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Abstract

We present single-channel approaches to robust automatic speech recognition (ASR) in reverberant environments
based on non-intrusive estimation of the clarity index (C50). Our best performing method includes the estimated value
of C50 in the ASR feature vector and also uses C50 to select the most suitable ASR acoustic model according to the
reverberation level. We evaluate our method on the REVERB Challenge database employing two different C50
estimators and show that our method outperforms the best baseline of the challenge achieved without unsupervised
acoustic model adaptation, i.e. using multi-condition hidden Markov models (HMMs). Our approach achieves a 22.4%
relative word error rate reduction in comparison to the best baseline of the challenge.
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1 Introduction
Automatic speech recognition (ASR) is increasingly being
used as a tool for a wide range of applications in diverse
acoustic conditions (e.g. health care transcriptions, auto-
matic translation, voicemail-to-text, and voice interface
for command and control). Of particular importance is
distant speech recognition, where the user can interact
with a device placed at some distance from the user.
Distant speech recognition is essential for natural and
comfortable human-machine voice interfaces such as used
in, for example, the automotive sector and smartphone
mobile applications.

1.1 Signal model
In a distant-talking scenario, reverberation causes a sig-
nificant degradation in ASR performance. A reverberant
sound is created in enclosed spaces by reflections from
surfaces which create amultipath sound propagation from
the source to the receiver. This effect varies with the
acoustic properties of the room and the source-receiver
distance, and it is characterized by the room impulse
response (RIR). The reverberant signal y(n) can be mod-
elled as the convolution between the RIR h(m) and the
source signal s(n) as follows:
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y(n) =
m=∞∑
m=0

h(m)s(n − m). (1)

Typical RIRs can be divided into three different parts:
the direct path, the early reflections corresponding to the
first 50 ms after the direct path, and the late reverbera-
tion corresponding to reflections that are delayed more
than 50 ms after the direct path. Early reflections cause
spectral colouration of the signal, whereas late reverbera-
tion causes temporal smearing and characteristic ringing
echoes of the signal [1].

1.2 Room acoustic measures
Several acoustic measures have been proposed that esti-
mate the reverberation level present in a signal [2] by using
the RIR h(m) or the source s(n) and received signal y(n),
but in many applications, the only information available
is the received signal y(n). Recently, methods have been
proposed to estimate room acoustic measures from rever-
berant signals such as the reverberation time (T60) [3–5]
which characterizes the room acoustic properties. How-
ever, alternative measures have been shown to be more
correlated with ASR performance such as clarity index
(C50) which is the ratio of the energy in the early reflec-
tions over the energy in late reflections [6], defined as

C50 = 10 log10

( ∑Nτ

m=0 h2(m)∑∞
m=Nτ +1 h2(m)

)
dB, (2)
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where Nτ is an integer number of samples corresponding
to 50ms after the time arrival of the direct path. Suchmea-
sures have been shown to predict ASR performance with
significant reliability [7, 8] compared to other measures of
reverberation. Moreover, different values of Nτ have been
investigated in [7] showing that the number of samplesNτ

corresponding to the range from 50 to 100 ms after the
direct path provides the highest correlation values with
the ASR performance.

1.3 Distant-talking ASR
ASR techniques robust to reverberation can be divided
into two main groups [9–11]: front-end-based and back-
end-based. The former approach suppresses the rever-
beration in the feature domain; therefore, the processing
is performed after feature extraction. Li et al. [12] pro-
pose to train a joint sparse transformation to estimate
the clean feature vector from the reverberant feature
vector. In [13], a model of the noise is estimated from
observed data by considering the late reverberation as
additive noise, and then the feature vector is enhanced
by applying vector Taylor series. A feature transforma-
tion based on discriminative training criterion inspired
on Maximum Mutual Information is suggested in [14].
Additional features related to the amount of diffuse noise
in each frequency bin and frame are employed in [15]
to improve deep neural network-based ASR accuracy in
noisy and reverberant environments. Yoshioka and Gales
[16] present several front-end approaches such feature
transformation or feature set expansion that are tailored
to deep neural network acoustic models employed for
distant-talking recognition.
The latter approach, back-end-based, modifies the

acoustic models or the observation probability estimate
to suppress the reverberation effect. Sehr et al. [17] sug-
gest to adapt the output probability density function of
the clean speech acoustic model to the reverberant condi-
tion in the decoding stage. Selection of different acoustic
models trained for specific reverberant conditions using
an estimation of T60 is proposed in [18]. In [19], an
attenuation of late reverberation is proposed such as [20]
to build several reverberant acoustic models which are
selected using ground truth T60. The RIR attenuation
parameters are tuned to provide the highest recognition
rate on a reverberant test set created with measured RIR.
The early-to-late reverberation ratio, considering the first
110 ms of the RIR as part of the early reverberation, is
used in [21] instead of T60 to select between different
reverberant acoustic models. In [22], the likelihood scores
of the ASR acoustic models based on Gaussian mixture
models are maximized to select the optimum acoustic
model. An adaptation of multiple reverberant acoustic
models trained with different T60 values is proposed in
[23]. The mean vector of the optimal adapted model is

estimated in a maximum-likelihood sense from the rever-
berant models. The idea in [24] is to add to the current
state the contribution of previous acoustic model states
using a piece-wise energy decay curve which considers
the early reflections and late reverberation as different
contributions.
In addition to front-end-based and back-end-based

approaches, signal-based methods are intended to de-
reverberate the acoustic signal in the time domain, before
being processed by the ASR feature extraction module
[2]. In [25], a complementary Wiener filter is proposed
to compute suitable spectral gains which are applied to
the reverberant signal to suppress late reverberation. In
[26], a denoising autoencoder is used to clean a window
of spectral frames and then overlapping frames are aver-
aged and transformed to the feature space. All these three
approaches may be combined to create complex robust
systems [27, 28].
Additionally, ASR techniques robust to reverberation

can be also classified according to the number of micro-
phones used to capture the signal such as single-channel
methods [13, 20, 26, 29] or multi-channel techniques
[12, 27, 30, 31].
The method now proposed is a hybrid approach based

on front-end-based and back-end-based single-channel
techniques. The C50 estimate is employed to select dif-
ferent acoustic models (back-end approach) which are
trained on feature vectors appended to include the C50
value (front-end approach). The resulting appended fea-
ture vector is then reduced in dimension to match the
original dimensionality by applying heteroscedastic lin-
ear discriminant analysis (HLDA) [32]. The technique was
tested within the ASR task of the REVERB Challenge [33]
which was launched by the IEEE Audio and Acoustic Sig-
nal Processing Technical Committee in order to compare
ASR performance on a common data set of reverber-
ant speech. This paper now extends an earlier version of
the work presented in [34] including an improved C50
estimator, which provides estimates per frame, and a per-
formance comparison of the new systemwith the previous
method.
The remainder of this paper is organized as follows:

Section 2 introduces the C50 estimators employed in this
work. In Section 3, the training and test data from the
REVERB Challenge is analysed. Section 4 describes the
methods proposed, and Section 5 discusses the com-
parative performance of the these techniques. Finally, in
Section 6, the conclusions are drawn.

2 C50 estimator
Two different single-channel C50 estimators are employed
in this work: non-intrusive room acoustic estima-
tion using classification and regression trees (NIRA-
CART) and non-intrusive room acoustic estimation using
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bidirectional long-short term memory (NIRA-BLSTM).
In this work, we use C50 to characterize reverberation in
the signal instead of T60 as in [18] because this last mea-
sure is independent of the source-receiver distance which
is a key factor in the speech degradation. Moreover, C50
was shown to be highly correlated with the ASR perfor-
mance compared to other measures of reverberation [7, 8]
which makes it suitable for this purpose.

2.1 NIRA-CART
This method in [7] computes a set of features from the
signal which can be divided into long-term features and
frame-based features. The former features are taken from
long-term average speech spectrum (LTASS) deviation
by mapping it into 16 bins with equal bandwidth and
additionally from the slope of the unwrapped Hilbert
transformation. The latter features are created with pitch
period, importance weighted signal-to-noise ratio (iSNR),
zero-crossing rate, variance and dynamic range of Hilbert
envelope and speech variance. In addition, spectral cen-
troid, spectral dynamics and spectral flatness of the power
spectrum of long-term deviation (PLD) are included in
the feature vector as well as 12th-order mel-frequency
cepstral coefficients (MFCCs) with delta and delta-delta
and line spectrum frequency (LSF) features computed
by mapping the first 10 linear predictive coding (LPC)
coefficients to LSF representation.
The first-order numerical difference is used to compute

the rate of change for all frame-based features, exclud-
ing the MFCCs. The complete feature vector is created
by adding to the long-term features the mean, variance,
skewness and kurtosis of all frame-based features and
therefore creating a 313-element vector. Finally, a CART
regression tree [35] is built to estimate C50. The CART
uses the complete feature vector, and it is trained on the
training set from the REVERB Challenge.

2.2 NIRA-BLSTM
The feature configuration of this method (P Peso Parada,
D Sharma, J Lainez, D Barreda, P A Naylor, T van Water-
schoot, A single-channel non-intrusive C50 estimator
with application to reverberant speech recognition, sub-
mitted) is based on computing the frame-based features
of NIRA-CART and including in addition 12 features
extracted from themodulation domain. Consequently, the
per frame feature vector comprises a total of 94 features.
Moreover, rather than building a CARTmodel to estimate
C50, a particular recurrent neural network architecture
called BLSTM [36] is trained with these features to pro-
vide an estimation every 10 ms. Since REVERB Challenge
data assumes that the room acoustic properties remain
unchanged within each utterance, only the temporal aver-
age for each utterance of all per frame estimations is
considered.

2.3 Wide-band feature set extension
In [7] and (P Peso Parada, D Sharma, J Lainez, D Barreda,
P A Naylor, T van Waterschoot, A single-channel non-
intrusive C50 estimator with application to reverberant
speech recognition, submitted), these estimators were
originally proposed to operate on speech signals sampled
with a sampling frequency of 8 kHz. Therefore, an adap-
tation of the features has been developed here in order
to process wider bandwidth signals. For speech signals
sampled at 16 kHz, 10 LPC coefficients and their cor-
responding LSFs are not sufficient to characterize the
speech [37]. For wide-band speech therefore, the order
of the LPC is increased to 20. Hence, the feature vector
for NIRA-CART comprises 393 elements and 106 features
per frame for NIRA-BLSTM.

3 Analysis of the challenge data
The database provided in REVERB Challenge comprises
three different sets of eight-channel recordings: train-
ing set, development set and evaluation set. Real data
recorded in a reverberant room and simulated data cre-
ated by convolving non-reverberant utterances with mea-
sured RIRs are included in the development set and
evaluation set, whereas the training set only comprises
simulated data. This section analyses the RIRs of different
data sets in terms of C50 inasmuch as this is a key aspect
in the design of the algorithms proposed in this work.
Figure 1 shows the histogram of C50 values for the 24

training RIRs including all channels of each response. As
seen in Fig. 1, the RIR training set covers a wide range of
C50 spanning approximately 25 dB. These RIRs are used
to create the data set employed to train our C50 estimator
[7] by convolving these RIRs with speech signals from the
training set which, for the REVERBChallenge, was formed
from the WSJCAM0 training set [38].
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Fig. 1 Histogram of C50 values in the training set
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Table 1 presents the measured C50 of the RIRs included
in the development and evaluation sets of simulated data.
It shows a significant difference between the small room
recordings (Room1) which are less reverberant (T60 =
0.25), and the medium and large room recordings (Room2
and Room3, respectively) which have higher reverbera-
tion times (T60 = 0.5 and T60 = 0.7, respectively).
Furthermore, the two distances of the speaker from the
microphone, that is, near = 50 cm and far = 200 cm from,
show a constant C50 difference of 8 to 10 dB.
Real recordings are captured in a reverberant meeting

room from two different distances: near (≈100 cm) and
far (≈250 cm). The development and evaluation sets of
these recordings are not analysed in terms of measured
C50 since the RIRs of these sets are unavailable.

3.1 C50 estimator performance
The evaluation metric used to compare the C50 estimator
performance is the root-mean-square deviation (RMSD)
given as

RMSD =
√√√√ 1

N

N∑
n=1

(̂C50,n − C50,n)2 dB, (3)

where N is the total number of measured ground truth
values C50,n and estimated scores ̂C50,n considered to
compute the RMSD.
The training set is randomly split into a training subset

(80% of the data used to train the models) and evaluation
subset (20% of the recordings employed to evaluate the
models) in order to provide insights into the performance
of both C50 estimators. Additionally, the performance of
theC50 estimators is also evaluated using the development
set and evaluation set of the simulated data whose C50
measures are presented in Table 1. Table 2 summarizes the
RMSD performance of each estimator evaluated in these
data sets. NIRA-BLSTM achieves the lowest deviation in
each data set, providing on average a RMSD 1.6 dB lower
than that of NIRA-CART. Both estimators exhibit lower
deviations on the evaluation subset of the training set (i.e.
training set - eval. subset) because this reverberant subset
is similar to the data used for training the C50 estimators.

4 Methods
In this section, we describe different configurations for
reverberant speech recognition. The idea underpinning

these methods is to exploit estimated C50 to improve
robustness of ASR to reverberation. Section 4.1 intro-
duces the front-end techniques, Section 4.2 describes the
back-end methods, and finally, Section 4.3 presents the
combination as outlined in Fig. 2.

4.1 C50 as a supplementary feature in ASR
In this approach, the estimated C50 of the utterance is
included as an additional feature in the ASR feature vec-
tor. The baseline recognition system uses a feature vector
with 13 mel-frequency cepstral coefficients, with the first
and second derivatives of these coefficients followed by
cepstral mean subtraction.
We now propose two alternative improved configura-

tions. The first configuration proposed (C50FV ) is to add
C50 estimation directly to this feature vector. Therefore,
the modified feature vector comprises 40 elements.
In the second configuration (C50HLDA), the feature

vector dimension is reduced using linear discriminant
analysis (LDA) [39]. This method projects the input fea-
ture vector xk onto a new space yk by applying a linear
transformationW such that

yk = WTxk , (4)

where W is an p × q matrix. This transformation in gen-
eral retains the class discrimination in the transformed
feature space. The transformation W is obtained by max-
imizing the ratio of the between-class scatter matrix SB to
the within-class scatter matrix SW , that is,

W̆ = arg max
W

|WTSBW|
|WTSWW| . (5)

The projection that maximizes (5) corresponds to W̆
whose columns are the eigenvectors of S−1

W SB with the
q highest eigenvalues so that q is the dimension of the
reduced feature space.
In this work, a model-based generalization of LDA

[32] is used. In this case, the linear transformation is
estimated from Gaussian models using the expectation-
maximization algorithm. For these models, it is assumed
that class distributions with equal mean and variance
across all classes do not contain discriminant classifica-
tion information.
In all configurations, the acoustic models are trained

using the modified feature space.

Table 1 C50 measures of the RIRs included in the development set (dev. set) and evaluation set (eval. set) of the simulated data from
the REVERB Challenge

Room1 Room2 Room3

Near Far Near Far Near Far

Dev. set C50 (dB) 30.78 21.62 16.52 7 16.37 6.69

Eval. set C50 (dB) 29.44 22.043 14.47 6.27 15.10 7.06
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Table 2 RMSD of the C50 estimators tested in three different sets

Estimator RMSD (dB)

Training set - eval. Sim. data - dev. Sim. data - eval.
subset set set

NIRA-CART 1.86 3.60 3.16

NIRA-BLSTM 0.46 2 1.37

4.2 Model selection
The proposed back-end approach aims to select the opti-
mal acoustic model Ă such as

Ă(C50) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

A1 −∞ < C50 ≤ θ1
A2 θ1 < C50 ≤ θ2
· ·
· ·
· ·
AJ θJ−1 < C50 < ∞

(6)

where J represents the number of available acoustic mod-
elsA = {A1,A2, · · · ,AJ } and θ = {θ1, θ2, · · · , θJ−1} is the
vector with the C50 threshold values sorted in ascending
order.

4.2.1 Model switching between REVERB Challenge acoustic
models

The first configuration (Clean&Multi cond.) is based on
selecting between the two acoustic models provided in
the challenge (clean-condition hidden Markov models
(HMMs) and multi-condition HMMs) according to the
level of C50 estimated from the input signal. In this case,
A1 represents the multi-condition HMMs and A2 is the
clean-condition HMMs. By empirical optimization over

the development data set and considering the analysis car-
ried out in Section 3, we choose the model switching
threshold θ1 = 23 dB. Therefore, input speech signals
with estimatedC50 higher than 23 dB are recognized using
clean-condition HMMs, whereas signals with C50 lower
than this threshold are recognized using multi-condition
HMMs.

4.2.2 Model switching using newly trained acoustic models
The second and subsequent configurations are now intro-
duced based on training new reverberant acoustic models.
The data set used to train the models is always the clean
training set convolved with the training RIRs (Fig. 1). In
order to include in the trainedmodelsA all representative
data of the acoustic units (i.e. triphones), all L clean train-
ing utterances are convolved with a subset of M training
RIRs to create a reverberant acoustic modelAi such as

yl = Hi(l mod M) ∗ sl l = 1, 2, · · · , L (7)

where yl is the reverberant speech obtained with the clean
utterance sl and the RIR in the row (l mod M) of the
matrix Hi. This matrix contains the M RIRs with a C50
value that satisfies θi−1 < C50 ≤ θi.
The first approach is to create three reverberant acous-

tic models (MS3) according to the C50 values of the RIRs
as shown in Fig. 3a. The threshold vector is set to θ =
{10, 20} dB, which was derived from the C50 estimations
of the development set. The aim is to cluster the develop-
ment set into three groups with similar ASR performance
and train a model for each group. The most reverberant
model A1 is trained with the RIRs that have C50 lower
than 10 dB. The second acoustic modelA2 is trained with

Fig. 2 Reverberant speech recognition using C50 estimation
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Fig. 3 Comparison of MS3 (a) and MS5 (b) configurations for training the acoustic (red bars) models and recognizing testing data (green bars)
according to C50. The difference is in the overlapping of the training data for MS5 configuration

RIRs that have C50 between 10 and 20 dB. Finally the third
model A3, which represents the least reverberant condi-
tions, is trained with those RIRs with a C50 higher than
20 dB.
The next configuration (MS5) includes the use of classes

with overlapping ranges ofC50 in order to build the acous-
tic models. For each class, the overlapping range of C50
used was approximately 50% of the size of the neighbour-
ing class. This configuration results in the same previous
models (MS3) but adds two additional models spanning
the transitional ranges of C50. These two models pro-
vide a smoother transition between acoustic models. The
acoustic model most representative of reverberation level
estimated from the utterance is selected in the recog-
nition phase. Figure 3b shows the construction of MS5
during training (red bars) and the thresholds used to select
models in the recognition stage (green bars).
Additional configurations were tested by increasing the

number of models trained: 8 overlapped acoustic models
(MS8), 11 overlapped acoustic models (MS11), 14 over-
lapped acoustic models (MS14) and 18 overlapped acous-
tic models (MS18). These models are obtained by further
dividing the original MS3 configuration. By increasing the
number of models, the range of C50 of the training data
of each model is decreased in terms of C50 which cre-
ates acoustic models more specific for each reverberant
condition. Figure 4 shows the ranges ofC50 used forMS11.

4.3 Model selection includingC50 in the feature vector
This method combines the two approaches described
above: C50HLDA and model selection. Figure 2 shows the

block diagram of this method where green modules rep-
resent the modifications included to design this method.
Firstly, C50 is estimated from the speech signal. The C50
estimate is then included in the feature vector before
applying the HLDA transformation and also used to select
the most suitable acoustic model.
All the tested configurations employ the C50 thresholds

as described in Section 4.2 to create the data to train the
acoustic models and select the appropriate acoustic model
in the recognition stage. These configurations are referred
as MSN+C50HLDA, where N represents the number of
acoustic models created.

5 Results and discussion
Methods described in Section 4 were tested using NIRA-
CART and NIRA-BLSTM to estimate C50, and we com-
pare the performance of each method in terms of the
word error rate (WER) obtained using the REVERB Chal-
lenge ASR task [33]. The ASR evaluation tool is based on
the hidden Markov model tool kit (HTK) provided by the
REVERB Challenge. It uses mel-frequency cepstral coef-
ficient (MFCC) features including delta and delta-delta
coefficients and tied-state HMM acoustic models with
10 Gaussian components per state for clean-condition
models and 12 Gaussian components per state for multi-
condition models.
Table 3 shows the average WER achieved with the

non-reverberant recordings (Clean), simulated reverber-
ant recordings (Sim.) and real reverberant recordings
(Real) of the REVERBChallenge evaluation test set includ-
ing the average of all subsets in the last column, while
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Fig. 4MS11 configurations for training the acoustic models (red bars) overlapping of the training data and recognizing testing data (green bars)
according to C50

Tables 4 and 5 showwithmore detail these results for each
scenario. Moreover, Fig. 5 summarizes these results, dis-
playing the average WER for the development test set and
evaluation test set.
Baseline methods are also tested in order to compare

the performance. The baseline methods consist of decod-
ing the data using the two acoustic models provided in the
REVERB Challenge: the acoustic model trained with non-
reverberant data (Clean-cond.) and the acoustic model
trained with reverberant data (Multi-cond.). The perfor-
mance of these baselines is shown in the first two rows
of Tables 3, 4 and 5. Clean-cond. models provide a better
performance in non-reverberant environments, whereas
Multi-cond. models provide a significant reduction in
WER for reverberant environments.

5.1 C50 as a new feature
The C50FV method provides a similar performance com-
pared with the baselines. This outcome is due to the
fact that we are using a diagonal covariance matrix to
build the acoustic model. Therefore, this feature only
provides information regarding the probability of observ-
ing the acoustic unit in this reverberant environment
not taking into account possible dependences with the
MFCC.
On the other hand, the last method described in

Section 4.1 (C50HLDA) outperforms on average the
WER obtained with the baselines. The main reason for
this result is the use of the discriminative transforma-
tion matrix to combine the feature space. Regarding the
C50 estimator employed, NIRA-BLSTM provides simi-
lar WER to that obtained with NIRA-CART for this

configuration. This small performance difference suggests
that C50HLDA does not strongly depend on the accu-
racy of the estimations. Furthermore, the averaged WER
obtained by applying HLDA to the feature space without
the C50 feature is 32.20%. This result supports the pre-
vious suggestion about the dependence of C50 estimation
accuracy upon C50HLDA performance and moreover
indicates that the improvement achieved with C50HLDA
is mainly due to the HLDA transformation.

5.2 Model selection
Tables 3, 4 and 5 also display the performance obtained
with the methods described in Section 4.2 based on
model selection. First, they show that a considerable
WER reduction of the baseline is achieved by employing
the two acoustic models provided by REVERB Challenge
and exploiting our estimate of C50 to select the most
appropriate model for each utterance between them (i.e.
Clean&Multi cond.). Further improvement is achieved
by training more reverberant models. The MS3 config-
uration employs three reverberant models (Fig. 3a) and
the performance in reverberant conditions is improved
in most of the situations, but on average, the error rate
has been increased with respect to the Clean&Multi cond.
mainly due to the poor performance in clean environ-
ments. The performance of this configuration is slightly
improved, from WER = 30.82% to WER = 30.35% in
the evaluation set, by overlapping the training data to
build the acoustic models (MS5). Increasing the number
of models trained using overlapping ranges of C50 (i.e.
MS8, MS11, MS14 and MS18) results in further WER
reductions.
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Table 3 WER (%) averages obtained in evaluation data set

Clean Sim. Real
Avg.

Avg. Avg. Avg.

Clean-cond. 12.21 52.22 89.17 48.04

Multi-cond. 30.13 29.50 56.94 34.67

NIRA-CART

Clean&Multi cond. 13.51 29.29 56.94 30.02

C50FV 28.65 29.72 56.84 34.37

C50HLDA 25.52 27.78 55.00 32.12

MS3 22.17 27.22 54.57 30.82

MS3+C50HLDA 19.90 25.24 52.51 28.75

MS5 22.32 26.35 54.38 30.35

MS5+C50HLDA 20.07 24.80 52.65 28.58

MS8 21.57 26.10 53.17 29.80

MS8+C50HLDA 19.69 24.08 51.04 27.79

MS11 21.10 26.04 56.62 30.26

MS11+C50HLDA 19.83 24.24 53.13 28.30

MS14 21.34 25.97 55.13 30.02

MS14+C50HLDA 19.38 23.75 52.31 27.76

MS18 21.96 25.97 55.85 30.32

MS18+C50HLDA 20.73 23.95 53.12 28.38

NIRA-BLSTM

Clean&Multi cond. 12.35 29.06 56.94 29.58

C50FV 28.75 29.65 56.91 34.37

C50HLDA 25.86 27.75 54.56 32.12

MS3 20.67 26.79 53.44 29.98

MS3+C50HLDA 18.70 24.57 52.56 28.07

MS5 21.33 26.24 53.87 29.93

MS5+C50HLDA 19.42 24.46 52.07 28.11

MS8 19.97 25.51 53.14 29.03

MS8+C50HLDA 18.58 23.61 50.96 27.22

MS11 18.64 25.40 54.73 28.90

MS11+C50HLDA 17.76 23.47 51.92 27.09

MS14 18.99 25.09 54.31 28.75

MS14+C50HLDA 17.50 23.17 52.15 26.90

MS18 18.40 25.08 56.00 28.89

MS18+C50HLDA 16.96 23.30 52.64 26.91

The first two rows correspond to the baseline methods, and the remainder are the
methods proposed in this work. Best performance results in each column are shown
in italics

For these experiments, the best performance is obtained
with MS8 using the NIRA-CART C50 estimator (WER =
29.8%), whereas NIRA-BLSTM provides the lowest WER
with MS14 (WER = 28.7%). This is due to the fact that
NIRA-BLSTM achieves more accurate C50 estimations

Table 4 WER (%) obtained with the non-reverberant part of the
evaluation data set

Clean

R1 R2 R3

Clean-cond. 12.83 12.20 11.62

Multi-cond. 30.29 30.00 30.10

NIRA-CART

Clean&Multi cond. 13.98 13.76 12.81

C50FV 28.87 28.80 28.29

C50HLDA 25.84 24.97 25.76

MS3 22.31 21.64 22.59

MS3+C50HLDA 19.91 19.87 19.95

MS5 22.72 21.39 22.86

MS5+C50HLDA 20.18 19.57 20.47

MS8 21.94 20.69 22.11

MS8+C50HLDA 20.62 19.07 19.38

MS11 21.70 20.04 21.58

MS11+C50HLDA 20.67 19.76 19.06

MS14 21.57 20.63 21.84

MS14+C50HLDA 19.77 19.07 19.31

MS18 22.26 21.13 22.52

MS18+C50HLDA 21.47 20.31 20.41

NIRA-BLSTM

Clean&Multi cond. 12.98 12.32 11.76

C50FV 28.80 29.02 28.44

C50HLDA 26.45 25.28 25.87

MS3 20.89 20.13 21.02

MS3+C50HLDA 18.84 18.40 18.87

MS5 21.62 20.68 21.70

MS5+C50HLDA 19.16 19.15 19.96

MS8 20.35 19.39 20.20

MS8+C50HLDA 19.04 18.33 18.39

MS11 19.03 18.04 18.87

MS11+C50HLDA 18.26 17.80 17.23

MS14 19.37 18.75 18.87

MS14+C50HLDA 17.55 17.74 17.23

MS18 18.50 18.20 18.51

MS18+C50HLDA 17.38 16.82 16.69

The first two rows correspond to the baseline methods, and the remainder are the
methods proposed in this work. R1, R2 and R3 represent room numbers 1, 2 and 3,
respectively. Best performance results in each column are shown in italics

than NIRA-CART; hence, it is able to select acoustic mod-
els trained with a narrower, and therefore better matched,
C50 range.
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Table 5 WER (%) obtained with the reverberant part of the evaluation data set

Sim. Real

R1 R2 R3 R1

Near Far Near Far Near Far Near Far

Clean-cond. 17.91 25.67 42.85 83.70 54.22 89.08 90.19 88.15

Multi-cond. 20.60 21.09 23.70 38.72 28.08 44.86 58.45 55.44

NIRA-CART

Clean&Multi cond. 18.67 21.59 23.83 38.72 28.15 44.86 58.45 55.44

C50FV 20.62 20.74 23.12 39.14 28.19 46.61 58.19 55.50

C50HLDA 18.38 19.99 21.34 37.03 27.44 42.55 55.92 54.09

MS3 18.08 19.82 21.92 35.94 27.35 40.25 55.64 53.51

MS3+C50HLDA 17.16 19.40 20.60 32.67 25.37 36.32 53.53 51.49

MS5 16.32 18.52 20.49 36.34 25.85 40.62 55.35 53.41

MS5+C50HLDA 16.44 17.93 19.91 32.51 24.45 37.62 53.66 51.65

MS8 16.72 19.32 20.79 34.02 26.50 39.31 53.24 53.11

MS8+C50HLDA 15.72 18.26 19.79 30.76 24.16 35.85 52.06 50.03

MS11 16.50 18.99 21.14 34.75 25.85 39.09 57.87 55.37

MS11+C50HLDA 16.10 17.79 19.95 31.58 23.90 36.21 54.77 51.49

MS14 16.50 19.06 21.37 34.64 24.83 39.50 55.61 54.66

MS14+C50HLDA 15.88 17.93 19.73 30.78 22.39 35.86 52.67 51.96

MS18 16.25 19.13 21.19 34.96 24.94 39.40 56.50 55.20

MS18+C50HLDA 15.64 18.23 19.79 31.15 22.83 36.15 53.78 52.46

NIRA-BLSTM

Clean&Multi cond. 18.01 21.08 23.70 38.72 28.08 44.86 58.45 55.44

C50FV 20.52 20.50 23.07 39.25 28.07 46.58 58.70 55.13

C50HLDA 18.40 19.69 21.31 37.16 27.18 42.83 55.35 53.78

MS3 16.93 18.87 21.79 35.99 27.25 39.98 54.52 52.36

MS3+C50HLDA 15.96 18.18 20.05 32.38 25.00 35.93 53.37 51.76

MS5 16.01 18.25 20.50 36.32 26.02 40.42 54.90 52.84

MS5+C50HLDA 16.16 17.15 19.50 32.67 24.07 37.25 53.40 50.74

MS8 16.01 18.50 20.13 34.12 25.39 39.00 53.66 52.63

MS8+C50HLDA 15.66 17.01 19.50 30.65 23.22 35.68 52.22 49.70

MS11 15.88 17.94 20.07 34.75 24.96 38.87 55.76 53.71

MS11+C50HLDA 14.79 16.79 18.85 31.50 22.85 36.09 53.27 50.57

MS14 15.66 17.42 20.08 34.23 24.25 38.95 55.41 53.21

MS14+C50HLDA 14.35 17.40 18.48 30.95 22.61 35.32 52.48 51.82

MS18 15.06 17.52 19.86 34.14 24.83 39.14 57.11 54.90

MS18+C50HLDA 14.81 16.66 18.93 31.02 22.49 35.93 54.07 51.22

The first two rows correspond to the baseline methods, and the remainder are the methods proposed in this work. R1, R2 and R3 represent room numbers 1, 2 and 3,
respectively. Best performance results in each column are shown in italics

5.3 Model selection includingC50 in the feature vector
The performance of the full system presented in Fig. 2
is now discussed. A significant improvement is observed
by combining both methods; the WER is decreased by

approximately 2% absolute with respect to the error
achieved using only model selection. NIRA-CART offers
the best performance with MS8+C50HLDA (WER =
27.8%) and NIRA-BLSTM with MS14+C50HLDA (WER
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Fig. 5 Comparison of the ASR performance of several methods (bars) against the baselines (dotted lines) for the development test set (blue) and
evaluation test set (green) using both C50 estimators (NIRA-CART and NIRA-BLSTM)

= 26.9%), which outperform the best baseline method
(Multi-cond.) by 6.9% and 7.8%, respectively, in the eval-
uation set.
Tables 3, 4 and 5 highlight in italics the lowest WER

obtained in each data set. The best performance in
reverberant conditions is achieved with this full sys-
tem (i.e. MSN+C50HLDA); however, Clean&Multi cond.
shows the best performance in the non-reverberant con-
dition. This is mainly because all the data used to train
MSN+C50HLDA is reverberant data, while Clean&Multi
cond. uses reverberant and clean data to train the acous-
tic models. Therefore, MSN+C50HLDA could be further
improved including a clean acoustic model to recognize
the non-reverberant data.
All these reverberant speech recognition approaches

were investigated in the previous work [34] using NIRA-
CART. Figure 5 shows that using a more accurate C50
estimator, i.e. NIRA-BLSTM, theWER is further reduced.
The method proposed in Fig. 2 may potentially

be complementary to some other reverberation-robust
speech recognition methods, such as applying speaker
adaptation, acoustic model adaptation or preprocess-
ing schemes (e.g. beamforming) [40]. For example, per-
forming an unsupervised acoustic model adaptation
using constrained maximum likelihood linear regres-
sion (CMLLR) with the best method proposed in this
work (MS14+C50HLDA using NIRA-BLSTM), the aver-
age WER is further reduced to 24.34%, that is, a relative
WERR of 9.88% with respect to the best baseline of the
REVERB Challenge using CMLLR.

6 Conclusions
Various approaches for single-channel reverberant speech
recognition using clarity index (C50) estimation have been
presented. One approach investigated was to include C50
estimated from two different estimators (NIRA-CART
and NIRA-BLSTM) as an additional feature in the ASR
system and apply a dimensionality reduction technique
(i.e. HLDA) to match the original feature vector dimen-
sion. This approach helped to improve the ASR per-
formance of the best baseline by a relative word error
rate reduction (WERR) of 7.35% for NIRA-CART and
NIRA-BLSTM. This improvement was shown to be in a
significant part due to the HLDA transformation. Another
approach was to use the C50 information to perform
acoustic model selection, which in turn gave a relative
WERR of 14.04% with NIRA-CART and 17.07% with
NIRA-BLSTM. The best performance was achieved by
combining both approaches and using NIRA-BLSTM,
leading to a relative WERR of 22.41% (7.77% abso-
lute WERR). It is worth noting that only data from the
REVERB Challenge data sets was used to train all the
models employed in the system (including the C50 esti-
mator); furthermore, the method presented is comple-
mentary to other techniques such as CMLLR, and an
example combination was shown to improve further the
best performance, increasing the relativeWERR to 29.8%.
As expected, more accurate C50 estimations lead to a

further reduction in the final WER. In the two algorithms
exploited in this study, NIRA-BLSTM is more accurate
than NIRA-CART by 1.6 dB RMSD, which results in a
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relative WERR of 3.24%. These results clearly indicate
that C50 can be successfully used for reverberant speech
recognition tasks and the accuracy in the C50 estimation
is crucial.
DNN-based ASR can capture various characteristics of

reverberant speech in different reverberant environments;
therefore, future work will address the usefulness of the
proposed method in such systems.
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