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Abstract

A new method to smooth the target hybrid state with Gaussian mixture measurement likelihood-integrated track
splitting (GMM-ITS) in the presence of clutter for a high pulse repetition frequency (HPRF) radar is proposed. This
method smooths the target state at fixed lag N and considers all feasible multi-scan target existence sequences in the
temporal window of scans in order to smooth the target hybrid state. The smoothing window can be of any length N.
The proposed method to smooth the target hybrid state at fixed lag is also applied to the enhanced multiple model
(EMM) tracking algorithm. Simulation results indicate that the performance of fixed lag smoothing GMM-ITS
significantly improves false track discrimination and root mean square errors (RMSEs).
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1 Introduction
It is well known that, when a Pulse-Doppler radar oper-
ates in high pulse repetition frequency (HPRF) mode, the
target range information is ambiguous due to the aliasing
range [1]. In the absence of measurement noise, multi-
ple possible target ranges project onto the same range
measurement.
Nagel and Hommel [2] propose the range-gated HPRF

method to resolve range ambiguity; however, because
of the limited number of bursts, the number of range
gates is often not sufficient, especially in a cluttered envi-
ronment with uncertain target detection. The authors
in [3] present a multiple model algorithm to eliminate
the range ambiguity problem in an HPRF radar. These
references estimate the trajectory state without provid-
ing a track quality measure for false track discrimination
(FTD). The Gaussian mixture measurement likelihood-
integrated track splitting algorithm (GMM-ITS) [4] and
the enhanced multiple model algorithm (EMM) (it incor-
porates the track quality measure in a multiple model
algorithm (MM) [3]) are investigated in [5] for single-
target tracking in clutter using an HPRF radar; both algo-
rithms are capable of trajectory estimation and false track
discrimination.
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The application of smoothing is quite effective in the sit-
uation awareness and threat assessment applications. The
past state of the target is updated using all measurement
information received till the current scan. Smoothing pro-
duces a reduction in estimation error and improves the
FTD. The fundamental techniques of smoothing in esti-
mation are provided in [6].
The idea of fixed lag smoothing is proposed in [7]. Later,

its application in target tracking is considered in differ-
ent ways. [8] consider the multi-scan data association for
tracking a target and applies fixed lag smoothing; however,
it does not consider the track quality measure. [9] applies
the RTS to the MHT algorithm, but it also ignores the
track quality measure. Chakravorty and Challa [10] pro-
pose augmented state integrated probabilistic data asso-
ciation (ASIPDA). In ASIPDA, however, the smoothing
probability of target existence uses the smoothing innova-
tion obtained only in the current scan. In sIPDA [11], the
authors use the Fraser-Potter [12] approach for smooth-
ing with IPDA. Another extension of smoothing considers
track splitting for single-target smoothing [13].
This paper presents a new method to smooth the target

hybrid state at fixed lagN. It applies the proposed smooth-
ing algorithm on both GMM-ITS and EMM algorithms to
obtain the smoothing benefits for an HPRF radar. In this
technique, a relatively small window of scans is defined
in each smoothing interval. The target trajectory state
and target existence state are smoothed at fixed lag N in
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the smoothing interval. This technique considers all feasi-
ble multi-scan target existence events and smoothed state
estimates (using the augmented state GMM-ITS update)
calculated at all intermediate scans in the smoothing inter-
val in order to smooth the target hybrid state at fixed lag
N.
The fixed lag smoothing-based tracking algorithms pro-

posed in this work also provide a significant improvement
over existing online algorithms in terms of false track
discrimination and root mean square errors (RMSEs).
This paper is organized as follows. The basic models

used are discussed in Section 2, while in Section 3 an
overview of GMM-ITS and EMM algorithms is provided.
The GMM-ITS algorithm for the augmented target state is
extended in Section 4. The fixed lag smoothing GMM-ITS
(FLs GMM-ITS) algorithm is proposed next in Section 5.
The simulation results are presented in Section 7, followed
by concluding remarks in Section 8.

2 Mathematical model
This section introduces the models used for target motion
and sensor. The fundamental nomenclature used in this
paper is provided in Table 1.

2.1 Target model
The existence of the target in any scan k is a random event
and is denoted by χk . The target propagates following the
Markov Chain One model [14]. The probability that the
target exists between scan k − 1 and scan k is given by

p11 ≡ P{χk|χk−1} ≈ 1 − �Tk−1,k
Tave

(1)

where �Tk−1,k denotes the time interval between scan
k − 1 and scan k and Tave � �Tk−1,k is the average
duration of target existence [15]. The target existence χk
and the target non-existence χ̄k are mutually exclusive
and exhaustive events. If the target does not exist in any

scan, then the probability that it will continue its state of
non-existence in the subsequent scans is

P{χk|χk−1} = 0 (2)

The trajectory of the target is modeled as

xk = Fk−1xk−1 + vk−1, (3)

where vk−1 is the plant noise with zero mean and known
covariance Qk−1. Fk−1 denotes the state propagation
matrix and is assumed to be known. These matrices are as
follows:

Fk−1 =
[

I2 TI2
02,2 I2

]
, (4)

and

Qk−1 = q

⎡
⎢⎢⎢⎣

T4

4
I2

T3

2
I2

T3

2
I2 T2I2

⎤
⎥⎥⎥⎦ , (5)

where the scalar q denotes the root mean square of the
acceleration plant noise and T is the sampling time.

2.2 Measurement model
At each scan k, the sensor returns a set of measurements
Zk . Let Zk,i denote the i-th measurement in Zk . The ori-
gin of each measurement is unknown (target detection
or clutter). Each measurement Zk,i at time k consists of
azimuth θk,i, range rk,i, and Doppler velocity dk,i. After
decorrelation between the range and Doppler of each
measurement [16], every measurement becomes Zk,i

Zk,i = [
θk,i rk,i wk,i

]T . (6)

2.2.1 Targetmeasurement
Due to the ambiguous range, GMM-ITS regenerates a
set of Gaussian measurement components to update the
track. Measurement componentsGk,i with respect to each

Table 1 Fundamental nomenclature used in the proposed work

Zk Cumulative set of measurements from the sensor from the initial scan to scan k

Zk Measurement set at scan k from the sensor

Zk,i i-th measurement of Zk

zk,i i-th validated measurement from Zk

ygk,i g-th measurement component of Zk,i

yg,pk,i Position component of ygk,i
yg,wk,i Decorrelated Doppler component of ygk,i
y
g,ckτ −1
k,i g-th measurement component of Zk,i selected by the track component ckτ −1

c̄k Newly formed track component at scan k

ck−1 Track component at previous scan k − 1

ξ c̄k
k

Probability of track component c̄k

ξ
ck−1
k−1 Probability of track component ck−1
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measurement Zk,i are created, and each Gaussian com-
ponent is defined by its mean ygk,i, covariance Rg

k,i, and
relative weight γ

g
k,i [5].

The measurement is the function of trajectory state and
sensor noise and is equal to

ygk,i =
[

θ
g
k,i r

g
k,i w

g
k,i

]T
= h (xk) + εk =

⎡
⎣ hθ (xk)

hr (xk)
hw (xk)

⎤
⎦+

⎡
⎣ εθ

k
εrk
εwk

⎤
⎦ ,

(7)

where εθ
k , ε

r
k , and εwk , respectively, denote the zero-

mean white Gaussian measurement noise with respect to
azimuth, range, and decorrelated Doppler measurement.
hθ
k , h

r
k , and hwk are the target azimuth, range, and decorre-

lated Doppler measurement functions, respectively, along
with the range and decorrelated Doppler JacobiansHr(xk)
and Hw(xk) [16]

Hr (xk) = ∂hr (xk)
∂xk

=
[
ik
0

]T
(8)

with

ik = �xpk∥∥�xpk
∥∥ , (9)

where ‖x‖ denotes the norm of x. �xpk denotes the posi-
tion vector relative to sensor.

Hw (xk) = ∂hw (xk)
∂xk

= Hd (xk) − AHr (xk) , (10)

with

A = ησd
σr

, hr (xk) = ∥∥�xpk
∥∥, hd (xk) = −iTk �xvk ,

(11)

where �xvk denotes the velocity vector relative to the
sensor,

hw (xk) = hd (xk) − Ahr (xk), (12)

Hd (xk) = ∂hd (xk)
∂xk

= −
⎡
⎢⎣ �xvk + hd (xk) ik∥∥�xpk

∥∥
ik

⎤
⎥⎦ . (13)

2.2.2 Clutter measurement
At each scan k, the number of clutter measurements fol-
lows the Poisson distribution. The intensity of the Poisson
process at each surveillance space point Zk,i is termed as
clutter measurement density and is denoted as ρ(Zk,i)

ρ
(
Zk,i

) = ρp (θk,i, rk,i) ρd (dk,i) , (14)

where ρp denotes the clutter measurement position den-
sity and ρd is the Doppler component density of clutter
measurement [5].
The polar measurement is transformed into Cartesian

position measurement as [17]

ygk,i =
[
yg,pk,i wg

k,i

]T
, (15)

where yg,pk,i is the position component of measurement
ygk,i and wg

k,i is the decorrelated Doppler component of
measurement ygk,i.

3 An overview on GMM-ITS algorithm and EMM
algorithm

This section presents a brief description about the GMM-
ITS algorithm and the EMM tracking algorithm.

3.1 Gaussian mixture measurement ITS
The GMM-ITS algorithm is first introduced in [4], later it
is applied to the problem of single-target tracking in clut-
ter using an HPRF radar [5, 18]. In GMM-ITS algorithm,
the non-linear (non-Gaussian) measurement likelihood
is approximated by a Gaussian mixture of measurement
components, which corresponds to the ambiguous mea-
surement components due to the aliasing target range in
the application of an HPRF radar.

3.1.1 GMMmodel for an HPRF radar
As presented in Section 2.2.1, each measurement Zk,i
received from the HPRF radar regenerates Gk,i Gaussian
measurement components defined by mean ygk,i, covari-
ance Rg

k,i, and relative weight γ
g
k,i. Thus, the conditional

likelihood of the measurement Zk,i is approximated by a
Gaussian mixture of Gk,i measurement components.

p(Zk,i|xk) ≈
Gk,i∑
g=1

γ
g
k,i p

(
ygk,i|xk

)
, (16)

where

p
(
ygk,i|xk

)
= N

(
ygk,i; h(xk),R

g
k,i

)
. (17)

3.1.2 GMMmodel integration with ITS algorithm
Once the GMM model for HPRF radar is formed, the
GMM-ITS algorithm absorbs the integrated track split-
ting (ITS) to proceed subsequent tracking procedure. The
ITS [15] algorithm is a multi-scan tracking algorithm,
which updates the target trajectory state and the tar-
get existence state at each scan k using multi-scan data
association. The GMM-ITS algorithm uses ITS for data
association to obtain the improvement in the performance
of tracker in clutter using an HPRF radar [5].
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3.2 Extendedmultiple model (EMM)
The multiple model (MM) tracking algorithm for an
HPRF radar is proposed in [3], where each model pro-
ceeds in the probabilistic data association (PDA) [19]
sense independently. The MM tracking algorithm is mod-
ified by incorporating the probability of target existence
update to develop enhancedmultiplemodel (EMM) track-
ing algorithm [5].

4 Augmented state GMM-ITS
This section presents one complete recursion cycle for
augmented state GMM-ITS (ASGMM-ITS). At each scan,
the augmented state is smoothed, and the results are later
used in Section 5.1 to determine the smoothed target state
at a fixed lag of N using the proposed method.
The GMM-ITS algorithm [4] details are omitted, and

only its application to the augmented state is discussed
in order to minimize the complexity at this stage. Let
kτ = k − N + r, (0 ≤ r ≤ N) be the variable to address
each scan in the smoothing interval. Each measurement
in each scan not selected by the already established track
initializes a new track [5].
At scan k − N , the track state is initialized as

p
(
xk−N |χk−N ,Zk−N

)
= N

(
xk−N ; x̂k−N |k−N ,Pk−N |k−N

)
.

(18)

where
[
x̂k−N |k−N ,Pk−N |k−N

]
is the filtered target trajec-

tory state and its error covariance matrix updated at scan
k −N . The track trajectory state is approximated by a sin-
gle Gaussian component ck−N at initialization. Here, the
probability of the component ck−N is ξ

ck−N
k−N = 1.

4.1 State augmentation
At scan kτ = k − N (r = 0) in the smoothing interval, the
track trajectory state and its associated error covariance
matrix X̂AS

k−N |k−N and PAS
k−N |k−N are augmented, respec-

tively, as

X̂AS
k−N |k−N = [

x̂k−N |k−N x̂k−N−1|k−N . . . x̂k−2N |k−N
]T
(19)

and

PAS
k−N |k−N =

⎡
⎢⎢⎢⎣
Pk−N |k−N − − −

− Pk−N−1|k−N − −
− − . . . −
− − − Pk−2N |k−N

⎤
⎥⎥⎥⎦ .

(20)

The superscript AS stands for augmented state, where the
(−) sign on the right hand side of (20) corresponds to
cross covariance terms of state elements of the augmented
state, not detailed here for reasons of clarity. The aug-
mented state propagation matrix is

FAS =

⎡
⎢⎢⎢⎣
Fk−1 0n,n · · · 0n,n
In 0n,n · · · 0n,n
. . . . . . · · · . . .
0n,n · · · In 0n,n

⎤
⎥⎥⎥⎦ . (21)

The augmented plant noise covariance matrix is

QAS =

⎡
⎢⎢⎢⎣
Qk−1 0n,n · · · 0n,n
0n,n 0n,n · · · 0n,n
. . . . . . · · · . . .
0n,n · · · 0n,n 0n,n

⎤
⎥⎥⎥⎦ . (22)

The augmented measurement matrix with respect to the
position component of measurement becomes

HAS,p = [
Hp

k 0m,n×(N)

]
, (23)

where

Hp
k =

[
1 0 0 0
0 1 0 0

]
. (24)

The linearized augmented measurement coefficient
matrix with respect to the Doppler component of measu-
rement becomes

HAS,w = [
Hw(xk) 01,n×(N) s

]
, (25)

where In is an n-dimensional identity matrix, and 0n,n
and 0m,n are matrices of zeros, where n is the order of
the target state vector, and m is the order of the posi-
tion measurement vector. Termswk−1, vk , Fk−1, andQk−1
are defined in Section 2.1. The order of matrices FAS and
QAS is ((N + 1).n × (N + 1).n), while HAS,p has dimen-
sions of (m × (N + 1).n), and HAS,w has dimensions of
(1 × (N + 1).n).

4.2 State prediction
At any scan kτ = k − N + r, (1 ≤ r ≤ N) inside the
smoothing interval, the predicted augmented state condi-
tioned on the component ckτ −1 is obtained by standard
Kalman filter

[
X̂AS,ckτ −1
kτ |kτ −1 ,P

AS,ckτ −1
kτ |kτ −1

]
= KFP

(
X̂AS,ckτ −1
kτ −1|kτ −1,P

AS,ckτ −1
kτ −1|kτ −1,F

AS,QAS
)
,

(26)

where KFP represents the standard Kalman filter pre-
diction. The probability density function (PDF) for the
predicted augmented state and error covariance at scan kτ

is

p
(
XAS
kτ

|ckτ −1,χkτ
,Zkτ −1

)
= N

(
XAS
kτ
; X̂AS,ckτ −1

kτ |kτ −1 ,P
AS,ckτ −1
kτ |kτ −1

)
.

(27)
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4.3 Measurement selection and likelihood calculation
To reduce the computational requirements, a subset
of validated measurements from all the measurements
received by the sensor is selected at each scan kτ in the
smoothing interval. A gating procedure[20] is used to
select the validated measurements for each measurement
component g corresponding to each track component
ckτ −1. A gating test (28) is applied to the position compo-
nent (yg,pkτ ,i) of each measurement received at each scan in
the smoothing interval.
To simplify the notations in the rest of the paper, denote

sp = {
AS, g, ckτ −1, p

}
.

(
yg,pkτ ,i − ŷckτ −1,p

kτ |kτ −1

)T(
Sspkτ ,i

)−1(
yg,pkτ ,i − ŷckτ −1,p

kτ |kτ −1

)
≤κ .

(28)

where

ŷckτ −1,p
kτ |kτ −1 = HAS,pX̂AS,ckτ −1

kτ |kτ −1 (29)

and

Ss
p
kτ ,i = HAS,pPAS,ckτ −1

kτ |kτ −1

(
HAS,p

)T + Rg,p
kτ ,i , (30)

where κ is the selection threshold. In simulated two-
dimensional surveillance, κ is selected as 13.3, which
corresponds to the gating probability Pg = 0.99. Each
i-th validated measurement is represented by zkτ ,i and
hasGs

kτ ,i validated components. Hereafter, the parameters(
ygkτ ,i,R

g
kτ ,i, γ

g
kτ ,i,G

g
kτ ,i

)
are attributed to the selected mea-

surement zkτ ,i. At any scan kτ in the smoothing interval,
the measurement likelihood of the selected measurement
zkτ ,i becomes

pkτ ,i = p
(
zkτ ,i|Zkτ −1

)
=

Gs
kτ∑

g=1
γ
g
kτ
pgkτ ,i , (31)

where pgkτ ,i is the likelihood of measurement component
ygkτ ,i

pgkτ ,i = p
(
ygkτ ,i|Zkτ −1

)
=

∑
ckτ −1

ξ
ckτ −1
kτ −1 pg,ckτ −1

kτ ,i , (32)

where pg,ckτ −1
kτ ,i is the likelihood of measurement compo-

nent ygkτ ,i with respect to track component ckτ −1

pg,ckτ −1
kτ ,i =

⎧⎪⎨
⎪⎩
pg,ckτ −1,p
kτ ,i pg,ckτ −1,w

kτ ,i ; yg,ckτ −1
kτ ,i ∈ Yckτ −1

kτ ,i

0 ; yg,ckτ −1
kτ ,i /∈ Yckτ −1

kτ ,i

, (33)

where Yckτ −1
kτ ,i =

{
yg,ckτ −1
kτ ,i

}
g=1:Gs

kτ ,i
, pg,ckτ −1,p

kτ ,i is the like-

lihood of the position component of measurement ygkτ ,i,
and pg,ckτ −1,w

kτ ,i is the likelihood of the Doppler component
conditioned on the position component of measurement

pg,ckτ −1,p
kτ ,i = 1

Pg
N
(
y
g,ckτ−1
kτ ,i ; ŷ

ckτ−1 ,p
kτ |kτ−1

, Sspkτ ,i

)
, (34)

where Sspkτ ,i is as defined in (30).
The augmented track component is updated by the

measurement position component using standard Kalman
filter update represented by KFU

[
X̂sp
kτ |kτ ,i ,P

sp
kτ |kτ ,i

]
= KFU

(
yg,pkτ ,i ,R

g,p
kτ ,i, X̂

AS,ckτ −1
kτ |kτ −1 ,PAS,ckτ −1

kτ |kτ −1 ,H
AS,p

)
.

(35)

The likelihood of the decorrelated Doppler component
conditioned on the position component of measurement
ygkτ ,i is calculated in (36). A transformation is applied

to augmented state X̂sp
kτ |kτ ,i using transformation matrix

T ι to provide only the filtered state x̂g,ckτ −1,p
kτ |kτ ,i (the pre-

dicted Doppler mean at current scan k requires only the
filtered state in (8–13)) for the calculation of Doppler
likelihood of the i-th measurement at current scan k. To
simplify the notation in the rest of the paper, denote sw ={
AS, g, ckτ −1,w

}
.

pg,ckτ −1,w
kτ ,i =N

(
wg
kτ ,i; ŵ

g
kτ ,i, S

sw
kτ ,i

)
, (36)

where

ŵg
kτ ,i = hw

(
T ιX̂sp

kτ |kτ ,i

)
(37)

T ι = [
In 0n,n×(N)

]
(38)

and

Sswkτ ,i = Hsw
kτ ,iP

sp
kτ |kτ ,i

(
Hsw

kτ ,i

)T + σ 2
w, (39)

where

Hsw
kτ ,i = HAS,w

(
X̂sp
kτ |kτ ,i

)
. (40)

4.4 State update
The decorrelated Doppler measurement component wg

kτ ,i
is used to update the track using standard extended
Kalman filter EKFU[

X̂AS,g,ckτ −1
kτ |kτ ,i PAS,g,ckτ −1

kτ |kτ ,i

]
= EKFU

(
wg
kτ ,i , σ

2
w, X̂

sp
kτ |kτ ,i,P

sp
kτ |kτ ,i, ŵ

g
kτ ,i,H

AS,w
)
.

(41)

At current scan kτ , a new track component is formed
c−kτ

: {i, g, ckτ −1}. Then, the a posteriori augmented track
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trajectory state PDF at scan kτ is a mixture of augmented
track trajectory state estimates with respect to each new
component. The Gaussian PDF of each augmented trajec-
tory state with respect to each new track component c̄kτ

is

p
(
XAS
kτ

|c̄kτ
,χkτ

,Zkτ

)
= N

(
X̂AS
kτ
; X̂AS,c̄kτ

kτ |kτ
,PAS,c̄kτ

kτ |kτ

)
,

(42)

where

[
X̂AS,c̄kτ
kτ |kτ

PAS,c̄kτ
kτ |kτ

]
=
⎧⎨
⎩

[
X̂AS,ckτ −1
kτ |kτ −1 PAS,ckτ −1

kτ |kτ −1

]
; i = 0[

X̂AS,g,ckτ −1
kτ |kτ ,i PAS,g,ckτ −1

kτ |kτ ,i

]
; i > 0

.

(43)

The fixed lag smoothed trajectory state in Section 5
requires the Gaussian sum of all the track components
to obtain the augmented track state at scan kτ in the
smoothing window using (44) and (45).

X̂AS
kτ

=
∑
c̄kτ

ξ
c̄kτ
kτ X̂AS,c̄kτ

kτ |kτ
, (44)

PAS
kτ

=
∑
c̄kτ

ξ
c̄kτ
kτ

⎧⎨
⎩
PAS,g,c̄kτ
kτ |kτ

+
[
X̂AS,c̄kτ
kτ |kτ

− X̂AS
kτ

]
[
X̂AS,c̄kτ
kτ |kτ

− X̂AS
kτ

]T
⎫⎬
⎭. (45)

The component probability c̄kτ
is updated as

ξ
c̄kτ
kτ = ξ

ckτ −1
kτ −1

�kτ

⎧⎪⎨
⎪⎩

1 − PdPg ; i = 0
PdPg
ρkτ ,i

γ
g
kτ ,i p

g,ckτ −1
kτ ,i ; i > 0

. (46)

The likelihood ratio at scan kτ is defined as

�kτ
= 1 − PdPg + PdPg

mkτ∑
i=1

pkτ ,i
ρkτ ,i

. (47)

The track augmented trajectory state X̂AS
kτ

and its aug-
mented error covariance matrix PAS

kτ
provide filtered and

smoothed trajectory states
{
ˆxkτ |kτ

, ˆxkτ −1|kτ
, . . . , ˆxkτ

−
N |kτ } and their corresponding error covariance matrices{
Pkτ |kτ

,Pkτ −1|kτ
, . . . ,Pkτ −N |kτ

}
at scan kτ in the smooth-

ing interval.
The target existence state at scan kτ updates as [15]

P
{
χkτ

|Zkτ

}
= �kτ

1−P
{
χkτ

|Zkτ −1
}

+ �kτ
P
{
χkτ

|Zkτ−1
}P{χkτ

|Zkτ−1
}
.

(48)

5 Fixed lag smoothing GMM-ITS
The fixed lag smoothing GMM-ITS (FLs GMM-ITS)
algorithm for any size of smoothing lag N is proposed.

The fixed lag smoothing IPDA (FLs-IPDA) [21] uses a
single-scan data association in the smoothing interval. It
considers only two scans in the smoothing interval and
does not provide any generalization to smooth the target
state at any size of fixed lag.
In the FLs GMM-ITS algorithm, the concept of fixed

lag smoothing is extended for a more general case of
smoothing for any size of lag N, and it utilizes the benefits
of multi-scan data association. The results of the aug-
mented state GMM-ITS algorithm derived in Section 4
are used in the smoothing interval. The smoothed state with
respect to scan k − N , obtained in (44) and (45), at each
scan is weighted by the probabilistic weights calculated using
multi-scan target existence events. In Sections 5.1 and 5.2, the
FLs GMM-ITS algorithm updates the target trajectory state
p
(
xk−N |χk−N ,Zk

)
and target existence state P

{
χk−N |Zk

}
in

the smoothing interval.
In the next smoothing interval, the target state with respect

to scan k−N is ignored (as it was updated in the last smoothing
interval), and a future scan k + 1 is added in the smoothing
interval to smooth the track state at scan k − N + 1.
In the smoothing interval, there areN+1 feasible multi-scan

target existence events.
The conditions for feasiblemulti-scan target existence events

are:

(1) Target exists at all scans kτ in the smoothing interval,
where 1 ≤ r ≤ N .
(2) Non-existence of target at any scan kτ implies target
non-existence at all following scans.
(3) Target does not exist at any scan kτ in the smoothing
interval.

These conditions considers N + 1 feasible multi-scan target
existence events in the smoothing interval. The number of fea-
sible multi-scan target existence events increases in a linear
manner with the increase in smoothing lag. The next sections
present the formulas for smoothed hybrid target state for any
fixed lag N.

5.1 Smoothed target trajectory state at fixed lag N
The target trajectory state is composed of position and veloc-
ity components. The information of N future scans are used
to smooth the target trajectory state at scan k − N . The fea-
sible multi-scan target existence events are used to weight
the smoothed target state estimates received at each scan in
the interval. The smoothed state estimates are obtained by
augmented trajectory state update (44) and augmented state
error covariance matrix update (45) at each scan kτ in the
interval.
At the last scan k (r = N) in any smoothing interval, the fixed

lag smoothed trajectory state estimate is weighted Gaussian
sum of smoothed trajectory state estimates (from Section 4)
obtained at each scan kτ . These weights are calculated using
feasible multi-scan target existence events calculated based on
the above conditions. The smoothed target trajectory state
estimate at fixed lag k − N is
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p
(
xk−N |χk−N ,Zk

)
=

p
(
xk−N |χk ,Zk

)
P
{
χk |χk−N ,Zk

}
+

p
(
xk−N |χ̄k ,χk−1,Zk

)
P
{
χ̄k ,χk−1|χk−N ,Zk

}
+ . . .

. . . + p
(
xk−N |χ̄k−N+2,χk−N+1,χk−N ,Zk

)
P
{
χ̄k−N+2,χk−N+1|χk−N ,Zk

}
+

p
(
xk−N |χ̄k−N+1,χk−N ,Zk

)
P
{
χ̄k−N+1|χk−N ,Zk

}
.

(49)

In general, (49) becomes

p
(
xk−N |χk−N ,Zk

)
=

N+1∑
s=1

p
(
xk−N |χk−s+1,Zk−s+1

)
ϒ(s).

(50)
The first term in the summation on the right-hand side is the

smoothed trajectory state estimate ˆxk−N |kτ
at each scan in the

smoothing interval kτ =[ k−N , k−N+1, . . . , k] in Section 4
using (44) and (45). ϒ(s) are the probabilistic weights cal-
culated using the multi-scan target existence events in the
smoothing interval.
To maintain the clarity, the index variable s is used to address

each scan in the interval, 1 ≤ s ≤ N + 1. The factor ϒ(s) is

ϒ(s) =
⎧⎨
⎩

P
{
χk |χk−N ,Zk

}
P
{
χ̄k−s+2,χk−s+1|χk−N ,Zk

} s = 1
s > 1 ,

(51)
where

P
{
χ̄k−s+2,χk−s+1|χk−N ,Zk

}
= P

{
χk−s+1|χk−N ,Zk

}
P
{
χk−s+2|χk−N ,Zk

}
.

(52)

The weighting factor ϒ(s) satisfies

N+1∑
s=1

ϒ (s) = 1. (53)

The term in (51) for s = 1 is

P
{
χk |χk−N ,Zk

}
=

p
(
Zk |χk ,Zk−1

)
. . . p

(
Zk−N+1|χk−N+1,Zk−N

)
p
(
Zk ,Zk−1 . . .Zk−N+1|χk−N ,Zk−N

)
P
{
χk |χk−N

}
(54)

for 1 < s ≤ N ,

ϒ (s) = P
{
χ̄k−s+2,χk−s+1|χk−N ,Zk

}

=
p
(
Zk , . . .Zk−N+1|χ̄k−s+2,χk−s+1,χk−N ,Zk−N

)
p
(
Zk ,Zk−1 . . .Zk−N+1|χk−N ,Zk−N

)
P
{
χ̄k−s+2,χk−s+1|χk−N ,Zk−N

}
.

(55)

The term in the numerator becomes

p
(
Zk , . . .Zk−N+1|χ̄k−s+2,χk−s+1,χk−N ,Zk−N

)
= p

(
Zk . . .Zk−s+2|χ̄k−s+2,χk−s+1,χk−N ,Zk−s+1

)
p
(
Zk−s+1 . . .Zk−N+1|χ̄k−s+2,χk−s+1,χk−N ,Zk−N

)
.

(56)

The first joint likelihood term on the right hand side implies
that all measurements belong to the clutter; thus, it does not
correct the track estimate. The second joint likelihood term
contributes in the track update and becomes

p
(
Zk−s+1 . . .Zk−N+1|χ̄k−s+2,χk−s+1,χk−N ,Zk−N

)
= p

(
Zk−s+1 . . .Zk−N+1|χk−s+1,Zk−N

)
= p

(
Zk−s+1|χk−s+1,Zk−s

)
. . .p

(
Zk−N+1|χk−N+1,Zk−N

)
,

(57)

and for s = N + 1,

ϒ (s) = P
{
χ̄k−N+1|χk−N ,Zk

}
= 1 − P

{
χk−N+1|χk−N ,Zk

}
.

(58)

Each likelihood term in (54), (57), and (58) is calculated as

p
(
Zk−s+1|χk−s+1,Zk−s

)
=pρ,k−s+1μF

(
mk−s+1

)
�k−s+1,

(59)

where pρ,k−s+1 is the likelihood that a measurement belongs
to clutter, and μF

(
mk−s+1

)
is the Poisson distribution function

for the clutter measurements. �k−s+1 is calculated using (47)
by replacing kτ with k − s + 1.
The denominator term p

(
Zk ,Zk−1 . . .Zk−N+1|χk−N ,Zk−N

)
is the normalizing factor. The weighting factor ϒ(s) in (50) for
any s in the smoothing interval is defined as

ϒ(s) = Num(�)�(s)
Den(�)

1 ≤ s ≤ N (60)

ϒ(s) = 1 − p11
Den(�)

s = N + 1.

The factors Num(�) and Den(�) are defined as

Num(�) =
N−1∏
n=s−1

�k−n (61)

Den(�) = 1 − p11 +
N∑
s=1

[ N−1∏
n=s−1

�k−n

]
�(s). (62)

where

�(s) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

pN11 ; s = 1

pN−s+1
11 − pN−s+2

11 ; 1 < s ≤ N
, (63)

and p11 is the state transition probability.

5.2 Smoothed target existence state at fixed lag N
All feasibleN+1 multi-scan target existence events (Section 5)
in the smoothing interval are calculated to determine the
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smoothed target existence state at fixed lag N. The target exis-
tence at fixed lag N is the result of total probability theorem
and assumes all above events in the multi-scan event space

P
{
χk−N |Zk

}
= P

{
χk |Zk

}
+ P

{
χ̄k ,χk−1|Zk

}
+ . . .

. . . + P
{
χ̄k−N+2,χk−N+1|Zk

}
+P

{
χ̄k−N+1,χk−N |Zk

}
.

(64)
Compared to (64), in (51), themulti-scan target existence prob-
abilities are conditioned on the target existence event χk−N , as
target trajectory state for non-existence event does not mean
anything.
At the start of recursion at scan k−N , the known target exis-

tence probability is P{χk−N |Zk−N }. Equation (64) is expanded
following the similar procedure that is used to obtain the ϒ(s)
in (51), to propose a procedure to obtain the smoothed target
existence state at any scan kτ = k − N + r in the smoothing
interval for 0 ≤ r ≤ N :
1) if r = 0 (fixed lag of N −→ k − N),

P{χkτ
|Zk}=

(1−p11)P
{
χk−N |Zk−N

}
+
[
N−r∑
s=1

[
N−1∏
n=s−1

�k−n

]
�kτ

(s)
]

Den
(
�kτ

)
(65)

2) if 1 ≤ r ≤ N (intermediate scans),

P{χkτ
|Zk} =

N−r+1∑
s=1

Num(s)�kτ
(s)

Den
(
�kτ

) , (66)

where

Num(s) =
N−1∏
n=s−1

�k−n (67)

Den
(
�kτ

)=1−
(
p11.P

{
Xk−N |Zk−N

})
+
[

N∑
s=1

[
N−1∏
n=s−1

�k−n

]
�kτ

(s)
]

(68)
and

�kτ
(s) =

⎧⎪⎪⎨
⎪⎪⎩
P
{
χk |Zk−N

}
; s = 1

P
{
χk−s+1|Zk−N

}
−P

{
χk−s+2|Zk−N

}
; s > 1

,

(69)
where �k−n is calculated using (47) by replacing kτ with k −
n. In the next smoothing interval, the recursion starts at scan
k − N + 1 with target existence probability P{χk−N+1|k−N+1}
calculated by (48) by replacing kτ with k − N + 1. The target
existence state is then smoothed using (65) and (66).
The smoothed trajectory state and error covariance matrix

[ ˆxk−N |k−s+1,Pk−N |k−s+1] for 1 ≤ s ≤ N + 1 in the smooth-
ing interval are obtained in Section 4 using augmented state
smoothing algorithm. At the final scan k in the smooth-
ing interval, all these smoothed trajectory state estimates
are weighted by the smoothing weights ϒ(s) to obtain the
smoothed target trajectory state at fixed lag N using (50). The
smoothed target existence state at fixed lag N is also calculated
(64), which is an outcome of total probability theorem.

6 Fixed lag smoothing enhancedMMHPRF
tracker

The fixed lag smoothing approach presented above is also
applied to extended multiple models (EMM) HPRF tracker.
The EMM tracker incorporated the track quality measure in
multiple model HPRF tracker [3]. The augmented state is also
calculated for the EMM algorithm, and then fixed lag smooth-
ing is used to obtain the smoothed target hybrid state at any
scan. The fixed lag smoothed enhanced multiple model HPRF
tracker (FLs EMM) is also simulated in the proposed work to
compare its performance.

7 Simulation study
This simulation sections compares the tracking performance
of smoothing algorithms (FLs GMM-ITS and FLs EMM) with
online tracking algorithms (GMM-ITS and EMM). The results
provide the information on the relative benefits of the proposed
fixed lag smoothing algorithm.
A two-dimensional single-target tracking scenario is pre-

sented in Fig. 1. The target can only be detected in the area
bounded by theminimum andmaximum range and an azimuth
between 0 and π/2. The target is moving with a uniform veloc-
ity of vT = 40m/s and with a heading angle of 0◦. The initial
position of the target is described by the polar coordinates
(15, 000 , 1.0472 rad); the maximum possible velocity for the
target is assumed to be vmax = 400m/s, which is used for the
one-point track initialization. The HPRF radar is stationery in
the origin, which returns a set ofmeasurements (which consists
of azimuth, range, and Doppler) at each scan; the minimum
and maximum of the detection target range are Rmax = 20 km
and Rmin = 0 km, respectively. The radar measurement is cor-
rupted by white Gaussian noise with zero mean and standard
deviation σθ = 0.1◦, σr = 20m, and σd = 1m/s, respectively.

Fig. 1 Simulation scenario for single target
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The range measurement is correlated with Doppler measure-
ment by coefficient η = −0.8. The radar provides the target
position measurement with detection probability Pd = 0.8.
The uniform clutter position measurement density is ρp =
10−7 m−2 (31 clutter measurements per scan on average). The
clutter Doppler measurement density is assumed to have a
Gaussian probability density function with zeromean and stan-
dard deviation of σ c

d = 10m/s. The staggered PRI [22] is
applied in the simulations, and the maximum unambiguous
range of the HPRF radar is Ru(k) = 4005m, which results in
five measurement components for each radar returned mea-
surement on average. Each simulation experiment consists of
1000 runs, and each run simulates 40 scans with sampling time
T = 2m/s.
In Fig. 2, a second target is added in the surveillance area

crossing the first target, which depicts themulti-target tracking
scenario. The second target is moving with a uniform velocity
of vT = 46m/s and with a heading angle of 330◦. The initial
position of the second target is (15, 800 , 1.0764 rad). The over-
lapping region of both the targets is between scans 17 and 28,
where both targets share the measurements dominantly in this
region.
The Markov Chain One model [14] of target existence is

assumed with transition probabilities

p11 = 0.98 p12 = 0.02
p21 = 0 p22 = 1 , (70)

where pij denotes the transition probability from event i to
event j. Event 1 and event 2 represents χk and χ̄k , respectively.
The confirmation thresholds for the algorithms are tuned to

deliver the same number of confirmed false tracks (CFT) (≈ 7)
for all 1000 Monte Carlo simulation runs. In both simulation
scenarios, the CFT are set to be same for a fair comparison.
Both smoothing algorithms consider the lag size of 2.

Fig. 2 Simulation scenario for multi-target

The confirmed true track rate for a single target in Fig. 3
presents a comparison between FLs GMM-ITS and other
algorithms simulated in this work for single-target tracking.
FLs GMM-ITS performs better than both online (GMM-
ITS, EMM) algorithms and offline (FLs EMM) tracking algo-
rithm under the given surveillance environment.
The RMSEs of confirmed true tracks for single-target track-

ing scenario are presented in Fig. 4. The smoothing algorithms
perform better than online algorithms. At the last scan k = 40,
no future information exists, so all algorithms have an identical
response in terms of RMSEs.
FLs GMM-ITS and FLs EMM algorithms looks to have sim-

ilar RMSEs, although one expects better performance for the
FLs GMM-ITS algorithm. The reason is that the true tracks
which are confirmed earlier in the FLs GMM-ITS compared
to FLs EMM generate less favorable performance in terms of
estimation errors.
In Fig. 5, the cumulative confirmed true track rate for the

multi-target simulation scenario is presented. From scan 1 to
scan 20, the confirmed true track rate reaches to almost 100%,
and the FLs GMM-ITS algorithm shows the fastest response.
From scan 20, the online algorithms loose almost 50% of the
targets; in this period, the FLs GMM-ITS algorithm performs
better compared to the other algorithms and maintains a high
confirmed true track rate. The drop in confirmed true track
is expected; when the targets share measurements, the single-
target tracking algorithms are expected to loose tracks at a
higher rate. The FLs GMM-ITS algorithm recover much faster
as compared to other algorithms from scan 28 till the last
scan, which indicates the high efficiency of the proposed FLs
GMM-ITS algorithm.
Figures 6 and 7 present the RMSEs for target 1 and tar-

get 2, respectively, for the multi-target simulation scenario
depicted in Fig. 2. It is evident that the smoothing algorithms
perform significantly better as compared to the online track-
ing algorithms. Between scan 17 and scan 28, where the true
targets share measurements more prominently, the estimation
errors are increased because of association of confirmed true
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Fig. 3 Confirmed true track rate comparison (single target)
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Fig. 4 Root mean square error comparison (single target)

track with measurements from other targets. The smoothing
algorithms perform much better as compared to the online
algorithms and have reduced RMSEs in this interval. The
smoothing and filtering algorithms have identical results at the
final scan as no future information is available to smooth the
target state.
The computational time for the EMM algorithm is set as a

reference to determine the percentage of extra computational
time needed by other algorithms. The total sampling time is
80, 000 s, which is greater than the computation time of the
aforementioned tracking algorithms; therefore, all algorithms
are capable of working in real time.
It is evident from the simulation results that use of the

smoothing algorithm improves the performance of the tracker
in terms of both RMSEs and false track discrimination, at
the cost of some delay in both single-target and multi-
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Fig. 5 Cumulative confirmed true track rate comparison (multi-target)
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Fig. 6 Root mean square error comparison (target 1)

target tracking simulation environments. Table 2 provides
the comparison of computational time for different tracking
algorithms.

8 Conclusions
This paper provides a new procedure to calculate the smoothed
target hybrid state at fixed lag N. The benefits of the smooth-
ing algorithm are compared for target tracking algorithms
in the clutter using the HPRF radar. The smoothed aug-
mented states (obtained at each scan in the smoothing inter-
val) and their respective weights (calculated using multi-scan
target existence events) are used to obtain the fixed lag
smoothed trajectory state estimate for the target. The tar-
get existence state is also smoothed at fixed lag N using all
feasible multi-scan target existence events in the smoothing
interval.
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Fig. 7 Root mean square error comparison (target 2)
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Table 2 Computation time [sec]

Algorithm Execution time Percentage

EMM 49,874 Reference

GMM-ITS 50,994 2.3%

FLs EMM 55,156 10.5%

FLs GMM-ITS 59,256 12%

The FLs GMM-ITS performs much better than FLs EMM,
GMM-ITS, and EMM algorithms to track the target using an
HPRF radar in terms of RMSEs and false track discrimination.
The smoothed target hybrid state provides small estimation
errors and produces excellent false track discrimination in the
simulation conditions used in the proposed work.
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