of [N/2] + 1 rows
which has been illustrated in Figure 4 and double
Figure 4 Implementation of twin precision in modified booth multipl
throughput is achieved, and Figures 3, 4, 5, and 6 are
inspired from [2].
To obtain TP in modified booth, the partial prod-

ucts that are shaded (grey colour) in Figure 4 are
needed when multiplier performs N/2 b multiplica-
tion whereas the non-shaded partial products are set
to zero. The partial products are set to zero by con-
necting the MB decoder output to two input AND
gate and the other input of the AND is the control
signal. Based on this control signal, either MB
decoded signal or zero will appear as the output.
Multiplexers are needed to select the appropriate
partial products for N and N/2 b multiplications.
Encoding scheme for N/2 b multiplication is shown
in Figure 5.
ier-N/2 multiplication.

Figure 5 MB encoding scheme for N/2 multiplication.

Asirvatham and Ramachandran EURASIP Journal on Advances in Signal Processing (2015) 2015:18 Page 5 of 18
By comparing Figures 3 and 4, the changes to be made
to obtain twin precision are

� Partial products – P40 and P41 during normal 8 × 8
multiplications (Figure 3) need to describe sign
extension prevention for N/2 LSB multiplication in
MSB (Figure 4).

� Partial products – P42 and P43 in normal (N bit)
multiplication has to be replenished as PLSB2 and
PLSB3 for N/2 MSB bit multiplication.

� aMSP0 and aMSP1 are to be added for N/2 MSB
multiplication.

� The pattern 1 s and 0 s are different for N and N/2
bit multiplication.

In Figure 6, the partial products are mapped to
high-performance multiplier (HPM) reduction tree
[17] and the shaded regions indicate that they are
Figure 6 TP implementation of MB in HPM.
involved in N/2 b multiplication. Another issue that
has to be looked through in N/2 b multiplication is
that the multiplication in the LSB should not inter-
fere with MSB multiplication, and so an encoding
logic in Figure 5 has been followed. The 1 s and 0 s
pattern in the last row of the partial product array
is for the sign extension prevention and the most
significant ‘1’ is to invert the S2N-1 bit. So while
performing N/2 LSB multiplication, the most signifi-
cant ‘1’ present in the S7 column produces a carry,
and when it propagates, it will affect the N/2 MSB
multiplication result. In order to avoid this problem,
output of the S7 is passed to an exclusive OR
(XOR) gate and the inversion is made, and it is
illustrated in Figure 6 where the most significant ‘1’
is made to zero and S7 output is passed to the
XOR gate.
Apart from setting the unwanted partial products

to zero in N/2 b multiplication, the selection of
partial products for N and N/2 b multiplication
are done by multiplexers. These multiplexers are
added to the TP multiplier design to get the dual
output, and thereby a significant delay is added.
This delay increases linearly as the bit width (N)
of multiplier increases because for a higher bit
width, more multiplexers are utilised. The number
of multiplexers depends upon the changes (steps)
or selection of appropriate signals in each column
to produce sum bit (S). For an 8 × 8 MB multiplier
which adopts sign extension scheme [16] and
recoding logic [15], the changes that have to be
made for implementing TP in each column to

Asirvatham and Ramachandran EURASIP Journal on Advances in Signal Processing (2015) 2015:18 Page 6 of 18
produce sum bits S0 to S15 are elaborated in
Table 1. The signal selection x/y in Table 1 repre-
sents partial product (P) for N bit/ P for N/2 bit
multiplication.
By comparing Figures 3 and 4, the changes needed to

perform in each column of 8 × 8 MB multiplication for
TP are tabulated in Table 1. Depending on the multipli-
cation performed (N or N/2 b), the appropriate
changes that have to be made in the partial product
array are executed by multiplexers. In N b multipli-
cation (Figure 3), the S4 column usually has no sign
bit, but when N/2 LSB multiplication (Figure 4) is
performed, ‘1’ has to be included as sign bit and the
inversion of MSB bit (P40) has to be performed. So
in the S4 column, two multiplexers are required to
make these two changes. As explained earlier, the
MSB bit of each partial product row has to be
inverted so P41 bit has to be inverted for N/2 LSB
multiplication . In the seventh column, the potential
carry (a3) in N bit partial product array has to be
replaced as sign bit 1 for N/2 LSB multiplication.
Likewise the changes such as precomputed LSB
(PLSB2, PLSB3), the potential carry (aMSP0, aMSP1),
and sign bit pattern 1 s and 0 s made for N/2 MSB
multiplication are tabulated in Table 1.
Totally, for an 8 × 8 TP MB multiplication, we

need 11 multiplexers. For various bit width, the
multiplexer (mux) utilisation is calculated. From the
analysis made in the MUX utilisation for implemen-
tation of TP in MB [2], it is clear that this method
Table 1 Changes needed for twin precision

Sum bit Twin 2009

Signal selection

S0 No change

S1 No change

S2 No change

S3 No change

S4 1/0 and P40/ �P40

S5 1/a2

S6 P41/ �P41

S7 0/a3

S8 PLSB2/P42 and 0/1

S9 aMSP0/1

S10 PLSB3/P43

S11 aMSP1/1

S12 1/0

S13 No change

S14 No change

S15 No change
inquires N + 3 multiplexers for selection of appropri-
ate partial products, where N is the bit width of
multiplier.

3 Implementation of TP in RCMB
In this study, we have designed an optimised TP
multiplier. Optimization is achieved by implementing
TP technique in RCMB and an algorithm is proposed
which is applicable for N = 8 × (multiples of eight).
Implementation of TP in RCMB reduces the mux
utilisation to (N/2 + 3). Muxes are normally employed
in TP multiplier for partial product selection in N
and N/2 b multiplication. In prior work [2], the im-
plementation of TP involves N + 3 multiplexers for
partial product selection in TP multiplier. By applying
our proposed algorithm, the TP can be obtained in
the RCMB multiplier.
RCMB algorithm [11] is the classic twos comple-

ment that uses a radix-4 MBE scheme. Partial prod-
uct row in RCMB (Figure 7) consists of partial
product (Pi,j) that are generated based on booth en-
coding and decoding, negk signals (k = 0 to ((N/2) −
1)) are added in the LSB position of each partial
product row for generating twos complement and 1 s
in the leftmost part of partial product rows that are
for sign extension in twos complement representation.
Figure 1 in [11] describes the gate level diagram of
partial product generation. The maximum height of
the partial product in MB is (N/2 + 1). This is re-
duced to N/2 rows in RCMB algorithm which is the
biggest advantage. The neg(N/2 − 1) bit which actually
lies in the (N/2 + 1)th row of partial product is added
to the MSB part of first row partial product repre-
sented as qij, i.e., in Figure 7, we have �q90 q90 q80
q70 q60 = 0 0, �P80 P70 P60 + 0 1 1 0 neg3 (refer to
Figure 6 in [11]). And by this way, the height of par-
tial product is reduced to N/2. Finally the partial
products are mapped to half and full adders in HMM
tree [17] structure.
In our proposed algorithm, we have assumed the

partial product rows of RCMB as reduced computa-
tion matrix set (Rs). This set is divided equally and
named it as upper and lower bound as shown in
Figure 8. This set consists of partial product Pij,
negk signals (k = 0 to ((N/2) − 1)) and 1 s for sign
extension. This set consists of i rows and j columns
where i = (1 to N/2) and j = (1 to 2N) and repre-
sented as Rs{i,j}. The N b procedure (steps) has to be
followed for N/2 b multiplication. The changes or
steps to be performed for N/2 (LSB and MSB) bit
multiplication in N bit architecture are inversion of
MSB in each partial product row which has to be
made for twos complement method, addition of 1 s
for sign extension prevention, generation of negk

Figure 7 8 × 8 multiplication using reduced computation modified booth (RCMB).

Asirvatham and Ramachandran EURASIP Journal on Advances in Signal Processing (2015) 2015:18 Page 7 of 18
signals in the LSB position for generating twos com-
plement. While performing N/2 LSB multiplication,
the changes are to be in the upper bound, and for N/
2 MSB multiplication, changes are made in the lower
bound. Multiplexers are employed in the correspond-
ing places of N b architecture where the changes are
to be made, and depending upon the multiplication,
appropriate partial products are selected. Each bit
(element) in Rs is denoted as Bx, and x = 1 to N + 3
denotes relative bit position in each row.
In this paper, we have implemented TP tech-

nique in RCMB multiplier which has N/2 partial
rows. The sign extension prevention scheme pro-
posed in [18] is used in the RCMB. In our pro-
posed algorithm, much of the work has to be done
in the upper bound compared to the lower bound.
Inversion of most significant bit in partial product
Figure 8 Reduced computation matrix RS for 8 × 8 multiplication.
rows and adding of sign bit 1 s are two major
steps followed to perform twin precision. In prior
work of implementing twin precision technique [2]
to obtain double throughput, more changes (steps)
are to be performed in partial product array than
proposed implementation of TP in RCMB. This in
turn increases the need of multiplexers. Therefore,
the area overhead for the implementation of twin
precision in MB algorithm is higher than our pro-
posed method. While obtaining twin precision in
RCMB algorithm, the N/2 rows will be increased
to (N/2) + 1 that uses sign extension prevention
scheme in [18], and MB recoding logic proposed
[19]. When the TP technique is implemented in
RCMB, the multiplexer utilisation reduces drastic-
ally, and its impact on area, delay and power is
analysed.

Asirvatham and Ramachandran EURASIP Journal on Advances in Signal Processing (2015) 2015:18 Page 8 of 18

Asirvatham and Ramachandran EURASIP Journal on Advances in Signal Processing (2015) 2015:18 Page 9 of 18
The total bits in any row in Rs will be equal and
Equation 3 gives the formula to calculate total bits in a
row. We have generalised the partial product (Pij), 1 s that
are for twos complement implementation and negk bit in
each row as a bit (B).

BT ¼ N þ 3 ð3Þ
Proof

ForN ¼ 8 BT ¼ 8þ 3 ¼ 11

BT(i) - total bits (BT) in a row
For an 8 × 8 RCMB multiplier illustrated in Figure 8,

BT = 11 and this is equal for all the rows. When we
perform N/2 LSB multiplication in N b tree, the most
significant bit in each partial product row has to be
inverted (negated). To perform this, we need to know
the bit position (Xi) in the upper bound with respect
to corresponding row (i) and given as B[Xi] in Equation 4,
where B is the bit and X denotes the bit position. In the
lower bound, there is no need for inversion of bits for
N/2 MSB multiplication because during N bit multipli-
cation itself, the inversion was made. The inversion of
bits that has to be implemented in the upper bound in
corresponding bit position of ith row is described in
Equation 4.
For rows i = 1 to N/4, the inversion of bits B[Xi] are

done. For initial condition i = 1, [Xi] is the difference of
total bits BT(i) in row and constant CN.

f orf i ¼ 1 X ¼ Xi ¼ X1 ¼ BT−CN

i ¼ 2 to
N
4

X ¼ Xi ¼ X i−1ð Þ þ 2
ð4Þ

CN ¼ N
2
þ 2

B[Xi] - bit position in the corresponding i row
CN - constant, which depends on N value
Proof
For N = 8
i ¼ 1 X ¼ Xi ¼ BT−CN

X1 ¼ 11−6 ¼ 5

i ¼ 2 to
N
4
X ¼ Xi ¼ X i−1ð Þ þ 2

X ¼ Xi ¼ X2 ¼ 5þ 2 ¼ 7
Moreover, for the succeeding values of i that is up to

N/4, the inversion bit position is the sum of previous it-
eration value and 2. For N = 8, the values of X1 = 5 and
X2 = 7, so the fifth and seventh bit has to be inverted in
the first and second row as implemented in Figure 9.
The changes are made in the upper bound for N/2 LSB
multiplication and in the lower bound for N/2 MSB
multiplication.
Next step in the algorithm to perform TP is the addition
of sign bit 1 s for sign extension in the upper and lower
bound and has to be included in the suitable column. For
this, much work has to be performed in the upper bound
compared to the lower bound. Because for N b multiplica-
tion, RCMB algorithm already has sign extension bit 1 s in
the most significant bit position of the lower bound. So in
our algorithm for obtaining TP, addition of 1 s for sign ex-
tension in corresponding column (j) is performed in the
upper bound according to Equation (5). The addition of
sign bit 1 s and 0 s pattern that is used for sign extension
prevention will vary for N and N/2 b multiplication. It is
not necessary to find the bit position for the insertion of
1 s as we do for inversion of bits to get the correct sum bit
(S). While performing inversion (negation) of bits in the
upper bound, bit position is needed for the corresponding
i because if the inversion is made in the wrong bit pos-
ition, then we will wind up with incorrect sum bit and
thereby will end up with the erroneous output. But in the
case of adding 1 s, it is just an addition of extra signal, so
finding out the corresponding column (j) is sufficient.
Total 1 s to be added in upper bound for N/2 LSB multi-
plication depends on iteration (I).

f or

I ¼ 1 jou Ið Þ ¼ jou 1ð Þ ¼
N
2

� �
þ 1

I ¼ 2 jou Ið Þ ¼ jou 2ð Þ ¼
N
2

� �
þ 2

I ¼ 3 to N=4ð Þ þ 1 jou Ið Þ ¼ jou I−1ð Þ þ 2

8>>>><
>>>>:

ð5Þ

jou(I) - ones (O) in the upper (U) bound for iteration (I)
Proof
N = 8 Iteration I = 1 to 3

I ¼ 1 jou 1ð Þ ¼
8
2

� �
þ 1 ¼ 5

I ¼ 2 jou 2ð Þ ¼
8
2

� �
þ 2 ¼ 6

I ¼ 3 jou 3ð Þ ¼ jou 3–1ð Þ þ 2 ¼ 6þ 2 ¼ 8

So in the fifth, sixth and eighth columns, the 1 s are
inserted
Iteration (I) varies from 1 to (N/4 + 1). For addition of

1 s in the upper bound, the iteration (I) lies from 1 to
(N/4) + 1 and for a first two iteration, i.e., i = 1 and 2, the

column where 1 has to be added is
�
N
2

�
þ 1 and

�
N
2

�
þ 2:

And for the subsequent values of I, it is the sum of previous
iteration value and 2. For N = 8, the I = 1 to 3, and accord-
ing to Equation 5, the columns are calculated for the inser-
tion of 1 s. From proof, it is clear that the 1 s are added in
the fifth, sixth and eighth columns. In Figure 9, the ‘1’ that
is inserted in the fifth column is joined with partial product
represented as P02/1 (Figure 10, Table 2) which implies

Figure 9 Implementation of our proposed algorithm in RCMB to obtain twin output.

Asirvatham and Ramachandran EURASIP Journal on Advances in Signal Processing (2015) 2015:18 Page 10 of 18
during N bit multiplication P02 is used whereas for N/2
LSB multiplication, the ‘1’ is utilised. And this selection
is made by multiplexers. Likewise ‘1’ in the sixth col-
umn is joined with P50. ‘1’ that is inserted in the eighth
column is to invert the SN-1 bit. If 1 is added in the
eighth column, it generates a carry and affects the N/2
MSB multiplication. To avoid this problem, the MSB bit
of N/2 LSB multiplication is passed through an XOR gate
after the final addition and the inversion of SN-1 bit made.
In the lower bound, 1 has to be added in only one

column for TP implementation as per Equation 6. Be-
cause in N b multiplication of RCMB, the sign bit 1 s
are already present for each partial product row, so
there is no need of extra effort to insert 1 s in the lower
bound for N/2 MSB multiplication.
Figure 10 RCMB in HPM.
OBL jð Þ ¼ N
2
þ 1þ N

� �
ð6Þ

Proof
N = 8

OBL jð Þ ¼ N
2
þ 1þ N

� �
¼ 8=2þ 1þ 8ð Þ ¼ 13

In thirteenth column, 1 is added
OBL(j) - one (O) in the lower bound (BL) in corre-

sponding column (j)
From the proof of Equation 6, it is clear 1 has to be

added in the 13th column. All the steps in the algorithm
are made in RCMB multiplier and mapped in HPM

Table 2 Changes to be made to obtain TP

Sum bit Twin 2009 [2] Proposed twin signal selection

S15 No change No change

S14 No change No change

S13 No change No change

S12 1/0 1

S11 aMSP1/1 No change

S10 PLSB3/P43 P81/neg3

S9 aMSP0/1 No change

S8 PLSB2/P42 and 0/1 P23/neg2

S7 0/a3 P51/1

S6 P41/ �P41 P41/ �P41

S5 1/a2 P31/1

S4 1/0 and P40/ �P40 P02/1 and P40/ �P40

S3 No change No change

S2 No change No change

S1 No change No change

S0 No change No change

Asirvatham and Ramachandran EURASIP Journal on Advances in Signal Processing (2015) 2015:18 Page 11 of 18
reduction tree [17] shown in Figure 10. For N b multipli-
cation, the sum (S) bit is from S0 to S15, and for N/2 LSB
and MSB multiplication, sum bits are S0 to S7 and S8 to
S15.
In RCMB [11], the N/2 + 1 rows are reduced to N/2

rows by the addition of last row sign bit, i.e., (neg((N/2) −
1)) bit to MSB part of the first row partial product. In our
chosen example in Figure 7, it is neg3 bit which leads to
(N/2) + 1 rows added to the first row whose partial
product are represented as qij. We exploited TP tech-
nique in RCMB multiplier and suitable algorithm is
proposed. In our proposed TP implementation in
RCMB when we perform N/2 MSB multiplication, the
first row (i = 3) of lower bound is not modified like N
bit multiplication because the complexity of the design
will get increased.
For N bit multiplication the neg3 bit is added to the

first row whereas for N/2 bit MSB multiplication, the
sign bit (neg3) is not added to the first row (i = 3). But
for N/2 MSB multiplication, P23 is replaced by the sign
bit neg3 by multiplexer. This way of replacing the partial
product as neg bit for N/2 multiplication maintains the
partial product array to (N/2) rows without the first row
modification for N/2 MSB multiplication.
for

(
i ¼ N

4
þ 1 ; k ¼ N=4

i ¼ N
4
þ 2 ;

N
4
þ 3 toN=2

� �
; k ¼ N

4
þ 1

� �
to

N
2

��
Proof
N = 8

negk→j ið Þ

i ¼ N
4
þ 1 ; k ¼ N=4 j ið Þ ¼ N þ 1

i = 3, k = 2 j(3) = 8 + 1 = 9 neg2→ 9 (neg2 bit is added
to ninth column)

i ¼ N
4
þ 2 ;

N
4
þ 3 toN=2

� �
; k ¼ N

4
þ 1

� �
to

N
2
−1

� �� �

j ið Þ ¼ j i−1ð Þ þ 2

i ¼ N=2þ 2 ¼ 4; k ¼ N=4þ 1 ¼ 3

j(4) = j(4–1) + 2 = 9 + 2 = 11 neg3→ 11 (neg3 bit is added
to eleventh column)
Note: i = 1 to N/2 (first step in the ‘Algorithm for

obtaining twin precision in RCMB’ section). For N = 8, i
varies from 1 to 4. Since i value ends with 4, it is not
necessary to find j(i) for values of i after N/4 + 2 (i.e.,)
for i =N/4 + 3 = 5 where we do not have i = 5 (fifth row)
in 8 × 8 (N = 8) RCMB multiplier.
The negk (k = 0 to (N/2 − 1)) bits are usually used to

generate twos complement in RCMB algorithm. These
bits are added to the LSB part in each partial product
row. During N bit multiplication, negk bits are added in
the LSB part of each partial product row. So for N/2
LSB multiplication, we do not face any problem in add-
ing the neg(0 to (N/4 − 1)) bits in the LSB part, i.e., in
the upper bound. But for N/2 MSB multiplication, the
neg(N/4 to (N/2 − 1)) bits have to be added in the corre-
sponding LSB part of each partial product row in the
lower bound. By Equation 7, this can be performed by
adding neg(N/4 to (N/2 − 1)) bits to the corresponding
column. From proof of Equation 7, it is clear the neg2
and neg3 are added in the 9th and 11th columns. In
Figure 9, the neg2 bit is joined with P23, i.e., for N/2
MSB multiplication; instead of P23, the neg2 bit will be
selected by the multiplexer. Likewise in the tenth col-
umn, neg3 bit is joined with P81.
And by implementing TP technique in RCMB, we

found that our approach requires less mux utilisation
compared to previous implementation [2]. Figure 9
depicts the implementation of all the above steps for N
and N/2 bit multiplication. When the multiplier performs
j ið Þ ¼ N þ 1

−1
��

j ið Þ ¼ j i−1ð Þ þ 2
ð7Þ

Asirvatham and Ramachandran EURASIP Journal on Advances in Signal Processing (2015) 2015:18 Page 12 of 18
N/2 b multiplication, the unwanted partial products that
are not shaded in Figure 9 are set to zero and the multi-
plexers are implemented where ever the changes are re-
quired. The columns where the changes have to be made
in RCMB to obtain twin output using our algorithm are
S4, S5, S7, S8, S10 and S12 as charted in Table 2. And by
consolidating these changes, we can formulate the mux
utilisation for our approach.
Here in this study, we have chosen 8 × 8 RCMB multi-

plier to explain our idea. From the consolidated changes,
it is revealed that we entail (N/2) + 3 multiplexers and
verified for various bit width multiples of eight as out-
lined in Table 2. The earlier work [2] utilises N + 3 mul-
tiplexers for the selection of appropriate signals. Since
multiplier structure is the interconnection of full adders
and half adders, the adders involved in the critical path
have to wait for the previous carry signal to produce
output sum bit S. Implementation of our proposed
algorithm for obtaining TP in RCMB results in less mul-
tiplexers utilisation which has its impacts on area, delay
and power that are analysed in the Results and discus-
sion section. Because of this drastic reduction in multi-
plexers, the area, delay and power of TP multiplier are
reduced compared to prior work of implementing TP in
modified booth algorithm [2].

4 SWP
A subword is a lower precision unit of data contained
within a word. When SWP concept is adopted in multi-
plier, then multiple lower precision multiplications are
possible. By applying SWP to signed multiplication like
modified booth, the MB algorithm has to be performed
for all the lower precision multiplication. While doing
so, the number of multiplexers increases for selecting
Figure 11 Multiple SWP in RCMB multiplier for N = 16.
appropriate partial products. And this increases the
hardware complexity of the design than TP multiplier.
In this section, we have explained multiple SWP in
RCMB multiplier for N = 16, i.e., four 4-bit multiplica-
tions or two 8-bit multiplications (N/2 or N/4) are per-
formed which is shown in Figure 11. When two 8-bit
multiplications are performed, i.e., only N/2 operation is
performed and it is called as TP multiplication. This is
the reason we say TP is a subset of SWP. The ‘Algorithm
for obtaining twin precision in RCMB’ section describes
the operation of TP in RCMB, and we need (N/2 + 3)
multiplexers for selection of partial products. Apart from
this, we need to calculate mux utilisation for four 4-bit
operations in multiple SWP.
The bounded regions in Figure 11 that are green in

colour illustrate four 4-bit (N/4) multiplications and red
bounded region shows TP, i.e., N/2 multiplications. Mul-
tiple SWP multiplication means either N/2 or N/4 bit
multiplication is possible. While doing four 4-bit multi-
plications, the first lower precision multiplication will
perform for inputs x0 to x3 and y0 to y3, second preci-
sion multiplication inputs are from x4 to x7 and y4 to
y7, third is from x8 to x11 and y8 to y11 and fourth is
from x12 to x15 and y12 to y15. For all these four lower
precision multiplication, RCMB algorithm is applied. In
this algorithm, all the MSB bit of partial product row
has to be inverted for achieving twos complement, 1 s
are added for sign extension and negk bits are added in
the LSB of each partial product row. For first lower pre-
cision multiplication, the first two rows (only green
bounded region) of partial product in Figure 11 for N =
16 are taken into consideration. Since the inputs are x0
to x3 and y0 to y3, the MSB bit for this multiplication is
P30 and P31 has to be inverted to achieve twos

Asirvatham and Ramachandran EURASIP Journal on Advances in Signal Processing (2015) 2015:18 Page 13 of 18
complement. Multiplexer will select either P30 or �P30
and P31 or �P31 . Sign bit ‘1’ has to be added in fourth,
fifth and seventh columns which is for sign extension in
RCMB algorithm. In the fourth column, none of the par-
tial product is available to merge sign bit ‘1’, so this leads
to extra half adder during the addition of partial prod-
ucts to produce sum bit (S) and this sign bit will be 0 for
N/2 and N bit operation. Whereas in fifth and seventh
column sign bit 1 is merged with P02/1, P22/1, i.e., mux
is employed in the places of P02 and P22 which selects
either P02 or 1 depends on the operation. neg0 and
neg1 are added in the LSB. This leads to utilisation of
four multiplexers in the first lower precision region
bounded in the green colour to select the partial prod-
ucts for N/4 operation.
Likewise for second lower precision multiplication, the

algorithm has to be applied in the third and fourth rows.
The MSB bit such as P72, P73 are to be inverted and
sign bit 1 has to be added in the 12th, 13th and 15th col-
umns. In the 12th column, sign bit 1 has been inserted
for N/2 operation so this can be used for N/4 bit oper-
ation and we can avoid mux for this operation. In the
13th and 15th columns, sign bit 1 has been added for
second lower precision multiplication and it is merged
with partial products which are not involved in N/4 bit
operation. neg2 and neg3 bits have to be added in the
LSB position, i.e., in columns 9 and 11. P23 and P81 will
be replaced as neg2 and neg3 by mux which is repre-
sented as P23/neg2 and P81/neg3 in Figure 11. Since we
have inserted mux in these places for N/2 bit operation,
it is not necessary to add additional mux. Totally, four
muxes are added in the second lower precision region.
Likewise in the third and forth lower precisions, the
algorithm is applied which utilises four muxes for each
multiplication. Apart from mux utilisation of N/2 bit
operation (twin precision) by making the above changes,
we need 16 muxes in N/4 operation for N = 16. So to
perform multiple SWP with either N/2 or N/4 bit RCMB
multiplication, we need 27 muxes in the multiplier
architecture. This mux calculation for multiple SWP is
made by addition of mux count in the proposed TP
multiplier as tabulated in Table 3 and mux required for
four 4-bit multiplications. This results in an increase in
Table 3 Mux utilisation

S number Bit width Twin 2009
MUX (N + 3)

Proposed twin
mux (N/2) + 3

1 8 11 7

2 16 19 11

3 32 35 19

4 64 67 35

5 128 131 67
area than our proposed twin multiplier. Table 4 shows
mux count for proposed twin and multiple SWP.
Throughput in the signed multiplier like MB, RCMB
can be increased beyond two in multiple SWP. But if
the throughput is increased beyond two, then mux
count will also increase as shown in Table 4. The
unwanted partial products (Pij) that are not required
for N/4 bit operation are made zero. This is done by
passing unwanted Pij to two input AND gate, and other
input will act as control signal and for N/4 bit oper-
ation; more partial products are made zero than N/2
operation. And due to these reasons, area overhead will
be higher than proposed twin. Hereby we conclude
hardware complexity is more for multiple SWP while
performing signed multiplication based on algorithms
like MB and RCMB. We have calculated mux count for
multiple SWP for N = 16, 32 in Table 4. Likewise for
higher bit width mux utilisation will be higher than pro-
posed twin.

5 Results and discussion
In this paper, we have implemented TP technique in
RCMB and a suitable algorithm is proposed for obtain-
ing double throughput, which is applicable for all bit
width that are multiples of eight. Our approach of
implementing TP in RCMB gives better performance
compared to [2]. Our implementation of the proposed
algorithm yields less mux utilisation, and its impacts on
area, delay and power compared to prior work of imple-
menting twin precision in MB algorithm are analysed. In
the twin precision implementation, changes to be made
for N and N/2 b multiplication are selected using multi-
plexers which increase the design complexity of the
multiplier. Our proposed method decreases this com-
plexity by utilising less multiplexers. Less multiplexers
are utilised because when TP implementation is made in
RCMB according to our proposed algorithm, lesser
changes are to be made in partial product array for N/2
bit multiplication. We have achieved nearly 40% to 48%
(for N = 8 to 128) of less multiplexers compare to previ-
ous work [2].
To our knowledge, TP implementation to signed

multipliers is made in [2] and further optimization
in TP multiplier is not done. Compared to prior work
[2], our proposed algorithm implementation requires
less change for performing N/2 multiplication. These
Table 4 Mux utilisation for SWP and TP

S number Bit width Proposed
twin mux

Mux count for multiple
SWP-(N/2 + N/4)

1 16 11 27

2 32 19 52

Asirvatham and Ramachandran EURASIP Journal on Advances in Signal Processing (2015) 2015:18 Page 14 of 18
changes or selection of appropriate partial products
are typically selected using multiplexers. Table 1 illus-
trates the signal selection that has to be made for N/2
multiplication in MB. TP implementation in MB con-
tains (N/2) + 1 partial product rows and adopts sign
extension scheme presented in [16]. TP implementa-
tion in MB which adopts the sign extension scheme
in [16] requires that more changes are to be made for
N/2 bit multiplication. Multiplexer utilisation is dir-
ectly related to the changes to be made in partial
product row for N/2 b multiplication, and for every
change, the multiplexers are to be deployed to select
required partial product for N and N/2 b
multiplication.
For twin precision implementation in modified

booth algorithm [2], the changes (steps) that have to
be made for N/2 b multiplication apart from booth
encoding and decoding are PLSB, and its potential
carry (most significant part (aMSP)) has to be per-
formed separately for N/2 LSB and MSB multipli-
cation. And also sign extension has to be made
separately for N/2 b multiplication. So these three
steps have to be performed in N/2 LSB and MSB
multiplication. In RCMB [11] apart from booth en-
coding and decoding, the two steps to be performed
for N/2 b multiplication are neg bit added in the
LSB of each partial product row to generate twos
complement and 1 s added for sign extension.
RCMB does not require PLSB and potential carry
(less complexity) so this makes RCMB more suitable
for TP implementation and utilises less multiplexers.
For an 8 × 8 TP multiplier, twin 2009 [2] requires 11
multiplexers, and our proposed method requires only 7
multiplexer as consolidated in Table 3. Reduction in multi-
plexer occurs because only two steps have to be performed
in RCMB N/2 b multiplication compared to [2] which per-
forms three steps in N/2 b multiplication.
Our proposed method has been tested for various

bit widths that are multiples of eight and results
are compared with prior work [2] and tabulated in
Table 4. From the analysis made for various bit
widths, it is inferred that our method needs (N/2) + 3
multiplexers. Due to reduction in multiplexers, over-
all area, delay and power are reduced for TP multi-
plier. For the previous implementation of TP
technique [2], the multiplexer utilisation has been
formulated as N + 3. This reduction in multiplexer
utilisation in our proposed work reduces the design
complexity of TP multiplier.
Figure 12 shows a graphical representation of

Table 5. This table shows the comparison chart
of implementation results of TP in MB (twin 2009)
and RCMB (proposed twin) with non-TP multiplier.
Figure 12a illustrates the utilisation of multiplexer
(mux) in the implementation of TP for the proposed
and existing method. A drastic decrease in the mux
utilisation is much noticeable for higher bit width, i.e.,
from bit width of 16. Figure 12b,c,d portrays the changes
in area, delay and power.
Cadence RTL compiler with TSMC library 180 nm

is used to synthesized and analyse the cell area, delay
and power. All the evaluation including power con-
sumption is taken after post place and route synthe-
sis of cadence digital flow. For higher bit width of
multiplier, the reduction in area, delay and power are
more noticeable for proposed twin compared with
twin 2009 [2]. TP multiplier usually requires muxes
for selection of partial products, so in Table 5, non-
TP multiplier (TPM) results in less area compared
to twin 2009 [2] and proposed twin. Usually, non-
TP multiplier requires less area because of the
absence of multiplexers, but the TP multiplier pro-
duces double output which is not possible in non-
TP multiplier. Though non-TP multiplier produces
less delay compared with TP multiplier, it cannot
produce N or two N/2 b output at a time. And also
increase in delay for TP is only 15% when com-
pared to non-TP multiplier. While performing N/2
b multiplication in TP multiplier, the unwanted par-
tial products are made to zero and this is the rea-
son for achieving lesser power in TP multiplier
compared to non-TP.
From Table 5, it is inferred that our TP implemen-

tation in RCMB achieves reduction in delay of about
5% to 18%, area of about 5% to 20% and power re-
duction of 8% to 32% due to reduction in mux util-
isation. And the mux utilisation is drastically reduced
up to 40% than the previous method [2]. When N/2
multiplication is performed, i.e., when multiplier per-
forms narrow width operation, a significant reduction
in power is achieved. Most of the partial products
are made zero in N/2 b multiplication, so it leads to
overall power reduction.
From the results in Figure 11, it is inferred that our

implementation gives better performance compared with
the twin 2009 [2] methodology.
In hardware architectures, obtaining reconfigurable

architecture in ASIC is more challenging. Through
TP technique, double throughput is achieved in
signed multipliers. In this study, we have proposed
an optimised twin precision multiplier. To prove the
effectiveness of the proposed multiplier, we have im-
plemented the twin 2009 [2] multiplier and the pro-
posed optimised TP multiplier in the FFT complex
multiplication and analysis were made. Apart from
the effective hardware utilisation, our proposed TP
multiplier yields reduced area, power and delay
compared to the twin 2009 [2] TP multiplier.

(a)

(b)

(c)

(d)
Figure 12 Graphical representation of Table 5. Comparison of existing and proposed TP; (a) bit width vs mux, (b) bit width vs area, (c) bit
width vs delay and (d) bit width vs power.

Asirvatham and Ramachandran EURASIP Journal on Advances in Signal Processing (2015) 2015:18 Page 15 of 18

Table 5 Comparison chart of existing TP multiplier, proposed TP multiplier and non-TP

Non-TPM Twin 2009 [2] Proposed twin

Bit width 8 16 32 64 128 8 16 32 64 128 8 16 32 64 128

Mux - - - - - 11 19 35 67 131 7 11 19 35 67

Area (μm2) (cells) 398 1,385 5,247 19,706 74,390 444 1,603 6,412 25,780 103,320 412 1,458 216,552 90,836

Delay (ps) 359 692.27 1,273.8 2,553.5 5,481.65 394.6 818.5 1,627.4 3,453.8 7,865.3 378.2 7438 1,415.4 2,935.05 6,449

Power (nW) 13,051.8 362,256.4 731,984.4 1,548,441.2 3,478,721.9 12,198 320,581 609,987 1,200,342 2,576,831 11,222 280,212 5,123,891 912,259 1,700,708

A
sirvatham

and
Ram

achandran
EU

RA
SIP

Journalon
A
dvances

in
SignalProcessing

 (2015) 2015:18
Page

16
of

18

Table 6 TP in complex multiplication

Parameter Twin 2009 [2]
multiplier

Proposed TP multiplier
(proposed twin)

Data width 32 32

Area (μm2) 20,186.47 16,956.99

Delay (ps) 5,123 4,252

Power (nW) 1,867,221.23 1,456,432.67

ar

bi

br

ai

+

-

+

-

+

+

ar-ai

br

br-bi

ai

ar+ai

bi

+
+

+
+

br[ar-ai]

ai[br-bi]

bi[ar+ai]

br[ar-ai]+ai[br-bi]

bi[ar+ai]+ai[br-bi]

Real part

Imaginary part

X

X

X

Figure 13 Complex multiplication in FFT.

Asirvatham and Ramachandran EURASIP Journal on Advances in Signal Processing (2015) 2015:18 Page 17 of 18
The complex multiplier in FFT [20] is realised using
four real multipliers, one adder and one subtractor
as per Equation 8 as shown in Figure 13. In VLSI
implementation, the complex multiplier occupies
majority chip area. So according to Equation 9, com-
plex multiplication can be realised by only three
multipliers.

ar þ jaið Þ br þ jbið Þ ¼ ar br−aibið Þ
þ j aibr þ arbið Þ ð8Þ

ar þ jaið Þ br þ jbið Þ ¼ br ar−aið Þ þ ai br−bið Þf g
þ j bi ar þ aið Þ þ ai br−bið Þf g

ð9Þ
First, our analysis is made by replacing three multi-

pliers in the complex multiplication in Figure 13 as TP
multiplier. Second, the experiment was conducted with
a 32-bit TP multiplier. So in a single 32-bit multiplier,
two 16-bit multiplications (N/2 multiplication) or one
32-bit multiplication (N bit multiplication) can be per-
formed. During N bit multiplication, the data width is
32 bit and twiddle factor is also 32 bit whereas in N/2
multiplication, data width is 16 bit and twiddle factor is
16 bit. When the three 32-bit multiplier in Figure 13 is
replaced by TP multiplier as per TP logic, it can
perform one 32-bit multiplication or two 16-bit
multiplications.
While performing N/2 operation since the data

and twiddle factor bit width are 16, the br(ar − ai)
and ai(br − bi) can be performed in one single TP
multiplier and in another multiplier ai(br − bi), and bi(ar
+ ai) is performed and one multiplier can be left free. So
this gives a way to overall power reduction when N/2
multiplication is performed or multiplier is operated
in narrow width. The results are tabulated in Table 6.
All the results are synthesized in cadence RTL com-
piler with TSMC 180 nm library. The inferences from
the results in Table 6 are the percentage of improve-
ment in area is 16%, delay of 17% and power im-
provement of 22%. Our proposed method gives
better performance because it utilises less multi-
plexers compared to the existing TP multiplier.

6 Conclusions
Double throughput in ASIC environment is achieved
effectively by implementing TP technique in RCMB,
and a suitable algorithm is proposed. Our implemen-
tation requires less changes in the partial product
array to acquire TP. Depending upon the multiplica-
tion either N or N/2 bit, selection of appropriate par-
tial products in TP multiplier is done using
multiplexers. Since our implementation utilised less
multiplexers of about (N/2) + 3, the overall delay, area
and power are reduced compared to prior imple-
mentation of TP technique in MB algorithm. Our
proposed TP implementations consume 40% to 50%
(for N = 8 to 128%) of less multiplexers. And our
implementation gives better performance (area, delay
and power) compared to prior implementation of
TP in MB algorithm. To test the efficiency of the
system, our proposed TP multiplier is implemented
in FFT complex multiplication and its results gives
better performance for our approach.

Asirvatham and Ramachandran EURASIP Journal on Advances in Signal Processing (2015) 2015:18 Page 18 of 18
Competing interests
The authors declare that they have no competing interests.

Authors’ information
A. Rosi received her Bachelor of Engineering in Electronics and
Communication and Master of Engineering degree in Applied Electonics
from Anna University, India, in the year 2007 and 2009, respectively. Since
2010, she has been a senior project assistant in the project funded by the
Ministry of Earth Science - India. She is currently pursuing Ph.D in VLSI
Architecture at Anna University, India.
Dr. R. Seshasayanan was born in the year 1958 in India and received his B.E.
degree from the College of Engineering, M.E. degree from Anna University in
the year 1980 and 1983, respectively. He received his Ph.D from Anna
University. He is presently working as an Associate Professor in the Department
of Electronics and Communication, Anna University, and his area of interests are
Low Power VLSI Design and Reconfigurable Architectures for Image processing.
He is actively involved in various projects funded by the Ministry of Earth
Science and Ministry of Defence - India.

Received: 1 March 2014 Accepted: 13 January 2015

References
1. M Själander, H Eriksson, P Larsson-Edefors, An efficient twin- precision

multiplier, in Proc. 22nd IEEE Int. Conf. Comput. Des, 2004, pp. 30–33
2. M Själander, P Larsson-Edefors, Multiplication Acceleration Through Twin

Precision, in IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 17, 9th edn., 2009

3. Differences between FPGA and ASIC. http://www.xilinx.com/fpga/asic.htm.
4. About ASIC and FPGA. http://www.altera.com
5. GH Loh, Exploiting data-width locality to increase superscalar execution

bandwidth, in Proc. 35th Int. Symp. Microarchitecture, 2002, pp. 395–405
6. D Brooks, M Martonosi, Dynamically exploiting narrow width operands to

improve processor power and performance, in Proc. 5th Int. Symp. High
Perform. Comput. Arch, 1999, pp. 13–22

7. S Krithivasan, MJ Schulte, Multiplier Architectures for Media Processing, in
IEEE Conference, 2003

8. S Khan, E Casseau, D Menard, Reconfigurable SWP operator for multimedia
processing, in IEEE International Conference on Application-Specific Systems,
Architectures and Processors, 2009

9. A Danysh, D Tan, Architecture and Implementation of a vector/SIMD
multiply-accumulate unit, in IEEE Transaction on Computers, vol. 54, 2005,
pp. 284–293

10. AD Booth, A signed binary multiplication technique, in Quarterly J.
Mechanical and Applied Math, vol. 4, 1951, pp. 236–240

11. F Lamberti, N Andrikos, E Antelo, P Montuschi, Reducing the Computation
Time in (Short Bit-Width) Two’s Complement Multipliers, in IEEE Transactions
On Computers, vol. 60, 2nd edn., 2011

12. OL MacSorley, High speed arithmetic in binary computers. Proc. Inst. Radio
Eng. 49(1), 67–97 (1961)

13. Z Huang, MD Ercegovac, High-Performance Low-Power Left-to-Right Array
Multiplier Design. IEEE Trans. Comput. 54(3), 272–283 (2005)

14. R Zimmermann, DQ Tran, Optimized Synthesis of Sum-of- Products, in Proc.
Conf. Record of the 37th Asilomar Conf. Signals, Systems and Computers, vol.
1, 2003, pp. 867–872

15. W-C Yeh, C-W Jen, High-speed Booth encoded parallel multiplier design.
IEEE Trans. Comput. 49(7), 692–701 (2000)

16. J Fadavi-Ardekani, M N Booth encoded multiplier generator using optimized
Wallace trees, in IEEE Trans. Very Large Scale Integr. (VLSI) Syst, vol. 1, 2nd
edn., 1993, pp. 120–125

17. H Eriksson, P Larsson-Edefors, M Sheeran, M Själander, D Jo-hansson, M
Schölin, Multiplier reduction tree with logarithmic logic depth and regular
connectivity, in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), 2006, pp. 4–8
18. MD Ercegovac, T Lang, Digital Arithmetic. Morgan Kaufmann
Publishers - An Imprint of Elsevier, 2004

19. JY Kang, JL Gaudiot, A Fast and Well-Structured Multiplier, in Proc. Euromicro
Symp. Digital System Design, 2004, pp. 508–515

20. YS Algnabi, R Teymourzadeh, M Othman and S Islam. FPGA Implementation
of Pipeline Digit-Slicing Multiplier-Less Radix 22 DIF SDF Butterfly for Fast
Fourier Transform Structure, Institute of MicroEngineering and Nanoelectronics
IMEN, VLSI Design Department, Malaysia, in The 5th European conference on
antennas andpropagation (EUCAP2011), pp 4168–4172.
Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

http://www.xilinx.com/fpga/asic.htm
http://www.altera.com

	Abstract
	Introduction
	TP implementation in modified booth
	Implementation of TP in RCMB
	SWP
	Results and discussion
	Conclusions
	Competing interests
	Authors’ information
	References

