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Abstract

This paper proposes an approach to robustly build keypoint mappings on multispectral images. The distinctiveness
and repeatability of descriptors often decrease significantly on multispectral images and thus give unreliable keypoint
mappings. To complement this decrease, global information over entire images is induced in this work to evaluate
keypoint mappings. Initial keypoint mappings are established by utilizing descriptors. A pair of keypoint mappings
determines a similarity transformation T , and then it is evaluated with the induced global information that is defined
to be the similarity metric between the reference image and the transformed image by T . A process is utilized that
iteratively considers the pairs of keypoint mappings and searches the best reference matched keypoint for every test
keypoint. Experimental results show that the proposed approach can provide more reliable keypoint mappings than
SIFT, ORB, FREAK, and ISS on multispectral images.
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1 Introduction
Multispectral imaging has been widely applied in a vari-
ety of applications such as monitoring of natural disaster
and battlefield surveillance. The fusion of images taken
by different spectral light can often provide more infor-
mation about objects of interest and scenes than a single-
spectrum light. A satisfying fusion usually requires image
registration as the building block, and the registration
performance has a great effect on the fusion quality.

1.1 Related work
Registering multispectral images has been a challenging
problem due to the lack of explicit or implicit relationship
between the values of corresponding pixels. In literature,
there are two categories of registration methods, regis-
tration based on image features and registration based
on image intensity [1]. Among intensity-based meth-
ods are mutual information [2], MIND [3], and maxi-
mum likelihood (ML) [4]. Let Ir(x, y) and It(x, y) denote
the reference and test image. Intensity-based meth-
ods typically construct an objective/registration func-
tion f (Ir(x, y), ITt (x, y)) of the transformation parameter
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T between images. Then, the task of aligning Ir(x, y)
and It(x, y) amounts to searching for the T at which
f (Ir(x, y), ITt (x, y)) achieves the extremum.
The problem with intensity-based methods is that any

optimization technique may fail to find the ground truth
transformation parameters [5]. To improve the conver-
gence of an optimization algorithm, the misalignment
is often assumed to be small, e.g., several pixels. This
assumption is equivalent to the following: an estimate
T̃ of the ground truth can be obtained falling into the
converging basin of f (Ir(x, y), ITt (x, y)), allowing for the
optimization algorithm to achieve the global extremum.
When the misalignment is relatively large, any optimiza-
tion algorithm may easily be trapped in local extrema,
ending with an unsuccessful registration.
Another category of intensity-based methods is Fourier

methods. The translation of two images in spatial domain
corresponds to the peak of the inverse Fourier trans-
form of the product of two Fourier transformations.
Tzimiropoulos et al. [6] propose a FFT-based approach
to aligning scale-invariant images in which the log-polar
Fourier is used to estimate the scaling and rotation. Pan
et al. [7] propose multilayer fractional Fourier transform
(MLFFT) to improve the accuracy of registering images
with respect to both rotation and scaling. The prob-
lem with the Fourier methods lies in the difficulty that
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translation, rotation, and scaling can not be dealt with
simultaneously generally.
Other intensity-based techniques include region-based

confidence weighted M-estimators [8] that deal with
image sets with arbitrarily shaped local illumination vari-
ations caused by changes and movement of light sources.
Zosso et al. [9] propose geodesic active fields that cou-
ple the registration term and regularization term. The
energy of the deformation field is measured with the
Polyakov energy weighted by a suitable image distance.
Xing and Qiu [10] propose the using of nonparametric
local smoothing to determine the underlying transforma-
tion, which does not need to assume that the mapping
transformation has a certain type of parametric form. Liu
et al. [11] propose mean local phase angle (MLPA) and
frequency spread phase congruency (FSPC) using local
frequency information to emphasize the common struc-
tural information while suppressing the sensor-dependent
information.
Feature-based registration methods firstly build feature

mappings and then compute the transformation param-
eters without resorting to any optimization techniques.
In the past, a variety of image features such as keypoints
have been proposed. Among commonly used features
are keypoints and descriptors. Lowe [12] proposed the
scale invariant feature transform (SIFT) detecting key-
points and descriptors invariant to scale and rotation.
A main orientation is assigned to a keypoint, and the
local gradient pattern with respect to the main orienta-
tion is computed as its descriptor. Bay et al. [13] pro-
posed Speeded-Up Robust Features (SURF). SURF has
the same repeatability and distinctiveness as SIFT but is
computed faster than SIFT by employing integral images.
Alahi et al. [14] propose Fast Retina Keypoint (FREAK).
FREAK is a cascade of binary strings computed by com-
paring image intensities over a retinal sampling pattern.
Ambai and Yoshida [15] propose compact and real-time
descriptors (CARD). CARD can be computed rapidly by
utilizing lookup tables to extract histograms of oriented
gradients.
SIFT, SURF, FREAK, and CARD are suitable for

monomodal images. To utilize descriptors for build-
ing keypoint mappings on multispectral images, par-
tial intensity invariant feature descriptor (PIIFD) was
proposed that adapted the gradient pattern to gra-
dient and region reverse [16]. Saleem and Sablatnig
[17] proposed using normalized gradients for comput-
ing descriptors to achieve robustness against inten-
sity changes between multispectral images. Wang et al.
[18] proposed modified sift feature extraction algo-
rithm with shape-context descriptor (MSSCD). MSSCD
computes a 3D histogram of edge point locations and
orientations around a keypoint as its shape context
descriptor.

1.2 The proposed approach
Although MSSCD and PIIFD improve the matching abil-
ity of these descriptors on multispectral images, they still
generate a high ratio of incorrect mappings since the
amount of common information decreases on them. Our
previous work [19] considered affine transformations and
utilized global information to evaluate triplets of keypoint
mappings. To obtain the best matched reference key-
point for a test keypoint, an iterative process is employed
that exhausts all triplets of possible keypoint mappings,
and the computational complexity of the iterative pro-
cess is large. For many multispectral images however, a
translation [20] or a similarity transformation [21] may
be enough to account for the misalignment. Observing
this, this paper proposes utilizing global information and
descriptors to establish keypoint mappings on two images
between which the misalignment can be accounted for
by similarity transformations. Since two keypoint map-
pings are required for calculating a similarity transfor-
mation, the computational complexity of exhausting pairs
of keypoint mappings is greatly reduced compared with
exhausting triplets of keypoint mappings.
The contribution of this paper is to utilize global

information to build keypoint mappings. The pro-
posed method has a much lower computational cost
than exhausting triplets of keypoint mappings, but can
still robustly build keypoint mappings on multispectral
images. The matching ability of descriptors decreases
on multispectral images, and hence the ratio of correct
keypoint mappings is not so high as on monomodal
images. Due to this, other information must be employed
to help build robust keypoint mappings. One option
is to increase the size of the local window for com-
puting descriptor, allowing for more information to be
encoded by descriptors. In most existing descriptors on
single-spectrum images, one main orientation suffices
to characterize the (local) geometric mistransformation
since in sufficiently small regions any transformations
reduce to rotation, translation, and scaling. However, for
a window of a larger size on multispectral images, cor-
rectly assigning a main orientation is itself a challenging
task [22].
To enhance the matching ability of descriptors, this

work proposes utilizing information over entire images.
Two keypoint mappings are needed to determine a simi-
larity transformation that comprises scaling and rotation.
The determined rotation and scaling in effect serve as a
main orientation for the entire image when used as com-
puting descriptors. The proposed method is similar to
RANSAC in that both methods sample the combinations
of keypoint mappings and then evaluate the sampled com-
binations. However, it differs essentially from RANSAC
in that RANSAC only utilizes keypoint positions, i.e., in
RANSAC, the sampled combinations are assessed with
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the number of correct mappings in the rest. Due to the
low ratio of correct mappings on multispectral images,
the correct/good combinations are often mis-assessed to
be incorrect/bad. While the proposed method utilizes the
global information (encoded by the similarity metric) so
that good mappings “conform to” the content of entire
images, and thus the keypoint mappings of high similar-
ity metric are more likely to be correct than built with
RANSAC.
The rest of this paper is organized as follows, Section 2

discusses the proposed method, Section 3 analyzes the
complexity of the proposed algorithm, Section 4 presents
the experimental results, and Section 5 concludes this
paper.

2 Proposed approach
This section presents the registration approach to align-
ing multispectral images. The misalignment is assumed
to be small (i.e., not wide-baseline) and can be accounted
for by a similarity transformation. For a test keypoint,
the distance constraint is applied to narrow the space of
its mapping candidates. Given a pair of keypoint map-
pings, a similarity transformation T is determined, then
the similairty metric between Ir(x, y) and ITt (x, y) is cal-
culated over entire images. Intuitively, the greater the
similarity metric, the better the pair “conforms to” the
entire image content. The insight of this paper comes
from the following observation. Descriptors around key-
points encode the local information, and two keypoints
are matched if the local information around them have
the most common information/structure. However, mul-
tispectral images contain less common information than
the-same-band (monomodal) images. Therefore, the local
information around keypoints, i.e., descriptors, can not
provide so many correct keypoint mappings, especially
when the spectral difference is large. Intuitively, the
local information on multispectral images becomes insuf-
ficient to decide whether a keypoint mapping is cor-
rect. Consequently, other complementary information to
descriptors is necessitated for building reliable keypoint
mappings.
To build keypoint mappings with descriptors on

multispectral images, global information is utilized in
this paper to evaluate keypoint mappings. A keypoint
mapping is decided to be correct if its resulting T yields
a large similarity metric between Ir(x, y) and ITt (x, y).
This paper deals with similarity transformations, which
require at least two keypoint mappings (i.e., a pair) for
determining the misalignment. Since there are multiple
such pairs of keypoint mappings, an iterative process
is employed to search the best matched reference key-
point for every test keypoint. Calculating T uses the
information over entire images, and we call it global
information.

2.1 Distance constraints
This section follows the notations used in the previous
work [19]. A similarity transformation is a simplified
affine transformation T = (A, t), and it transforms a point
(x, y) to (u, v) by

(
u
v

)
= A ·

(
x
y

)
+ t

=
(
a11 a12
a21 a22

)
·
(
x
y

)
+

(
tx
ty

)
, (1)

where(
a11 a12
a21 a22

)
=

(
cos(θ) − sin(θ)

sin(θ) cos(θ)

)
·
(
s 0
0 s

)

=
(
s · cos(θ) −s · sin(θ)

s · sin(θ) s · cos(θ)

)
. (2)

Set a to s · cos(θ) and b to s · sin(θ), then A can be written
as,

A =
(
a −b
b a

)
.

Thus, Equation 1 can be rewritten as,(
u
v

)
=

(
a −b
b a

)
·
(
x
y

)
+

(
tx
ty

)
. (3)

Note, although A comprises four entries a11, a12, a21,
a22 in Equation 1, there are only four unknown variables in
Equation 3, a, b, tx, ty, to be determined. This is the reason
that a similarity transformation needs only two keypoint
mappings, as compared with an affine transformation that
needs three mappings.
When the misalignment is relatively small, the spatial

distance of a test keypoint pt in It(x, y) to its correspond-
ing point pr in Ir(x, y) is small [19, 23].
Formally, ‖pt−pr‖2 ≤ √

2‖A−I‖∞·‖pt‖2+‖t‖2 < Ttrd.
Ttrd is a threshold to be set. In this work, Ttrd is set to the
1/4 the maximum of the height and width of images to
be aligned, i.e., Ttrd = 1/4 · max{H ,W }, where H (W ) is
the height (width) of images. 1/4 ·max{H ,W } is used here
since a point pt will not move farther than it given that
the unknown misalignment is relatively small. Under this
assumption, the distance constraint can easily rule out a
large number of wrong keypoint mappings.
A wrong mapping here is referred to two matched

keypoints that are spatially far away from each other.

2.2 Building initial keypoint mappings
This section discusses building initial keypoint mappings.
SURF [13] is used to detect keypoints and descriptors. Let
Ki
t , i = 1, . . . ,Nt , denote the ith keypoint on It(x, y), and

Kj
r , j = 1, . . . ,Nr , denote the jth keypoint on Ir(x, y). Fol-

low the notation in [16], let f it , i = 1, . . . ,Nt , denote the
descriptor associated with Ki

t , and f
j
r , j = 1, . . . ,Nr , denote
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the descriptor associated with Kj
r . K

j0
r and Ki0

t are said to
be matched if

D
(
f i0t , f j0r

)
< 0.8 · D

(
f i0t , f j1r

)
,

where f j1r is the second closest neighbor to f i0t .
Due to the gradient reversal and region reversal, the

repeatability and distinctiveness decrease significantly on
multispectral images, and hence the initial keypoint map-
pings contain a high ratio of incorrect ones [24]. The set
of initially built keypoint mappings are used in Section 2.4
for searching the best matched reference keypoint for
every test keypoint.

2.3 Evaluating a pair of keypoint mappings

Given a keypoint mapping
(
Ki1
t ∼ Kj1

r
)
, Kj1

r is the best

matched keypoint to Ki1
t . “Best matched” means the local

region around Kj1
r is more similar to Ki1

t than other key-
points on Ir(x, y). Further evaluation of this mapping is
often accomplished by applying “consistence check” to the
set of initial mappings. RANSAC [25] is a commonly used
technique to separate out correct mappings. When the
ratio of wrong mappings is high, it often fails to work.
Observing this, this paper proposes utilizing global infor-
mation to compensate the decrease of the matching ability
of descriptors.
Consider a pair of keypoint mappings,

(
Ki1
t ∼ Kj1

r
)
, and(

Ki2
t ∼ Kj2

r
)
. Let (uk , vk) denote the location of Kjk

r , k =
1, 2, and (xk , yk) denote the location of Kik

t , k = 1, 2, then
by Equation 3 the two keypoint mappings give⎛

⎜⎜⎝
x1 −y1 1 0
y1 x1 0 1
x2 −y2 1 0
y2 x2 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

a
b
tx
ty

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

u1
v1
u2
v2

⎞
⎟⎟⎠ . (4)

Once a, b, tx, ty are determined, It(x, y) is transformed by
T to obtain ITt (x, y) with Equation 3. The similarity metric
S(Ir(x, y), ITt (x, y)) between Ir(x, y) and ITt (x, y) is com-
puted. The greater the similarity metric, the closer the two
keypoint mappings to be correct.
The similarity metric measures the similarity between

Ir(x, y) and ITt (x, y), and thus it characterizes the closeness
of T to the ground truth. This work applies the number of
overlapped edge pixels (NOEP) as the similarity metric,

S
(
Ir(x, y), ITt (x, y)

)
:= NOEP

(
Er(x, y),ETt (x, y)

)
, (5)

where Er(x, y) and ETt (x, y) are edge maps of Ir(x, y) and
ITt (x, y), respectively. S

(
Ir(x, y), ITt (x, y)

)
simply counts the

number of overlapped edge pixels.
The NOEP represents the similarity of two edge maps.

It serves as a descriptor in the sense that it encodes the
distribution of edge points and hence characterizes the

content structure. Alternatively, NOEP can be treated as
a simplified version of edge of histogram (EOH) [26] cal-
culated on an entire image instead of a local window. Due
to the gradient reversal [27], gradient orientation is unre-
liable, but the position of edges tends to be stable and has
been used for computing similarity metric on multispec-
tral images [20]. Note the superscript T of ETt (x, y) in (5) is
a generalized version of main orientation. Themain orien-
tation of a keypoint accounts for the local geometric view
difference with rotation. For an entire image (a larger win-
dow), a more complex transformation is required other
than only rotation to align the entire image (a larger
descriptor).

2.4 Searching for the best matched keypoint
Due to the multimodality, some test keypoints may not
have any corresponding reference keypoints on Ir(x, y).
To rule out incorrect mappings from the initially built
keypoint mappings, this section computes for every test
keypoint Ki

t , i = 1, . . . ,Nt , the maximum similarity metric
Stmax(i) it can yield. Then, the vector Stmax(i), i = 1, . . . ,Nt ,
is ordered, and the test keypoints ranked top 15 % is pre-
served to calculate the final transformation parameters.
In short, this section includes two steps, the first is to
compute the maximum similarity metric for every test
keypoint, and the second is to choose test keypoints for
computing the transformation parameters.
There are Nt keypoints on It(x, y), Ki

t , i = 1, . . . ,Nt , so
the number of pairs of test keypoints is

(Nt
2
)
. For a test

keypoint Ki0
t , it appears in Nt − 1 pairs (Ki0

t ,Ki
t ), i �= i0.

Thus, for the test keypoint Ki0
t , Nt − 1 NOEPs can be cal-

culated with the pair comprisingKi0
t andKi

t by Equation 5.
The maximum similarity metric for Ki0

t is achieved by
considering all Nt − 1 such pairs. Formally,

Stmax(i0) = max
i,i�=i0

NOEP
(
Ir(x, y), I

Ti0,i
t (x, y)

)
, (6)

where Ti0,i is determined by (Ki0
t ,Ki

t ) and their initial
mapping reference keypoints.
To compute the maximum similarity metric for every

test keypoint, an iterative process is employed that
exhausts all pairs of keypoint mappings.
The iterative process picks a pair of test key-

points
(
Ki1
t ,Ki2

t

)
and their reference mapped keypoints(

Kki1
r ,Kki2

r
)
, the distance constraint in Section 2.1 is

applied to
(
Ki1
t ,Kki1

r
)
and

(
Ki2
t ,Kki2

r
)
, to remove the key-

point mappings with a greater distance than the thresh-
old Ttrd. Additionally, we require the distance between
two test keypoints in a pair be greater than a thresh-
old Tttd, as a pair consisting of smaller-distance keypoints
often provides unreliable transformation. In this work,
Tttd = 10.
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The similarity transformation T is determined with(
Ki1
t ,Ki2

t

)
∼

(
Kki1
r ,Kki2

r
)
, and the similarity metric is

calculated. The iterative process considers all pairs of key-
point mappings and stores themaximum similarity metric
for every test keypoint. It is summarized in Algorithm 1.

Algorithm 1: Iteratively processing pairs of keypoint
mappings
input : Ir(x, y), It(x, y).
output: Stmax.

1 Extract image features:
- Detect keypoints Ki

r and descriptors f ir , i ∈ [1,Nr],
from Ir(x, y), and Ki

t and f it , i ∈ [1,Nt], from It(x, y).
- Generate edge maps Er(x, y) and Et(x, y) from Ir(x, y)

and It(x, y). They are used for computing similarity
metric.

Precompute:

- The spatial distance between test/reference keypoints,
d

(
Ki
t ,K

j
t

)
,∀i, j ∈ [1,Nt], d

(
Ki
r ,K

j
r
)
,∀i, j ∈ [1,Nr]

- The spatial distance between test and reference
keypoints, d

(
Ki
t ,K

j
r
)
,∀i ∈ [1,Nt] , j ∈ [1,Nr]

for i1, i2 ∈ [1,Nt] do

1. Require i1 < i2.
2. if d

(
Ki1
t ,Ki2

t

)
< Tttd then

Continue;
end if

3. Find the matched reference keypoint to Ki1
t , Kki1

r ,
and the matched reference keypoint to Ki2

t , Kki2
r .

4. Require ki1 �= ki2 .
5. Require

(
Pi1t ,P

i2
t

)
∼

(
Pki1r ,Pki2r

)
satisfying the

geometrical constraint in Section 2.1.
6. Determine T between

(
Pi1t ,P

i2
t

)
and

(
Pki1r ,Pki2r

)
by Equation 4.

7. Transform edge points of It(x, y) by the
determined T .

8. Compute similarity metric S
(
Ir(x, y), ITt (x, y)

)
by

Equation 5.
9. Update Stmax(i1) and Stmax(i2) by Equation 6.

end for

3 Complexity analysis
This section analyzes the computational complexity of the
proposed method. Firstly, we discuss the computational
cost when the distance constraints are not applied, and
then give the real running time when the constraints are

applied. Since there are Nt test keypoints, the number of
combinations of two test keypoints is

(Nt
2
)
. If we are deal-

ing with affine transformations, at least three keypoint
mappings are needed to determine an affine transforma-
tion. Three keypoint mappings form a triplet, and there
are totally

(Nt
3
)
such triplets. Consequently, the number of

triplets of keypoint mappings is roughly Nt times that of
the pairs of keypoint mappings.
On multispectral images, the closest reference keypoint

may not be the correct one, so multiple mapping candi-
dates are assigned to a test keypoint [28]. If Nc mapping
candidates are assigned to every test keypoint like ref. [19],
then the computational cost of the proposed method is(Nt
2
) · N2

c , and the computational cost of the approach to
dealing with affine transformations in [19] is

(Nt
3
) · N3

c ,
which is about Nt · Nc times that of the presented algo-
rithm. The similarity transformation used in this paper
is sufficient to account for a wide variety of images, e.g.,
the remote sensing images and slices of medical images.
When the misalignment does not involve a lot of skewing,
the computational cost of the presentedmethod is roughly
Nt · Nc times less than the affine transformation model.
Next, we analyze the real running time. Table 1 gives

the running time of the proposed method and the time
required by affine transformation models on different
datasets. See Section 4.1 for the explanation on the
datasets utilized in this work. From Table 1, it can be seen
that the computational cost of the presented algorithm is
about at least 10∼20 times less than the algorithm apply-
ing affine transformation models, which is much smaller
than Nt · Nc as analyzed above. The reason is that a
relatively large percent of triplets (pairs) of keypoint map-
pings are ruled out by the distance constraints discussed

Table 1 Mean and standard deviation of the running time in
seconds of the proposed method and the time required by affine
transformation models

Dataset Proposed method Affine transformations

μt (s) σt (s) μt (s) σt (s)

EOIR 6.23 10.29 63.35 480.56

Visible_nir 5.02 4.59 155.49 228.39

Country 43.27 31.97 109.82 141.35

Field 55.92 62.10 946.60 2540.73

Forest 80.78 47.24 938.17 1181.63

Indoor 46.57 48.84 875.28 1274.22

Mountain 44.01 43.74 1316.91 2601.72

Oldbuilding 72.93 74.19 1954.95 3306.19

Street 43.38 38.65 954.92 3242.05

Urban 94.24 67.59 5585.69 6886.24

Water 26.08 25.32 259.07 444.64

Processor: Intel i7-3770 3.40 GHz, RAM: 8 GHz
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in Section 2.1. This also verifies the usefulness of the
distance constraints in reducing the computational cost.
However, even with the distance constraints, the mean

running time for affine transformation models is still
about 10∼20 times more than the proposed method. For
the image pairs between which the misalignment con-
tains little skew, a similarity transformation is sufficient to
account for the misalignment.
In Table 1, we can also see that the proposed method

does not provide a real-time registration on any dataset.
Two factors contribute to the computational cost, the
number of pairs of keypoint mappings, and the complexity
of calculating similarity metric in (5) between two images.
To improve the running the speed, there are two aspects
accordingly. The first is to reduce the number of pairs
of keypoint mappings. For this, improving the match-
ing ability of descriptors is a direction as otherwise the
ratio of correct keypoint mappings is low and hence we
would need to consider sufficiently many pairs of keypoint
mappings.
The second is to substitute (5) for a simpler similar-

ity metric of lower complexity. An image feature that
effectively represents the entire image for use in regis-
tration, and a fast-running similarity metric can improve
the running speed. Additionally, a multiresolution tech-
nique is an option to lower the computational expense of
the presented method. A heuristic calculation of similar-
ity metric will reduce some computation, like the search
of extremum points in SIFT [12]. The edge points are
assigned to different priorities, and those of a high prior-
ity will firstly be used for computing similarity metric. If
they do not contribute much to the similarity metric then
the calculation stops.

4 Experimental results
This section presents experimental results. The proposed
method is compared with the SIFT [12], FREAK [14],
improved symmetric-SIFT (ISS) [27], and ORB [29]. The
SIFT and ORB are mostly designed for single-mode
images, and they are expected to perform well on single-
mode images, e.g., visible images. The FREAK is (partly)
designed for multispectral images, and the ISS is com-
pletely designed for multispectral images.

4.1 Datasets used to test the performance
Three datasets are used to test the performance of the
proposed approach. In general, the larger the spectral
difference, the stronger the multimodality, and conse-
quently the less repeatable the keypoint and local gradient
pattern [30]. We investigate the performance of the pro-
posed method on multispectral images of varying spectral
difference.
Dataset 1 (EOIR) includes 101 image pairs acquired

by ourselves, one image taken with the visible camera

and the other taken with the mid-wave infrared camera
(3–5 μm).
Dataset 2 (Visible_nir) includes real-world hyperspec-

tral image (RWHI) from [31] containing 50 scenes. The
images in this dataset were acquired by sequentially tun-
ing a filter through a series of 31 narrow wavelength
bands, each with approximately 10-nm bandwidth and
centered at steps of 10 nm from 420 to 720 nm (refer [31]
for details). We use the 50 image pairs of 420 and 720 nm.
Dataset 3 is from [32] including 477 images in 9 categories
of scenes: Country, Field, Forest, Indoor, Mountain, Old-
building, Street, Urban, Water. The image pairs in dataset
3 are taken with visible camera (RGB) and near infrared
(NIR) camera. Since the image pairs in dataset EOIR have
a larger spectral distance than the image pairs in dataset
Visible_nir and the 9 categories in dataset 3, they contain
less common information, and hence the repeatability of
descriptors decreases more on dataset EOIR.
The texture information in images is important for

establishing keypoint mappings. The image content in
dataset EOIR covers 2D indoor scenes, 2D outdoor scenes
(e.g., wall of buildings), 3D outdoor scenes, and Land-
sat images. The 9 categories in dataset 3 cover different
scenes as well, on which the performance of keypoint
mappings can be effectively evaluated.

4.2 Results of keypoint mappings
This section analyzes the performance of the keypoint
mappings built with the SIFT [12], FREAK [14], ISS [27],
ORB [29], and the presented method. We first present the
visual results of keypoint mappings on the image pairs
of dataset EOIR, since this dataset is the most challeng-
ing. And then a quantitative analysis is conducted on the
performance of keypoints built with different methods.
Figure 1 gives the keypoint mappings on an image pair

taken with the visible camera andmid-wave infrared cam-
era. Due to the significant decrease of the repeatability
and distinctiveness on multispectral images, the keypoint
mappings built with the SIFT, ISS, ORB, and FREAK con-
tain many incorrect mappings as shown in Fig. 1b–e. The
global information applied in the proposed method helps
establish reliable mappings as shown in Fig. 1a, since it
effectively compensates the insufficiency of the distinc-
tiveness of the descriptors. Additionally, the repeating
structures in the image content cause mismatches since
the local patches at these structures are similar to each
other even if the repeatability of the descriptors does not
decrease. In such image pairs, it is very difficult to estab-
lish keypoint mappings of a high correct rate relying solely
on the information encoded by local descriptors.
Figure 2 shows the keypoint mappings on another image

pair taken with the visible camera and mid-wave infrared
camera. Figure 2b gives the keypoint mappings built with
the SIFT. The local patch near the tail light of a car in the
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Fig. 1 Comparison of the keypoint mappings built by different methods on an image pair of an outdoor scene in dataset 2. a The proposed
method, b SIFT descriptors [33], c ISS descriptors [27], d ORB descriptors [29], and e FREAK descriptors [14]

visible image is similar to the patch near a window in the
infrared image, so the two keypoints are matched. A simi-
lar phenomenon can be observed on the result of FREAK
as shown in Fig. 2e. The ISS and ORB shown in Fig. 2c,
d provide more keypoint mappings than the SIFT and the
FREAK, but the ratio of correct mappings is not markedly
higher than the SIFT and FREAK.
Figure 3 shows the keypoint mappings on a Landsat

multispectral image pair built with different methods. On
this image pair, the SIFT, ISS, ORB, and FREAK perform
much better than on the image pair shown in Figs. 1 and 2.
The reason is that the characteristic of the infrared image
is close to that of the visible image, i.e., the dark regions
(pixels) in the visible image also correspond to the dark
ones in the infrared image. Thus, the similar local gra-
dient patterns for computing descriptors are also close

to each other and consequently keypoint mappings can
be robustly established. In terms of a local gradient pat-
tern, this image pair can be partly viewed as single-mode
images.
Next, a quantitative analysis is conducted on the perfor-

mance of keypoint mappings. Specifically, the number of
correct mappings is calculated for each method on every
dataset. Assume that (Ki

t ,K
j
r) is a keypoint mapping, then

it will be viewed as correct if d(T(Ki
t ),K

j
r) < dM, where

dM is a threshold to be set. In literature, different thresh-
olds on the distance betweenmapped keypoints have been
used to determine whether keypoint mappings are correct
or not. These thresholds include 2, 3, 4, 5, etc. To eliminate
the effect of thresholds on the performance evaluation of
different methods, this work employs the histogram of the
distance between mapped keypoints. dM is set to multiple

Fig. 2 Comparison of the keypoint mappings on an image pair that contains similar local intensity/gradient patterns. Due to this, in (e), the
keypoints near the tail lights of the two cars in left image are mapped to keypoints near a window in the right image. a The proposed method, b
SIFT descriptors [33], c ISS descriptors [27], d ORB descriptors [29], and e FREAK descriptors [14]
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Fig. 3 Keypoint mappings on a Landsat multispectral image pair. The characteristic of the visible image is close to that of the infrared image. From
this aspect, the two images can be partly viewed as single-mode, and so the SIFT, ISS, ORB, and FREAK perform better. a The proposed method, b
SIFT descriptors [33], c ISS descriptors [27], d ORB descriptors [29], and e FREAK descriptors [14]

values, andwe count the number of keypointmappings for
which the distance between the two keypoints is smaller
than dM.
The histogram of the distances between mapped key-

points is generated as follows. The bins are set to [ 0, 2],
[ 2, 5], [ 5, 10], [ 10, 20], and [ 20,∞]. For example, the bin
[ 2, 5] counts the number of keypoint mappings with the
distance less than 5 but greater than 2, and the bin [ 10, 20]
counts the number of mappings with the distance greater
than 20. Note, other setups for the bins can be used
here if a better comparison can be achieved for different
methods.
Table 2 gives the histogram of distances between

mapped keypoints for different methods. On all datasets,
the presented method performs better than other meth-
ods. There are two aspects showing the advantage of the
presented method over other methods. The first is that
the presented method provides a higher ratio of key-
point mappings that have a relatively small distance. For
example, on the dataset “Field,” the presented method
yields 2480 mappings that have a distance falling in [ 0, 2],
while SIFT does 691, ISS does 246, ORB does 295, and
FREAK does 11. The second is that the presented method
provides a lower ratio of keypoint mappings that have
a distance greater than 20. For example, on the dataset
“EOIR,” the SIFT yields 187 keypointmappings of distance
greater than 20, ISS does 295, ORB does 4616, and FREAK
does 358.
One observation on the comparison result shown in

Table 2 is that the dataset “EOIR” is the most challeng-
ing. In most cases, all methods including the proposed
one perform worse on “EOIR” than other datasets. Take
the ORB method for an example, and we consider the
number of keypoint mappings that have a distance greater
than 20 (the worst case). It provides 4616 mappings on

dataset “EOIR” that have a distance falling in “>20”, only 3
mappings on dataset Visible_nir, 6745mappings on Coun-
try, 2805 mappings on Field, 373 mappings on Forest,
598 mappings on Indoor, 359 mappings on Mountain,
27 mappings on Oldbuilding, 731 mappings on Street, 8
mappings on Urban, and 2354 mappings on Water. The
reason is that as aforementioned, the multimodality of
the image pairs in dataset EOIR is greater than that in
other datasets, and hence the matching performance of
descriptors decrease on EOIR.
Another observation is that ISS does not perform better

than SIFT, although ISS is designed to adapt the descrip-
tor of SIFT to multispectral images. On dataset EOIR,
the SIFT performs slightly better or comparable to ISS,
and on other, datasets the SIFT performs evidently bet-
ter than ISS since the multimodality decreases on them.
The underlying mechanism causing this phenomenon
needs further investigation onmore types of multispectral
images.
Table 2 clearly shows that the matching performance of

descriptors decreases when the multimodality of image
data increases. On single-mode images, the SIFT andORB
perform fairly well for coping with integer-pixel align-
ment. On multispectral images, the common information
around keypoints may be not enough for robustly estab-
lishing keypoint mappings. Either more common and
distinctive information near keypoints can be encoded to
enhance the matching ability of descriptors, or comple-
mentary information at regions not-too-near keypoints
are desired to correctly build keypoint mappings. This will
be the future work.

5 Conclusions
This work presents a registration approach on multispec-
tral images. A similarity transformation is considered for
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Table 2 The distribution of the distances between matched keypoints

[0–2] [2–5] [5–10] [10–20] > 20 [0–2] [2–5] [5–10] [10–20] > 20 [0–2] [2–5] [5–10] [10–20] > 20
EOIR Visible_nir Country

Proposed 234 102 54 244 0 5732 0 0 0 0 875 35 9 2 0
SIFT 30 7 9 6 187 4204 44 1 0 21 379 87 47 14 224
ISS 31 16 5 13 295 1879 27 8 7 106 213 54 18 12 854
ORB 328 87 50 122 4616 12,946 563 3 0 3 195 95 59 56 6745
FREAK 11 11 5 10 358 9 2 4 11 189 12 10 15 35 9517

Field Forest Indoor
Proposed 2480 99 40 60 0 2814 24 0 0 0 4803 0 0 0 0
SIFT 691 116 28 15 183 6045 1829 328 9 199 464 23 7 13 108
ISS 246 73 37 10 747 6 2 0 4 1229 299 26 16 7 155
ORB 295 168 65 49 2805 2316 763 22 6 373 391 57 17 19 598
FREAK 11 9 11 25 3946 0 0 2 5 876 69 36 36 103 5351

Mountain Oldbuilding Street
Proposed 4676 20 1 38 0 6783 31 0 0 0 3369 70 5 0 0
SIFT 742 258 31 14 65 696 81 17 0 11 356 94 29 1 13
ISS 179 98 25 5 170 281 32 10 2 46 179 54 18 9 273
ORB 269 186 17 3 359 304 103 30 1 27 209 144 49 10 731
FREAK 97 13 28 58 5112 43 24 20 65 6779 37 6 20 82 6193

Urban Water
Proposed 12,685 0 0 0 0 1714 30 6 66 0
SIFT 735 8 4 3 16 425 44 17 11 101
ISS 389 14 0 7 67 263 35 11 16 515
ORB 366 17 10 0 8 300 122 69 78 2354
FREAK 111 34 35 115 9629 32 20 26 75 6831
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accounting for the misalignment between two images.
Global information over entire images is induced to help
evaluate the quality of keypoint mappings. Compared
with the methods that solely use descriptors for build-
ing keypoint mappings, the proposed approach effectively
compensates the insufficiency of the repeatability and
distinctiveness of descriptors and hence provides more
correct mappings.
Several future research directions can be done to fur-

ther improve the performance. The matching ability of
descriptors can be researched by analyzing, extracting,
and encoding the common information between multi-
spectral images. Although it is not the focus of this work,
the matching ability can improve the overall registration
accuracy. Another direction is on the similarity metric
that has been used for evaluating the quality of key-
point mappings. It carries the global information of entire
images and its effective characterization will be expected
to bring more precise keypoint mappings.
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