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Abstract

Different from conventional phased array, which provides only angle-dependent beampattern, frequency diverse
array (FDA) employs a small frequency increment across the antenna elements and thus results in a range
angle-dependent beampattern. However, due to imperfect electronic devices, it is difficult to ensure accurate
frequency increments, and consequently, the array performance will be degraded by unavoidable frequency
increment errors. In this paper, we investigate the impacts of frequency increment errors on FDA beampattern.
We derive the beampattern errors caused by deterministic frequency increment errors. For stochastic frequency
increment errors, the corresponding upper and lower bounds of FDA beampattern error are derived. They are verified
by numerical results. Furthermore, the statistical characteristics of FDA beampattern with random frequency
increment errors, which obey Gaussian distribution and uniform distribution, are also investigated.

Keywords: Frequency diverse array (FDA); Frequency increment errors; Beampattern error; FDA beampattern;
FDA radar

1 Introduction
Beampattern is widely used to assess the performance of
phased arrays [1]. However, a limitation of phased array
is that the beam steering is fixed at one angle for all
the ranges [2]. Recently, a flexible array called frequency
diverse array (FDA) has been proposed [3-5]. Different
from phased array, a small frequency increment, as com-
pared to the carrier frequency, is applied across the array
elements [6]. This small frequency increment results in a
range angle-dependent beampattern [7,8]. Several inves-
tigations have been carried on FDA radars. The time and
angle periodicity of FDA beampattern was analyzed in [9].
A linear FDA was proposed in [10] for forward-looking
radar ground moving target indication. The multipath
characteristics of FDA radar over a ground plane were
investigated and compared with phased array in [11].
FDA radar full-wave simulation and implementation with
linear frequency-modulated continuous waveform were
presented in [12,13]. In [14], we have investigated the FDA
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Cramér-Rao lower bounds for estimating direction, range,
and velocity. More recent work about the applications of
FDA in MIMO radars can be found in [15-19].

Perfect frequency increments are often assumed in
existing literatures [20]. However, in an actual array
system, there will have imperfect errors including ele-
ment position errors, mutual coupling, phase errors, and
frequency increment errors [21-24]. Some results have
been reported about the impacts of element position
error, mutual coupling and phase error on beampattern,
and direction-of-arrival (DOA) estimation performances.
Since FDA beampattern has similar properties with con-
ventional phased array for the impacts of element position
errors, mutual coupling, and phase errors, this paper con-
siders only the impacts of frequency increment errors on
FDA beampattern. Since FDA beampattern is dependent
on the angle and range, it has a potential for target local-
ization , which is different from traditional time-of-arrival
(TOA) and angle-of-arrival (AOA)-based localization
[25-28]. The contributions can be summarized as follows.
(i) More tighter bounds of FDA beampattern deviation
are derived. (ii) Statistical analysis of FDA beampattern
in terms of expectation value, variance, and probability
density function (PDF) are provided.
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The rest of this paper is organized as follows. Section 2
formulates the data models of FDA radar without and
with frequency increment errors, respectively. Section 3
analyzes the impacts of deterministic frequency incre-
ment errors on FDA beampattern. Thereafter, the impacts
of random frequency increment errors are investigated
in Section 4. Finally, simulation results are provided in
Section 5, and conclusions are drawn in Section 6.

2 FDA beampattern without frequency increment
errors

Suppose an N-element uniform linear FDA with inter-
element spacing denoted as d. The radiated frequency
from the nth element is as follows:

fn = f0 + n�f , n = 0, 1, 2, . . . , N − 1 (1)

where f0 and �f are the carrier frequency and frequency
increment, respectively. Taking the first element as the
reference for the array, under far-field condition, one
might express the direct wave component of the electric
field emitted from the FDA at the observation point (θ , r)
as [17]:

A(θ , r, t) =
N−1∑
n=0

anςn (θ |wn )
ejwn

(
t− r+dn sin θ

c0

)

r
(2)

where N is the number of FDA elements, an represents
the complex excitation coefficient for the nth element,
ςn (θ |wn ) stands for the far-field vector radiation pattern
for the nth element at range r and angular frequency wn =
2π fn, c0 is the light speed, dn is the element position of
the nth element reference relative to the first element, and
t is the time parameter. In accordance with the far-field

assumption, ejwn
(

t− r+dn sin θ
c0

)
/r corresponds to the delayed

carrier with free space loss.
To interpret the effect of frequency diversity within the

scope of an array factor, we should factor the vector ele-
ment pattern out of Equation 2. This can indeed be done
under certain conditions. Assuming all elements in the
FDA are identical, we can eliminate the frequency depen-
dence in the element factor. Since r � dn, we have:

ςn(θ |wn) ≈ ς(θ |w0). (3)
where w0 is the carrier angular frequency. So Equation 2
can be rewritten as:

A(θ , r, t) = ς(θ |w0 )

N−1∑
n=0

an
ejwn

(
t−
(

r+dn sin θ
c0

))

r
. (4)

Further simplification becomes possible by considering
particular FDA arrangements that are simple to handle
and yet able to provide valuable insight. A uniform lin-
ear FDA utilizing discrete, linear frequency increments is
such a practical configuration, and it is examined in this

section as a special case. By definition, the elements are
excited with uniform amplitude, but they are allowed to
have a phase progression across the array. These specifica-
tions translate to the following expressions for dn and an:

dn = nd and an = e−jnφa (5)

where φa stands for the phase progression. Submitting
Equations 1 and 5 into Equation 4 yields:

A(θ , r, t) = ς (θ |w0 )

N−1∑
n=0

e−jnφa ej2π(f0+n�f )
(

t−
(

r+nd sin θ
c0

))

r

= ς (θ |w0 )

r
ejϕ0

N−1∑
n=0

e−jnφa ej2πn�f
(

t−
(

r+nd sin θ
c0

))
−j2π f0 nd sin θ

c0

(6)

where ϕ0 = 2π f0t − 2π f0 r
c0

. For notation convenience, we
define ς̄ = ς (θ |w0 ) ej2π f0t−j2π f0 r

c0 , Equation 6 can then
be rewritten as:

A(θ , r, t) = ς̄

r

N−1∑
n=0

e−jnφa ej2πn
(

t�f − r+nd sin θ
c0

�f −f0 d sin θ
c0

)

(7)

Since ndsinθ � r, Equation 7 can be reformulated as:

A(θ , r, t) ≈ ς̄

r

N−1∑
n=0

e−jnφa ej2πn
(

t�f − r
c0

�f −f0 d sin θ
c0

)

= ς̄

r
wH v(θ , r, t)

(8)

where

w = [ 1 ejφa . . . ej(N−1)φa
]T (9)

and

v(θ , r, t) =
[

1 ej2π
(

t�f − r
c0

�f −f0 d sin θ
c0

)
. . .

ej2π(N−1)
(

t�f − r
c0

�f −f0 d sin θ
c0

) ]T
.

(10)

with [ ·]T and [ ·]H being the transpose operator and
hermitian transpose operator, respectively. For simplicity,
ς̄ = 1 is assumed in the following discussions. Figure 1
shows the ideal linear uniform FDA beampattern with
t = 1/�f .

2.1 FDA beampattern with frequency increment errors
Suppose the frequency increment errors being ρ =
[ 0 ρ1 . . . ρN−1 ], Equation 8 can be rewritten as:

A(θ , r) = wH ṽ(θ , r, t)
r

(11)
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Figure 1 Ideal two-dimension FDA beampattern with N = 16,
�f = 30 KHz, t = 1/(3 × 104), φa = 0, and w = 1N×1.

where

ṽ(θ , r, t) =
[

1 ej2π
(

t(�f +ρ1)− r
c0 (�f +ρ1)−f0 d sin θ

c0

)
. . .

ej2π(N−1)
(

t(�f +ρN−1)− r
c0 (�f +ρN−1)−f0 d sin θ

c0

)]T

=
[

1 ej2π
(

t�f − r
c0

�f −f0 d sin θ
c0

)
ej2π

(
tρ1− r

c0
ρ1
)
. . .

ej2π(N−1)
(

t�f − r
c0

�f −f0 d sin θ
c0

)
ej2π

(
N−1)(tρN−1− r

c0
ρN−1

)]T
.

(12)

Then Equation 11 can be reformulated as:

Ã(θ , r) = wH ṽ(θ , r, t)
r

= wH(v(θ , r, t) � �v(r, t))
r

= wHdiag(�v(r, t))v(θ , r, t)
r

= wH C(r, t)v(θ , r, t)
r

(13)

where

�v(r, t) =
[

1 ej2π
(

tρ− r
c0

ρ
)

. . . ej2π(N−1)
(

tρ− r
c0

ρ
)]T

and

C = diag (�v(r, t))

and � denotes Hadamard product. Note that diag(�v(r, t))
denotes a diagonal matrix with �v(r, t) being its diagonal
elements. For small frequency increment errors, Taylor
series expansion about C is performed as follows:

C(r, t) = I + C+(r, t). (14)

According to Equation 13, it can be known that:

C+(r, t) = diag
(

j2π

(
− (N � ρ)r

c0
+ t(N � ρ)

)

�
(

ej2π
(
− (N�ρ)r

c0
+t(N�ρ)

)))
+ O(ρ)

≈ diag
(

j2π

(
− (N � ρ)r

c0
+ t(N � ρ)

)

�
(

ej2π
(
− (N�ρ)r

c0
+t(N�ρ)

)))
.

(15)

where N =[ 0, 1, 2, . . . , N − 1] denotes element number of
FDA radar, and O(ρ) represents for the high order terms
about ρ, which can be ignored for Equation 15. Using
Equation 15, we can rewrite the beampattern (13) as:

Ã(θ , r, t) = wH C(r, t)v(θ , r, t)
r

= wH v(θ , r, t) + wH C+(r, t)v(θ , r, t)
r

= A(θ , r, t) + wH C+(r, t)v(θ , r, t)
r

= A(θ , r, t) + �A(r, t)

(16)

where �A(r, t) = wH C+(r,t)v(θ ,r,t)
r denotes the FDA beam-

pattern deviation. Figure 2 shows the FDA beampattern
with frequency increment errors. The array parameters
are the same as that for Figure 1. Due to the frequency
increment errors, the FDA beampattern sidelobes are dif-
ferent from Figure 1. Stronger sidelobe peaks will make
the FDA energy scattering and consequently degrade the
array performance.

3 Impacts of deterministic frequency increment
errors

Firstly, we consider uniform frequency increment errors,
i.e., ρ = [0 ρ1 . . . ρN−1] = [0 ρ . . . ρ]. In this case,
Equation 13 can be rewritten as:

Ã(θ , r)= wH diag (�v(r, t)) v(θ , r, t)
r

=
N∑

n=1

ej2π(n−1)
(

t(�f +ρ)− r
c0 (�f +ρ)−f0 d sin θ

c0

)

r

= k
r

sin
(

πN
2

(
t
(
�f + ρ

)− r
c0

(�f + ρ) − f0 d sin θ
c0

))
sin
(

π
t(�f +ρ)− r

c0 (�f +ρ)−f0 d sin θ
c0

2

)

= k
r

sin
(

πN
2

(
�f
(

t+ ρ
�f t
)

− �f
c0

(
r+ ρ

�f r
)

− f0 d sin θ
c0

))

sin
(

π
�f
(

t+ ρ
�f t
)
− �f

c0

(
r+ ρ

�f r
)
−f0 d sin θ

c0
2

)

(17)
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Figure 2 Two-dimension FDA beampattern with frequency increment error ρn and ρn ∼ N(0, ρ2) with ρ = 500.

where k = ejπN
(

t(�f +ρ)− r
c0

(�f +ρ)−f0 d sin θ
c0

)
and w = 1N×1.

Equation 17 arrives the maximum value when:

�f
(

t + ρ

�f
t
)

− �f
c0

(
r + ρ

�f
r
)

−
(

f0
d sin θ

c0

)
= 2m

m = 0, 1, 2, . . . .
(18)

If no frequency increment error exists, the FDA main-
lobe will pass the location

(
0◦, c0

�f

)
at t = 1

�f . However,
when there are frequency increment errors, the location(

0◦, c0
�f

)
may be not at the beampattern maximum point.

According to Equation 18, the corresponding range error
is as follows:

�r = ρ

�f
r. (19)

Since the phase error caused by time error can be equiv-
alently regarded as range error and angle error, Equation
18 can be reformulated as:

�f
(

t + ρ

�f
t
)

− �f
c0

(
r + ρ

�f
r
)

−
(

f0
d sin θ

c0

)

= �ft + ρ

�f
t − �f

c0

(
r + ρ

�f
r
)

−
(

f0
d sin θ

c0

)

= �ft − �f
c0

(
r + ρ

�f
r − ρc0

2�f 2 t
)

− f0
d
c0

(
sin θ − ρc0

2�f f0d
t
)

= 2m, m = 0, 1, 2, . . .
(20)

Therefore, the corresponding range error is as follows:

�r = ρ

�f
r − ρc0

2�f 2 t (21)

and the angle error is as follows:

�θ = arcsin
(

ρc0
2�f f0d

t
)

. (22)

If the range error and angle error are required to be
smaller than 50 m and 0.5◦, respectively, the frequency
increment error should be smaller than 150 Hz.

Figure 3a,b shows the FDA beampattern with uniform
frequency increment errors ρ, frequency increment �f =
30 KHz, and t = 1/�f . It can be noticed that the phase
error for θ = 0.5◦ is ρ/�f = 5 × 10−3. Note that since
the range attenuation exists, the range error has a small
deviation from the calculation of Equation 21.

4 Impacts of stochastic frequency increment
errors

In this section, we investigate the statistical properties
of FDA beampattern with random frequency increment
errors.

4.1 Error boundary of FDA beampattern
Suppose the frequency increment errors are random. In
this case, it is not possible to derive a deterministic beam-
pattern expression like Equation 17. Here, we are inter-
ested in the maximum beampattern deviation, namely:

max
t,r,θ

|�A(t, r, θ)| . (23)

According to Equation 16 and using the Cauchy-
Schwarz inequality, we have:

max
t,r,θ

|�A(θ , r, t)| ≤ 1
r
‖wmaxC+‖2‖v(θ , r)‖2
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Figure 3 FDA beampattern profiles with frequency increment errors.
(a) In angle dimension. (b) In range dimension.

= 1
r
‖wmaxC+‖2

√
N

≤ 1
r
|wmax|‖C+‖2

√
N

= �Amax

(24)

where |·| and ‖·‖2 denote the absolute value and Euclidean
norm, respectively, and wmax denotes the maximum ele-
ment of w. Note that compared with [29], |wmax| ≤
|w|2, the bound expressed in Equation 24 is much tighter.
According to Equation 16, C+ can be rewritten as:

‖C+‖2 =
∥∥∥∥diag

((
j2π

(
− (N � ρ)r

c0
+ t(N � ρ)

))

�
(

ej2π(− (N�ρ)r
c0

+t(N�ρ))
))∥∥∥∥

2

=
∥∥∥∥diag

(
j2π

(
− r

c0
+ t
)

(N � ρ)

)∥∥∥∥
2

= 2π

∣∣∣∣− r
c0

+ t
∣∣∣∣ · ∥∥diag(N � ρ)

∥∥
2.

(25)

The maximum deviation, in a linear scale, is the same over
the whole beampattern. When only C+ (and thus C) is
known, or when the influence of unknown factors on C+,
e.g., aging or temperature, comes into play, it makes sense
to consider as random matrix, with some statistical model
for the entries of C+. We then have to calculate:

max ‖C+‖2 (26)

for the random matrix C+ to find an upper bound.

max ‖C+‖2 = max 2π

(
− r

c0
+ t
)∥∥diag(N � ρ)

∥∥
2

= max 2π

(
− r

c0
+ t
)

‖N � ρ‖2

= 2π

∣∣∣∣− r
c0

+ t
∣∣∣∣ · ‖N‖2 |ρmax| .

(27)

When applying this result to an array with uniform
weighting wmax = 1, Equation 24 leads to:

�Amax = 2π

r

∣∣∣∣− r
c0

+ t
∣∣∣∣ · ‖N‖2 |ρmax|

√
N . (28)

For a constant time t = 1/�f , the time error caused by
frequency increment error will become amplitude error of
FDA beampattern, as shown follows:

�Amax = 2π

r

∣∣∣∣− r
c0

+ 1
�f

∣∣∣∣ · ‖N‖2 |ρmax|
√

N . (29)

It can be noticed from Equation 29 that the errors
caused by time and by range counterbalance the total
beampattern error. Therefore, we delete 1/�f . Then,
Equation 29 can be reformulated as:

�Amax ≤ 2π

r

∣∣∣∣− r
c0

∣∣∣∣ ‖N‖2 |ρmax|
√

N

= 2π

c0
‖N‖2 |ρmax|

√
N .

(30)

Equation 30 gives FDA beampattern error bound which
indicates its worst case. Since it is caused by the frequency
increment errors, the maximum device errors which pro-
duce the FDA frequency increment are regulated by the
bound. This gives guideline about device selections and
predicts the possible FDA beampattern derivation bound.

4.2 Statistical properties of FDA beampattern
In most cases, we know the statistical properties of fre-
quency increment errors and would like to derive the
respective properties of impacted beampattern. In this
subsection, we will give the formulas of expectation value,
variance, and PDF about FDA beampattern based on
different PDFs of the frequency increment errors.
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4.2.1 Expected value
Using Equations 8 and 13, it is straightforward to show
that:

E {�A(θ , r, t)} = E
{

wH C(r, t)v(θ , r, t)
}− wH v(θ , r, t)

= wH E {C(r, t)} v(θ , r, t) − wH v(θ , r, t)
(31)

where E{·} denotes the expected value.
Assume that the frequency increment error ρn of the

nth element satisfies the Gaussian statistical model ρn ∼
N(0, σ 2) and the PDF is as follows:

fn(ρ) = 1√
2πσ

e− ρ2
2σ2 . (32)

Therefore, the expected value of the nth element in
diag(C) can be calculated as [30]:

E {Cnn(r, t)} = E
{

ej2π(n−1)
(

tρ− ρr
c0

)}

= 1√
2πσ

+∞∫
−∞

ej2π(n−1)
(

tρ− ρr
c0

)
e− ρ2

2σ2 dρ

= e−2π2(n−1)2
(

t− r
c0

)2
σ 2

.
(33)

where Cnn denotes the nth element of diag(C). When
applying Equation 33 onto 31, we can get the expected
value of FDA beampattern deviation with Gaussian distri-
bution frequency increment errors as follows:

E {�A(θ , r, t)} = wH E {C(r, t)} v(θ , r, t) − wH v(θ , r, t)
= wH (diag

(
bg
)− I

)
v(θ , r, t)

(34)

where

bg =
[

1, e−2π2
(

t− r
c0

)2
σ 2

, . . . , e−2π2(N−1)2
(

t− r
c0

)2
σ 2
]

.

(35)

and I denotes N ×N unit matrix. In this case, the expected
value of the FDA beampattern deviation is dependent on
the variance of frequency increment errors and is not 0 for
the Gaussian distribution model.

For another case, we assume that ρn is uniform dis-
tribution, i.e., ρn ∼ u(−ρmax, ρmax) with minimum

and maximum values −ρmax and ρmax. We can get the
expected value of nth element in diag(C) as follows:

E {Cnn(r, t)} = E
{

ej2π(n−1)
(

tρ− ρr
c0

)}

=
ρmax∫

−ρmax

ej2π(n−1)
(

t− r
c0

)
ρ 1

2ρmax
dρ

=
sin(2π(n − 1)

(
t − r

c0

)
ρmax)

2π(n − 1)
(

t − r
c0

)
ρmax

.

(36)

By using Equation 36 onto 31, the expected value of
FDA beampattern deviation with uniform distribution
frequency increment error can be reformulated as:

E {�A(θ , r, t)} = wH E {C(r, t)} v(θ , r, t) − wH v(θ , r, t)
= wH (diag (bu) − I

)
v(θ , r, t)

(37)

where

bu =
⎡
⎣1,

sin
(

2π
(

t − r
c0

)
ρmax

)
2π
(

t − r
c0

)
ρmax

, . . . ,

sin
(

2π(N − 1)
(

t − r
c0

)
ρmax

)
2π(N − 1)

(
t − r

c0

)
ρmax

⎤
⎦ .

(38)

Similarly, the expected value of the FDA beampattern
deviation is dependent on the maximum value of fre-
quency increment error and not 0 for the uniform distri-
bution model. From Equations 34 and 37, the expected
values of FDA beampattern have range offset and angle
offset, which is caused by time dependent error on the two
distributions.

4.2.2 Variance
The beampattern deviation variance var {�A(θ , r, t)}
equals to the beampattern variance:

var {�A(θ , r, t)} = var {A(θ , r, t)}
= var

{
wH C(r, t)v(θ , r, t)

}
.

(39)

As we deal with vectors and matrices, we utilize the
covariance matrix cov{·}, and var{·} = cov{·} for any
scalar. We thus have:

var {�A(θ , r, t)} = cov
{

wH C(r, t)v(θ , r, t)
}

(40)

Using the Kronecker product ⊗, the vectorization trans-
formation vec(·) and the identity:

vec {ABC} = CT ⊗ Avec {B} . (41)

Since

wH C(r, t)v(θ , r, t) = vT (θ , r, t) ⊗ wHvec {C(r, t)} (42)
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we use c = vec {C(r, t)} and the vector t(θ , r, t) =
vT (θ , r, t) ⊗ wH , which utilizing:

cov {AX} = Acov {X} AH (43)

to yield:

var {�A(θ , r, t)} = t(θ , r, t)cov {c(r, t)} tH(θ , r, t). (44)

Since C is a diagonal matrix and its entries are indepen-
dent random variables, cov(c) is a diagonal matrix and has
non-zero value with the nNth entry. We then have:

var {�A(θ , r, t)} =
∑

k
tk(θ , r, t)tH

k (θ , r, t)cov{c(r, t)}kk

(45)

where k = (n − 1)N + 1 denotes the kth entry of vec-
tor. So calculating the var {�A(θ , r)} can be equivalently
obtained by calculating cov{c(r)}kk . This again is a very
general result that we can evaluate and review for different
statistical models for cov{c(r)}kk .

cov{c(r, t)}kk =
+∞∫

−∞

[
c(r, t)kk − E(c(r, t)kk)

]2
f (ρ)dρ

=
+∞∫

−∞

[
C(r, t)nn − E(C(r, t)nn)

]2
f (ρ)dρ

(46)

Assume that all the random frequency increment errors
have the same distribution. For the first case, frequency
increment error ρn of the nth element satisfies the Gaus-
sian statistical model ρn ∼ N(0, σ 2). According to the
Equations 13 and 36, 46 can be rewritten as:

cov{c(r, t)}kk =
+∞∫

−∞

[
C(r, t)nn − E(C(θ , r, t)nn)

]

×
[

C(r, t)nn − E(C(r, t)nn)
]∗

f (ρ)dρ

=
+∞∫

−∞

[
C(r, t)nnC(r, t)∗nn − E(C(r, t)nn)C(r, t)∗nn

− C(r, t)nnE(C(r, t)∗nn) +E(C(r, t)nn)E(C(r, t))∗nn
]

f (ρ)dρ

=
+∞∫

−∞
C(r, t)nnC(r, t)∗nnf (ρ)dρ

−
+∞∫

−∞
E(C(r, t))nnC((r, t)∗nn)f (ρ)dρ

−
+∞∫

−∞
C(r, t)nnE(C(r, t))∗nnf (ρ)dρ

+
+∞∫

−∞
E(C(r, t))nnE(C(r, t))∗nnf (ρ)dρ

=
+∞∫

−∞
C(r, t)nnC(r, t)∗nnf (ρ)dρ − E(C(r, t))2

nn

(47)

where [ ·]∗ denotes the conjugate operator. Here, the

E (C(r, t)nn) = e−2π2(n−1)2
(

t− r
c0

)2
σ 2 = E

(
C(r, t)∗nn

)
is uti-

lized. Applying Equation 32, the first term of Equation 47
can be rewritten as:

+∞∫
−∞

C(r, t)nnC(r, t)∗nnf (ρ)dρ = 1√
2πσ

+∞∫
−∞

ej2π(n−1)
(

tρ− ρr
c0

)
e−j2π(n−1)

(
tρ− ρr

c0

)
e− ρ2

2σ2 dρ = 1

(48)

Applying it to Equation 47 yields:

cov{c(r, t)}kk = 1 − E(C(r, t))2
nn

= 1 − e−4π2(n−1)2
(

t− r
c0

)2
σ 2 (49)

where k is the kth element of c(r, t), which is used to
distinguish from n. Consequently, we can get the FDA
beampattern deviation variance:

var {�A(θ , r, t)} =
∑

k
tk(θ , r, t)tH

k (θ , r, t)

×
(

1 − e−4π2(n−1)2
(

t− r
c0

)2
σ 2
)

.
(50)

Similarly, we can get the FDA beampattern variance
with the random frequency increment errors, which are
uniformly distributed as aforementioned:

var {�A(θ , r, t)} =
∑

k
tk(θ , r, t)tH

k (θ , r, t)

×
⎛
⎜⎝1 −

⎛
⎝ sin(2π(n − 1)

(
t − r

c0

)
ρmax)

2π(n − 1)
(

t − r
c0

)
ρmax

⎞
⎠

2⎞⎟⎠.

(51)

Compared with Equations 50 and 51, we can see that
the FDA beampattern variances at both kinds of random
frequency increment error distributions are dependent on
the statistics properties. Given the same frequency incre-
ment errors, the variances will decrease when the number
of elements is increased.

4.2.3 PDF
We have shown how to calculate the expectation value
and the variance of the beampattern deviation and the
beampattern itself. A remained question is: What form
will their respective PDF have? In this subsection, we will
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derive the PDF of beampattern based on the PDF of the
frequency increment errors.

For the first case, we investigate the PDF of beampattern
when the frequency increment errors obey the Gaussian
distribution as aforementioned. According to Equation 13,
we derive the PDF of C. It is known that:

Cnn = e−j2π(n−1)
(

t− r
c0

)
ρ

= cos
(

2π(n − 1)

(
t − r

c0

)
ρ

)

− j sin
(

2π(n − 1)

(
t − r

c0

)
ρ

)
= real(Cnn) − j

(
imag(Cnn)

)
(52)

where real(Cnn) = cos
(

2π(n − 1)
(

t − r
c0

)
ρ
)

and

imag(Cnn) = sin
(

2π(n − 1)
(

t − r
c0

)
ρ
)

denote the real
part and imaginary part of Cnn, respectively. Conse-
quently, we have:

ρ = arcsin(imag(Cnn))

2π(n − 1)
(

t − r
c0

)
= arcsin(gn)

2π(n − 1)
(

t − r
c0

)
= h(gn)

(53)

where gn = imag(Cnn) denotes the imaginary part of Cnn.
As we known that if a variable x has PDF fx(x), the PDF of
y = hg(x) is as follows:

fy(y) = fx[ h(y)]
∣∣h′(y)

∣∣ (54)

where x = h(y) is the inverse function of hg(x), fy(·)
denotes the PDF responding to y, and [ ·]′ denotes the
derivation operation. We have:

fgn(gn) = fρ[ h(gn)]
∣∣h′(gn)

∣∣
= 1√

2πσ
e− h2(gn)

2σ2
∣∣h′(gn)

∣∣ , −1 < gn < 1
(55)

where

h′(gn) = 1

2π(n − 1)
√

1 − g2
n

(
t − r

c0

)
denotes the derivation of h(gn). Utilizing gn, Equation 13
can be rewritten as:

Ã(θ , r, t) = wH C(θ , r, t)v(θ , r, t)
r

=
N∑

n=2

(√
1 − g2

n + jgn

)
vn(θ , r, t)

r
+ v1(θ , r, t)

r

=
N∑

n=2

(√
1 − g2

n + jgn

)
vn + v1

(56)

where vn denotes the nth element of v. Defining vn =
vn(θ ,r,t)

r for notation convenience, we can find

√
1 − g2

2 + jg2 =
(

Ã(θ , r, t)−
N∑

n=3

(√
1 − g2

n + jgn

)
vn−v1

)
/v2.

(57)

Let

a2 = imag
(

Ã(θ , r) −
N∑

n=3

(√
1 − g2

n + jgn
)

vn − v1

)

= imag(Ã(θ , r)) − imag
( N∑

n=3

(√
1 − g2

n + jgn
)

vn − v1

)

and v2 = cosφ + jsinφ, where φ is the phase of v2, utilizing
Equation 57, we can get:

g2 cos ϕ +
√

1 − g22 sin ϕ = a2. (58)

Solving Equation 58, it yields:

g2 = a2 cos ϕ + sin ϕ
√

1 − a22

= ξ2(Ãi)
(59)

where Ãi = imag
(

Ã(θ , r)
)

denotes the imaginary part of
Ã. And we define:

g3 =g3 = ξ3(g3)

. . .

gN =gN = ξN (gN ).
(60)

The joint PDF of the variables above is as follows:

fÃig3...gN
(Ãig3 . . . gN )

= fg1g3...gN

[
ξ2
(

Ãi(θ , r, t)
)

, ξ3(g3), . . . , ξN (gN )
]
|J|

(61)

According to Equations 59 and 60, we can get that:

J =

∣∣∣∣∣∣∣∣∣∣

∂ξ2
∂Ãi

∂ξ2
∂g3

. . .
∂ξ2
∂gN

∂ξ3
∂Ãi

∂ξ3
∂g3

. . .
∂ξ3
∂gN

. . . . . . . . . . . .
∂ξN
∂Ãi

∂ξN
∂g3

. . .
∂ξN
∂gN

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

∂ξ2
∂Ãi

∂ξ2
∂g3

. . .
∂ξ2
∂gN

0 1 . . . 0
. . . . . . . . . . . .

0 0 . . . 1

∣∣∣∣∣∣∣∣
= cosφ − sinφ√

1 − a2
2

(62)

where ∂ξ1
∂Ãi

= cosφ − sinφ√
1−a2

2

. Since the each element of C is

responding to only one frequency increment error which
is random and independent, gn is the independent with
other gm with m = 1, 2, . . . , N − 1 and m �= n. Therefore,
Equation 61 can be rewritten as:

fg2g3...gN

[
ξ2(Ãi(θ , r, t)), ξ3(g3), . . . , ξN (gN )

]
= fg2

[
ξ2(Ãi(θ , r, t))

]
fg3

[
g3
]
. . . fgN

[
gN
] (63)
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Moreover, we can get the PDF of FDA beampattern as:

fÃi
(Ãi) =

1∫
−1

. . .

1∫
−1

fg2g3...gN

[
ξ2(Ãi(θ , r, t)), ξ3(g3), . . . , ξN (gN )

]

×
⎛
⎜⎝cosφ − sinφ√

1 − a2
2

⎞
⎟⎠ dg3 . . . dgN .

(64)

Utilizing the same approach, we can get the PDF of real
part of FDA beampattern. Since the relationship between
real part and imaginary part is complex, so we cannot give
the PDF of the whole FDA beampattern.

Similarly, we can derive the FDA beampattern variance
with the random frequency increment errors, which are
uniformly distributed as aforementioned. The PDF of gn is
as follows:

fgn(gn) = fρ[ h(gn)]
∣∣h′(gn)

∣∣
= 1

2ρmax

1

2π(n − 1)
(

t − r
c0

)√
1 − g2

n

,

− 1 < gn < 1

(65)

and the PDF of FDA beampattern imaginary part is as
follows:

fÃi
(Ãi) =

1∫
−1

. . .

1∫
−1

fg2g3...gN

[
ξ2(Ãi(θ , r, t)), ξ3(g3), . . . , ξN (gN )

]

×
⎛
⎜⎝cosφ − sinφ√

1 − a2
2

⎞
⎟⎠ dg3 . . . dgN .

(66)

5 Simulation results
5.1 Example 1: FDA beampattern bound
Consider a 16-element uniform linear FDA with half of
wavelength λ spacing between neighbor elements. The
center frequency f0 is 10 GHz, and the increment fre-
quency �f is 30 KHz. The target is located at the range
10 km, angle 0◦, and the time is on 1/�f . Figure 4a,b
shows the comparisons of ideal FDA beampattern Bideal,
FDA beampattern upper and lower bound Bbound, and
FDA beampattern with random frequency increment
errors BRandom. In the FDA beampattern with random fre-
quency increment errors, the frequency increment errors
are Gaussian distribution, i.e., ρn ∼ N(0, 902) and the
random FDA beampatterns are based on 50 indepen-
dent Monte Carlo simulation runs. It can be shown that
the present bounds hold for all the simulated beampat-
tern realizations for both Figure 4a,b. Simulations results
show that the bounds are tighter in range dimension than
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Figure 4 Profiles for the ideal, the bounds, and the errors FDA
beampattern. (a) In angle dimension. (b) In range dimension.

that in the angle dimension which is caused by range
counterbalance of the total error in beampattern.

Furthermore, we give two figures about expectation and
variance about FDA beampattern errors caused by fre-
quency increment errors, shown as in Figures 5 and 6,
respectively. Figure 5 compares the expectation value of
theoretical result and empirical result. The theoretical
result is based on the method of Section 4.2.1. The empiri-
cal result is based on the 10,000 independent Monte Carlo
simulation runs. The comparisons show that when the
FDA beampattern errors have smaller value, two results
are close to each other. The variances of theoretical result
and empirical result are shown in Figure 6. Similar with
Figure 5, the theoretical result is based on the method of
Section 4.2.2. The empirical result is based on the 1,000
independent Monte Carlo simulation runs. Different from
the expectation, the empirical result fluctuates around the
theoretical result along with increase of σ .
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Figure 5 The comparison of Gaussian random FDA beampattern error expectation value.

5.2 Example 2: FDA beampattern PDF
Consider a uniform linear FDA with four elements. In
this example, FDA beampattern amplitude error does not
divide into the factor r0, and its value is very large com-
pared with that of Figures 5 and 6. Other array parameters
are the same to that of example 1. Figure 7 shows PDFs
of theoretical and empirical results, and Figure 8 shows
the PDFs of imaginary part of random FDA beampat-
tern with different σ s. It can be known that lower σ

enjoys the smaller beampattern errors, and PDF curves
are centrosymmetric with the center about Ai = 0. One
might use this figure and Equation 64 to specify toler-
ance requirements of frequency increment errors to fulfill
a given beampttern requrement with certain probability.
For instance, if probability of the beampttern errors at the
domain (−0.5 to 0.5) is not smaller than 0.95, the standard
deviations of ρ for every elements of FDA array will be
required to be no larger than 60.
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Figure 6 The comparison of Gaussian random FDA beampattern error variance value.
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6 Conclusions
In this paper, we have investigated the impacts of fre-
quency increment errors on FDA beampattern based on
deterministic errors and random errors. For uniform and
linear deterministic frequency increment errors, the spe-
cific beampattern error formulations are provided, which
gives guideline for device selection. For the stochastic fre-
quency increment errors, we have derived a very tight

worst-case boundary of the FDA beampattern. Simulation
results show that all the random beampatterns are held for
the derived bounds, and the worst-case boundary is help-
ful to the FDA system design. At last, we derived the sta-
tistical properties of the expectation, variance, and PDF.
They can be used to analyze the probability of FDA beam-
pattern fluctuations for the given distribution frequency
increment errors.
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