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Abstract

This paper considers a family of pure analog coding schemes constructed from dynamic systems which are governed
by chaotic functions—baker’s map function and its variants. Various decoding methods, including maximum
likelihood (ML), minimummean square error (MMSE), and mixed ML-MMSE decoding algorithms, have been
developed for these novel encoding schemes. The proposed mirrored baker’s and single-input baker’s analog codes
perform a balanced protection against the fold error (large distortion) and weak distortion and outperform the
classical chaotic analog coding and analog joint source-channel coding schemes in literature. Compared to the
conventional digital communication system, where quantization and digital error correction codes are used, the
proposed analog coding system has graceful performance evolution, low decoding latency, and no quantization
noise. Numerical results show that under the same bandwidth expansion, the proposed analog system outperforms
the digital ones over a wide signal-to-noise (SNR) range.

Keywords: Analog error correction code; Chaotic dynamic system; Mean square error (MSE); Maximum likelihood
(ML) decoding; Minimummean square error (MMSE) decoding

1 Introduction
Currently pervasive communication systems in prac-
tice are almost digital-based. Shannon’s source-channel
separation theorem has long convinced people that infor-
mation can be transmitted without loss of optimality
by a two-step procedure: compression and encoding.
This fundamental result has laid the foundation for
the typical structure of modern digital communication
systems—the tandem structure of source coding fol-
lowed by channel coding. Although digital communi-
cation systems have been well developed over the last
decades, they has inherent drawbacks. First, to trans-
mit continuous-alphabet sources, signals are quantized,
which introduces permanent loss in information. Second,
to precisely represent real-valued signals via digits, the
bandwidth is usually expanded. Moreover, the subsequent
channel coding procedure makes transmission further
bandwidth demanding. Third, the digital error correction
codes are highly signal-to-noise-ratio (SNR) dependent.
Take turbo and low-density parity-check (LDPC) codes
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as examples. When the receiving SNR is under some
threshold value, the decoding performance is usually very
poor. On the contrary, once SNR exceeds this thresh-
old, their bit error ratio (BER) falls down drastically in
a narrow SNR range (waterfall region). This ungraceful
degradation in performance can cause problems in appli-
cations. A typical scenario is the broadcasting system,
where the SNR for different receivers can vary over a
large range. At the same time, the digital error correc-
tion codes are not energy efficient since more transmis-
sion power slightly increases performance as long as the
receiving SNR is modestly above the threshold. Last but
not least, digital error correction codes with satisfying
performance usually require a long block length, which
introduces high latency for decoding and processing at the
receiver.
In addition to the classical source-channel separate dig-

ital system, the analog transmission system can serve as
an alternative solution to data transmission. The analog
system has advantages over its pure digital peers—it does
not introduce the granularity noise and its performance
evolves gracefully with SNR. Most of the analog transmis-
sion systems ever presented in literature are joint source-
channel coding (JSCC) systems, where compression and
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encoding are performed in one step and signals are in pure
analog or hybrid-digital-analog (HDA) form. The study of
analog communication can date back to the papers [1–4].
Reference [4] shows that direct transmission of a Gaussian
source over an additive white Gaussian noisy (AWGN)
channel with no bandthwidth expansion or compression
is optimal. For the bandwidth expansion case, [5] obtains
the result that the fastest decay speed of the mean
square error (MSE) cannot be better than the square
inverse of the SNR. Although until now, no practi-
cal schemes have been found to achieve this decaying
speed. In [6, 7], the optimal linear analog codes are
treated. The design of practical nonlinear analog coding
schemes has always been an open issue. Some interesting
paradigms have been found. Fuldseth [8] and Chung [9]
discuss numerical-based analog signal encoding schemes.
Vaishampayan and Costa [10] propose a class of ana-
log dynamic systems constructed by first-order deriva-
tive equations, which generate algebraic analog codes on
torus or sphere. Cai and Modestino [11], Hekland et al.
[12], and Floor and Ramstad [13] study the design of the
Shannon-Kotel’nikov curve. The minimum mean square
error decoding schemes for the Shannon-Kotel’nikov ana-
log codes and their modified version combined with
hybrid digital signals are discussed in [14, 15].
Among the family of analog coding schemes, one spe-

cial class is constructed through chaotic dynamic systems.
In dynamic systems, the signal sequence is generated by
iteratively invoking some predefined mapping function.
To be specific, the next signal (state) is obtained by per-
forming a mapping to the current signal (state), and the
whole signal (state) sequence is initialized by the input
signal. For a chaotic dynamic system, the function gov-
erning the signal generation (state transition) is chosen
as chaotic functions. Chaotic functions are characterized
by their fast divergence, which is more well known as
the remarkable butterfly effect. This property means that
even a very tiny difference in initial inputs will soon result
in significantly different signal sequences. From the sig-
nal space expansion viewpoint, this indicates that a pair
of points in source space with small distance will have a
large distance in the code space. So chaotic dynamic sys-
tems can potentially entitle signals with error resistance.
The seminal work [16] proposes an analog system based
on the tent map dynamic system, and its performance is
extensively discussed in [17]. As with the analysis per-
formed in [18, 19], the drawback of the tent map code
is that its performance convergence Cramer-Rao lower
bound (CRLB) requires very high SNR . Rosenhouse and
Weiss [20] propose an improvement scheme by protecting
the itinerary of the tent map codes with digital error cor-
rection codes. However, this hybrid-digital-analog scheme
still suffers from the drawbacks rooted in digital error
correction codes.

In this paper, we focus on a new pure analog chaotic
dynamic encoding scheme, which is constructed via
a two-dimensional chaotic function—baker’s map. This
structure is closely related to and more complicated than
the one reported in [16]. The specific contributions of this
paper include the following: we develop various decod-
ing methods for the baker’s coding system and analyze
its MSE performance. Based on that, we proceed to pro-
pose two improved coding structures and extend vari-
ous decoding methods to these new structures. These
proposed improvements effectively balance the protec-
tion for all source signals and have more satisfying MSE
performance compared to the tent map code. We also
compare our proposed analog coding scheme with the
classical source-channel separate digital coding scheme,
where turbo code is applied. By using equal power and
bandwidth, our proposed coding scheme outperforms the
digital turbo scheme over a wide SNR range.
This paper is organized as follows: in Section 2, the

original baker’s dynamic system is discussed, including its
encoding structure, decoding methods, and performance
analysis. Two modified chaotic systems based on the
baker’s system are discussed in Sections 3 and 4, includ-
ing their encoding and decoding schemes. In Section 5,
numerical results and discussions are presented and per-
formance is discussed. Section 6 concludes the paper.
In this paper, we assume that the source signals are

mutually independent and uniformly distributed on the
interval [−1, 1], which is also adopted in previous works
[16] and [17]. By this assumption, the MMSE decoding
method has closed form solution and we can compare
performance with previous works. However, it should be
pointed out that the maximum likelihood (ML) decoding
method does not require this condition and is applica-
ble to signal with arbitrary distribution. We assume that
the transmission channel is AWGN and the decoding
methods obtained can be easily extended to block fading
channel.

2 The baker’s map analog coding scheme
In this section, we introduce the analog encoding scheme
based on the baker’s map function. The baker’s map
function, F : [ 0, 1]2 �→[ 0, 1]2, is a piecewise-linear chaotic
function given as follows:

[
x
y

]
= F(u, v) =

[
1 − 2sign(u)u
1
2 sign(u)(1 − v)

]
, −1 ≤ u, v ≤ 1.

(1)

The above baker’s map has a close connection with the
symmetric tent map function discussed in [16] and [17],
which is defined as

G(x) = 1 − 2|x|, −1 ≤ x ≤ 1. (2)
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Although the symmetric tent map in (2) is non-invertible,
once the sign(x) is given, its value can be determined. The
“inverse” symmetric tent map function with the sign s of
x given is G−1

s (y) = s 1−y
2 . Comparing the baker’s map and

the symmetric tent map functions, the baker’s map can be
alternatively defined via the symmetric tent map function
as follows:[

x
y

]
= F(u, v) =

[
G(u)

G−1
sign(u)(v)

]
, −1 ≤ u, v ≤ 1. (3)

Based on the baker’s map function above, a dynamic
analog encoding scheme can be performed. For a pair
of independent source (x0, y0) ∈ [−1, 1]2, a chaotic sig-
nal sequence is generated by repeatedly invoking baker’s
mapping, i.e.,[

xn+1
yn+1

]
= F(xn, yn), n = 0, 1, · · · ,N − 2, (4)

where N is the bandwidth expansion. This sequence can
be viewed as a rate-1/N analog code with x0 and y0 as con-
tinuous information “bits”. In the following, we use x =
[ x0, x1, · · · , xN−1]T and y =[ y0, y1, · · · , yN−1]T to denote
the codewords of two input signals, respectively.
An important concept about the baker’s dynamic

encoding system is the itinerary, which is defined as
s =[ s0, s1, · · ·, sN−2]�[ sign(x0), sign(x1), · · ·, sign(xN−2)].
In fact, if the itinerary of the code sequence is given, xk ’s
and yk ’s can all be expressed as affine functions of x0 and
y0. Specifically, xk and yk can be represented via (x0, y0) in
the following form:{

xk,s(x0, y0) = ak,sx0 + bk,s,
yk,s(x0, y0) = ck,sy0 + dk,s.

k = 0, 1, · · · ,N − 1.

(5)

The affine parameters in (5) are functions of itinerary
s. For a specific s, they can be obtained in the following
recursive way:⎧⎪⎪⎨

⎪⎪⎩
ak+1,s = −2skak,s,
bk+1,s = 1 − 2skbk,s,
ck+1,s = − 1

2 skck,s,
dk+1,s = 1

2 sk(1 − dk,s),

k = 0, · · · ,N − 2, (6)

with the starting point⎧⎪⎪⎨
⎪⎪⎩
a0,s = 1,
b0,s = 0,
c0,s = 1,
d0,s = 0.

(7)

In fact, the collection of 2N−1 itineraries one-to-one
maps onto a partition1 of the feasible space of x0, i.e., the
segment [−1,+1]. The itinerary s is a function of input
x0. For any specific itinerary s, the admissible values of x0
fall in a segment of length 1/2N−2, which is called a cell

and denoted as Cs �[ el,s, eu,s]. The two endpoints el,s and
eu,s of the cell associated with s are determined as⎧⎨

⎩
el,s = min

{−bN−1,s+1
aN−1,s

, −bN−1,s−1
aN−1,s

}
,

eu,s = max
{−bN−1,s+1

aN−1,s
, −bN−1,s−1

aN−1,s

}
.

(8)

This concept is illustrated in Fig. 1. In the left part of
Fig. 1a, when N = 2, the itinerary has 1 bit, i.e., s ∈
{+1,−1}. The two corresponding cells are respectively the
left and right half of the segment [−1,+1]. This concept
is extended to length of N = n + 1 in the right of Fig. 1a,
where G(n)(x) denotes n-fold composition of G(·). In fact,
once the itinerary sj is given, the endpoints el,sj and eu,sj
of the cell and the affine parameters

{
ak,sj , bk,sj , ck,sj , dk,sj

}
can all be determined as functions of sj, as shown in
Fig. 1b.
Next, we discuss decoding schemes for the above baker’s

dynamic encoding system.

2.1 Maximum likelihood decoding
Under the AWGN channel assumption, the received sig-
nal can be represented as{

rx,n = xn + nx,n,
ry,n = yn + ny,n,

n = 0, 1, · · · ,N − 1, (9)

where nx,n, ny,n
i.i.d.∼ N (0, σ 2), n = 0, 1, · · · ,N − 1.

We denote rx = [
rx,1, rx,2, · · · , rx,N−1

]T and ry =[
ry,1, ry,2, · · · , ry,N−1

]T . The likelihood function of the
observation sequences rx, ry with given source (x0, y0) is

p(rx, ry|x0, y0) = (2πσ 2)−N exp
{

−‖rx − x‖2 + ‖ry − y‖2
2σ 2

}
.

(10)

The maximum likelihood estimate of source pair x̂ML
0 , ŷML

0
is{
x̂ML
0 , ŷML

0
} = argmax

−1≤x0,y0≤1
p(rx, ry|x0, y0)

= argmin
−1≤x0,y0≤1

N−1∑
k=0

[(
rx,k − xk(x0, y0)

)2
+ (

ry,k − yk(x0, y0)
)2] .

(11)

The last equality emphasizes the fact that all xk , yk are
functions of x0 and y0.
Based on connections between itineraries and cells dis-

cussed in (5)–(8), the original maximum likelihood (ML)
estimation problem in (11) can be further transformed
into
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(
x̂ML
0 , ŷML

0
) = argmin

s,x0∈Cs

N−1∑
k=0

{[
rx,k − (ak,sx0 + bk,s)

]2 + [
ry,k − (ck,sy0 + dk,s)

]2}

= argmin
s

⎧⎨
⎩ min

e1,s≤x0≤e2,s−1≤y0≤1

N−1∑
k=0

{[
rx,k − (ak,sx0 + bk,s)

]2 + [
ry,k − (ck,sy0 + dk,s)

]2}⎫⎬⎭ . (12)

Fig. 1 Partition and itinerary. aWhen N=1, itinerary s has just 1 bit, +1 or −1 (left); for general N = n+1, itinerary s has 2n patterns (right). Each
specific pattern sj corresponds to one segment (cell) Csj of the feasible region. b The feasible region [−1,+1]2 is partitioned into 2N−1 cells, with
each cell Csj corresponding to one specific itinerary pattern sj . The parameters in the affine representation of the codewords and the endpoints of
the cell can be determined once the itinerary sj is given
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For any given itinerary s, the inner minimization prob-
lem in Eq. (12) is convex and quadratic. Without consider-
ing the constraints, its optimal solution (x∗

0,s, y∗
0,s) is given

in a closed form⎧⎨
⎩ x∗

0,s = aTs (rx−bs)
aTs as

,

y∗
0,s = cTs (ry−ds)

cTs cs
,

(13)

where as = [
a0,s, · · · , aN−1,s

]T , bs = [
b0,s, · · · , bN−1,s

]T ,
cs = [

c0,s, · · · , cN−1,s
]T , and ds = [

d0,s, · · · , dN−1,s
]T . Tak-

ing into account that the feasible (x0, y0) associated with
s should lie within admissible range, a limiting procedure
must be performed to obtain the solution to the inner
minimization with specific s, i.e.,

xinner0,s =
⎧⎨
⎩
el,s, if x∗

0,s < el,s
eu,s, if x∗

0,s > eu,s
x∗
0,s otherwise.

,

yinner0,s =
⎧⎨
⎩

−1, if y∗
0,s < −1

+1, if x∗
0,s > +1

y∗
0,s, otherwise.

. (14)

Since there are totally a finite number of possible
itinerary patterns, by enumerating all possible itineraries
and selecting the {xinner0,s , yinner0,s }which minimizes the outer
minimization, the ML estimation of (x0, y0) is obtained as

(
x̂ML
0 , ŷML

0
) = argmin

s

{N−1∑
k=0

{[
rx,k − (ak,sxinner0,s + bk,s)

]2

+ [
ry,k − (ck,syinner0,s + dk,s)

]2}}

The ML decoding scheme does not require a priori
knowledge of the source’s distribution. So it is applicable
regardless of the probability distribution of the source.

2.2 Minimummean square error decoding
The ML decoding method is not optimal in the sense of
mean square error performance. In this subsection, we
focus on the minimum mean square error (MMSE) solu-
tion to the baker’s dynamic system. The MMSE estimator
is given in a general form as [21]

X̂MMSE(y) = E{X|y} =
∫

xf (x|y)dx, (15)

where X is random parameter to be determined and y
is a specific realization of the noisy observation Y. It is
worth noting that the above general solution usually can-
not result in a closed form solution for concrete problems.
Fortunately, under the uniform distribution assumption of
the source signal, the closed formMMSE estimator for the
baker’s map can be obtained.

To provide the result of the MMSE decoder, here we
introduce the following notations:

A1 = ‖as‖2; B1 = aTs (bs − rx); C1 = ‖bs − rx‖2;
A2 = ‖cs‖2; B2 = cTs (ds − ry); C2 = ‖ds − ry‖2;

(16)

and

E1 = exp
{
B2
1 − A1C1
2σ 2A1

}
; D1 = Q

(√
A1
σ

el,s + B1

σ
√
A1

)

− Q
(√

A1
σ

eu,s + B1

σ
√
A1

)
;

E2 = exp
{
B2
2 − A2C2
2σ 2A2

}
; D2 = Q

(
−

√
A2
σ

+ B2

σ
√
A2

)

− Q
(√

A2
σ

+ B2

σ
√
A2

)
;

J1 = exp
{
− 1
2σ 2A1

(
el,s+ B1

A1

)2
}

− exp
{
− 1
2σ 2A1

(
eu,s + B1

A1

)2
}
;

J2 = exp
{
− 1
2σ 2A2

(
1 + B2

A2

)2
}

− exp
{
− 1
2σ 2A2

(
−1 + B2

A2

)2
}
,

(17)

where the function Q(·) is the well-known Gaussian-Q
function which is defined as

Q(x) �
∫ ∞

x

1√
2πσ

e−
t2
2 dt. (18)

The MMSE estimator of x0 and y0 is given in a closed
form as follows:

x̂MMSE
0 =

∑
s

√
2π
A2

E1E2D2

(
σ
A1
J1 −

√
2πB1
A3/2
1

D1

)
∑

s
2π√
A1A2

E1E2D1D2
, (19)

ŷMMSE
0 =

∑
s

√
2π
A1

E1E2D1

(
σ
A2
J2 −

√
2πB2
A3/2
2

D2

)
∑

s
2π√
A1A2

E1E2D1D2
. (20)

The detailed proof of the above result is rather involved
and relegated to the Appendix.

2.3 Mixed ML-MMSE decoding scheme
TheMMSE estimator involves highly nonlinear numerical
evaluations, like the Q-function, which are computation
demanding and costly for implementation. Next, we intro-
duce some kind of mixedML andMMSE estimator for the
baker’s analog code.
As previously discussed, once the itinerary is given, the

analog codewords can be written as an affine function in
(x0, y0). For specific itinerary s, by packing the codewords
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x and y into one vector v and using (5), we can rewrite the
baker’s dynamic system as follows:

v =
[
x
y

]
=

[
as 0
0 cs

]
︸ ︷︷ ︸

GT
s

[
x0
y0

]
︸ ︷︷ ︸

u

+
[
bs
ds

]
︸ ︷︷ ︸

ts

= GT
s u + ts, (21)

where parameters as, bs, cs, and ds are defined in (6).
Recall that in ML decoding, a detection of the itinerary

s can be obtained. By substituting s in (21) with the ML
detection ŝML and packing the received signals rx and ry
into one vector r =

[
rTx , rTy

]T
, (9) can be expressed in a

compact form

r′ŝML = r − tŝML = GT
ŝMLu. (22)

Thus, the baker’s map code is equivalent to a (2N , 2) linear
analog code with encoder Gs.
Now the problem to determine the source signal u

in the above equation becomes the standard minimum
MSE receiving problem, whose solution is the well-known
Wiener filter and given as [22]

ûMMSE
(
ŝML) =

(
GŝMLGT

ŝML + 3σ 2I
)−1

GŝMLr′ŝML . (23)

A slicing operation then follows the above Wiener
filtering to ensure the final estimates x̂ML−MMSE

0 and
ŷML−MMSE
0 lie in

[
el,ŝML , eu,ŝML

]
and [−1,+1], respectively.

For the mixed ML-MMSE method, ML decoding is per-
formed to obtain ŝML. Then, the Wiener filtering and
limiting procedure follows. The mixedML-MMSE decod-
ing method requires a priori knowledge of the source and
involves only linear computation operations.

2.4 Performance analysis
In Fig. 2, the different decoding algorithms’ performance
for the baker’s analog codes with different lengths is plot-
ted. Eu means the average power for each source signal,
and N0 denotes the unilateral power spectral density, i.e.,
N0 = 2σ 2. The ML, MMSE, and ML-MMSE decoding
algorithms have identical MSE performance for high SNR.
In low SNR range, the MMSE decoding method has the
best performance.
In the following, we analyze the MSE performance of

the baker’s dynamic coding system by considering the
Cramer-Rao lower bound. CRLB is a lower bound for the
unbiased estimator [23]. It should be pointed out that
the ML decoding methods discussed above are the biased
estimator due to the slicing operations. However, when
the SNR is large, the decoding error is sufficiently small
such that the slicing rarely impacts the decoding result. So
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Fig. 2MSE performance of different decoding algorithms for the baker’s dynamic system
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CRLB can precisely predict the decoding error when the
SNR is modestly large and is useful a tool to understand
the system’s performance. This will also be verified by the
following numerical results.
The Cramer-Rao lower bound for x0 is given as [23]

CRLBbaker
x0 = −E−1

x0

{
∂2

∂x20
log p(rx, ry|x0, y0)

}
(24)

= −E−1
x0

{
∂2

∂x20

(
−1
2σ 2

N−1∑
k=0

(
(rx,k − ak,sx0 − bk,s)2

+(ry,k−ck,sy0 − dk,s)2
))}

(25)

= σ 2∑N−1
k=0 a2k,s

= 3σ 2

4N − 1
. (26)

where p(rx, ry|x0, y0) is defined in (10), and Ex0(·) denotes
the expectation with respect to x0. The recursive relations
in (6) and the fact s2k = 1 are used to obtain (26). Similarly,
the CRLB for y0 obtained as

CRLBbaker
y0 = −E−1

y0

{(
∂

∂y0
log p(rx, ry|x0, y0)

)2
}

= σ 2∑N−1
k=0 c2k

= 3σ 2

4(1 − (1/4)N )
.

(27)

When N is modestly large, CRLBx0 ≈ 3σ 2/4N . Each
increment inN can decrease the decoding distortion of x0
by 3/4. Comparatively, increment in N slightly improves
y0 determination, which is nearly a constant as 3σ 2/4 .
The CRLB reveals that the two sources are under unequal
protection and there is insufficient coding gain on y0.
Recall that the x-sequence in codewords is obtained by
continuously stretching and shifting the signal. Intuitively,
the signal is locally magnified. In comparison, the y-
sequence is obtained by compressing the signal. That is
why the terms of 2N and 2−N appear in the denominator
of CRLB for x0 and y0, respectively. This insight is veri-
fied by Fig. 3, where separateMSE decoding performances
of x0 and y0 are plotted with their CRLBs illustrated as
benchmarks. Although x0 has an obvious coding gain, y0 is
poorly protected and its distortion dominates the overall
decoding performance.
From the CRLB analysis, we realize that the bottleneck

of the baker’s analog code lies in the weak protection
to y0. Thus, to improve the baker’s map code, effective
protection should also be performed to y0.

3 Improvement I—mirrored baker’s analog code
As analyzed in the last section, the unsatisfying perfor-
mance of the original baker’s map lies in the poor pro-
tection of y0. To enhance the protection of y0, a natural
idea is to perform a second original baker’s map encoding

0 5 10 15 20 25 30 35 40

−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

E
u
/N

0

lo
g 2(M

S
E

)

MSE Performance for Two Inputs of Baker’s Analog Code

MSE
X
,N=5

MSE
Y
,N=5

CRLB
X
,N=5

CRLB
Y
,N=5

MSE
X
,N=3

MSE
Y
,N=3

CRLB
X
,N=3

CRLB
Y
,N=3

Uncoded

Fig. 3MSE performance for x0 and y0 of the baker’s system
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by switching the roles of x0 and y0. Thus, both x0 and
y0 obtain balanced and effective protection. This idea
leads to the improvement scheme to be discussed in this
section—the mirrored baker’s dynamic coding system.
The mirrored baker’s structure comprises two branches,
with its first branch being the original baker’s encoder and
the second branch exchanging the roles of x0 and y0 to
perform the original baker’s encoding for a second time.
For a givenN, the mirrored baker’s system forms a (4N , 2)
analog code.
Here we adjust our notations for the new system to

make our following discussions clear. The two codewords
associated with two branches are labeled with subscripts
1 and 2, respectively. In the first branch, x0 is the tent
map encoded and so does y0 in the second branch.
The codewords associated with x0 and y0 of the two
branches are denoted as {x1, y1} and {x2, y2}, respectively,
with their corresponding noisy observations as {r1,x, r1,y}
and {r2,x, r2,y}, respectively. The encoding procedure is
expressed as[

x1,n+1
y1,n+1

]
= F(x1,n, y1,n),[

y2,n+1
x2,n+1

]
= F(y2,n, x2,n), n = 0, · · · ,N − 2; (28)

with x1,0 = x2,0 = x0 and y1,0 = y2,0 = y0. The
observations are represented as{

rj,x,n = xj,n + nj,x,n,
rj,y,n = yj,n + nj,y,n,

, j = 1, 2; n = 0, 1, · · · ,N − 1.

(29)

The mirrored baker’s dynamic system has two
itineraries s1 and s2 from the first and second branches,
respectively, the two of which compose the entire
itinerary for the mirrored baker’s system. As previously
discussed, s1 indicates a partition of the feasible domain
of x0. So does s2 to y0. The entire feasible domain for the
source pair (x0, y0), which is a 2× 2 square centered at the
origin on the plane, is uniformly divided into 2(2N−2) cells,
with each cell being a tiny square having edge of length
2−(N−2). Assuming that the source (x0, y0) is known to
live in some specific cell, the itineraries s1 and s2 can be
determined and the codewords can be expressed as affine
functions:{

x1,k,s1(x0, y0) = a1,k,s1x0 + b1,k,s1 ,
y1,k,s1(x0, y0) = c1,k,s1y0 + d1,k,s1 ,{
x2,k,s2(x0, y0) = a2,k,s2x0 + b2,k,s2 ,
y2,k,s2(x0, y0) = c2,k,s2y0 + d2,k,s2 ,

(30)

with k = 0, 1, · · · ,N − 2. The parameters {a1,k,s1 ,
b1,k,s1 , c1,k,s1 , d1,k,s1} and {a2,k,s2 , b2,k,s2 , c2,k,s2 , d2,k,s2} are for

the first and the second branches, respectively, and can be
determined recursively for k = 0, · · · ,N − 2 as follows:
⎧⎪⎪⎨
⎪⎪⎩

a1,k+1,s1 = −2s1,ka1,k,s1 ,
b1,k+1,s1 = 1 − 2s1,kb1,k,s1 ,
c1,k+1,s1 = − 1

2 s1,kc1,k,s1 ,
d1,k+1,s1 = 1

2 s1,k(1 − d1,k,s1 ),

⎧⎪⎪⎨
⎪⎪⎩

c2,k+1,s2 = −2s2,kc2,k,s2 ,
d2,k+1,s2 = 1 − 2s2,kd2,k,s2 ,
a2,k+1,s2 = − 1

2 s2,ka2,k,s2 ,
b2,k+1,s2 = 1

2 s2,k(1 − b2,k,s2 ),
(31)

with the starting point⎧⎪⎪⎨
⎪⎪⎩
a1,0,s1 = a2,0,s2 = 1,
b1,0,s1 = b2,0,s2 = 0,
c1,0,s1 = c2,0,s2 = 1,
d1,0,s1 = d2,0,s2 = 0.

(32)

We denote aj,sj =[ aj,0,sj , aj,1,sj , · · · , aj,N−1,sj ]T , j = 1, 2 and
define bj,sj , cj,sj and dj,sj in the same way for j = 1, 2.
For a specific itinerary {s1, s2}, we denote its indicated

admissible cell has projection Cs1 onto x0 feasible domain
and projection Cs2 onto y0 feasible domain, i.e.,

x0 ∈ Cs1 = [
e1,l,s1 , e1,u,s1

]
,

y0 ∈ Cs2 = [
e2,l,s2 , e2,u,s2

]
, with⎧⎨

⎩
e1,l,s1 = min

{−b1,N−1,s1+1
a1,N−1,s1

, −b1,N−1,s1−1
aN−1,s1

}
,

e1,u,s1 = max
{−b1,N−1,s1+1

a1,N−1,s1
, −b1,N−1,s1−1

aN−1,s1

}
,⎧⎨

⎩
e2,l,s2 = min

{−d2,N−1,s2+1
c2,N−1,s2

, −d2,N−1,s2−1
c2,N−1,s2

}
,

e2,u,s2 = max
{−d2,N−1,s2+1

c2,N−1,s2
, −d2,N−1,s2−1

c2,N−1,s2

}
,

(33)

Next, we discuss decoding methods for the mirrored
baker’s dynamic system. These decoding methods are
obtained by straightforwardly extending the results for the
original baker’s system. In the following, main results are
provided with details omitted.

3.1 ML decoding
In this subsection, the ML decoding of the mirrored
baker’s map code is presented. The estimate x̂ML

0 , ŷML
0

maximizing the likelihood function is equivalently given
as

(
x̂ML
0 , ŷML

0
) = argmin

s1,s2

⎧⎪⎨
⎪⎩ min

e1,l,s1≤x0≤e1,u,s1
e2,l,s2≤y0≤e2,u,s2

2∑
j=1

N−1∑
k=0{[

rj,x,k −
(
aj,k,sj x0 + bj,k,sj

)]2

+
[
rj,y,k −

(
cj,k,sj y0 + dj,k,sj

)]2}⎫⎪⎬⎪⎭ .

(34)
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For a given pair of sequences {s1, s2}, the optimal solu-
tion of the inner minimization of the above equation is
given as

⎧⎪⎪⎨
⎪⎪⎩
x∗
0,s1,s2 = aTs1

(
r1,x−bs1

)+aTs2
(
r2,x−bs2

)
aTs1as1+aTs2as2

,

y∗
0,s1,s2 = cTs1

(
r1,y−ds1

)+cTs2
(
r2,y−ds2

)
cTs1 cs1+cTs2 cs2

,
(35)

followed by the hard limiter

xinner0,s1,s2 =
⎧⎨
⎩
e1,l,s1 , if x∗

0,s1,s2 < e1,l,s1
e1,u,s1 , if x∗

0,s1,s2 > e1,u,s1
x∗
0,s1,s2 , otherwise.

yinner0,s1,s2 =
⎧⎨
⎩
e2,l,s2 , if y∗

0,s1,s2 < e2,l,s2
e2,u,s2 , if y∗

0,s1,s2 > e2,u,s2
y∗
0,s, otherwise.

. (36)

TheML estimation is given by selecting the (xinner0,s1,s2 , y
inner
0,s1,s2)

among different itineraries {s1, s2} which minimizes the
outer minimization in (34).

3.2 MMSE decoding
To introduce theMMSE decoding results for the mirrored
baker’s system, we adopt the following notations:

⎧⎨
⎩
Ā1 = ‖as1‖2 + ‖as2‖2;
B̄1 = aTs1

(
bs1 − r1,x

)+aTs2
(
bs2 − r2,x

)
;

C̄1 = ‖bs1 − r1,x‖2 + ‖bs2 − r2,x‖2;⎧⎨
⎩
Ā2 = ‖cs1‖2 + ‖cs2‖2;
B̄2 = cTs1

(
ds1 − r1,y

) + cTs2
(
ds2 − r2,y

)
;

C̄2 = ‖ds1 − r1,y‖2 + ‖ds2 − r2,y‖2;

Ēj = exp
{
B̄2
j − ĀjC̄j

2σ 2Āj

}
; D̄j = Q

⎛
⎜⎝

√
Āj

σ
ej,l,sj +

B̄j

σ

√
Āj

⎞
⎟⎠

− Q

⎛
⎜⎝

√
Āj

σ
ej,u,sj +

B̄j

σ

√
Āj

⎞
⎟⎠ ;

J̄j = exp

⎧⎨
⎩− 1

2σ 2 Āj

(
ej,l,sj +

B̄j

Āj

)2
⎫⎬
⎭

− exp

⎧⎨
⎩− 1

2σ 2 Āj

(
ej,u,sj +

B̄j

Āj

)2
⎫⎬
⎭ , j = 1, 2.

(37)

The calculation of the MMSE estimation still follows
similar lines as discussed for the single baker’s system. The
major difference is that since the sign sequence of y0 con-
tributes to the itinerary, the integration of y0 should be

decomposed into parts over different Cs2 ’s. The MMSE
estimation of x0 can be given as

x̂MMSE
0 = E

{
x0|r1,x, r1,y, r2,x, r2,y

}
=

∫ +1

−1
x0 f

(
x0|r1,x, r1,y, r2,x, r2,y

)
dx0

=
∑
s1}

∫
Cs1

x0
f
(
r1,x, r1,y, r2,x, r2,y|x0

)
f (x0)

f (r1,x, r1,y, r2,x, r2,y)
dx0

(38)

= 1
4 f

(
r1,x, r1,y, r2,x, r2,y

) ∑
{s1}

∫
Cs1

x0
∑
{s2}

∫
Cs2

f
(
r1,x, r1,y, r2,x, r2,y|x0, y0

)
dy0dx0

=

∑
{s1,s2}

√
2π
Ā2

Ē1Ē2D̄2

(
σ

Ā1
J̄1 −

√
2π B̄1
Ā3/2
1

D̄1

)
∑

{s1,s2}
2π√
Ā1Ā2

Ē1Ē2D̄1D̄2
. (39)

Similarly, the MMSE estimation of y0 for the mirrored
baker’s map code is given as follows:

ŷMMSE
0 =

∑
{s1,s2}

√
2π
Ā1

Ē1Ē2D̄1

(
σ

Ā2
J̄2 −

√
2π B̄2
Ā3/2
2

D̄2

)
∑

{s1,s2}
2π√
Ā1Ā2

Ē1Ē2D̄1D̄2
. (40)

3.3 ML-MMSE decoding
If the itinerary {s1, s2} is given, the codewords of the mir-
rored baker’s map system can be represented as an affine
function of the original source (x0, y0). The correspond-
ing coefficients can be determined recursively by using
Eqs. (31) and (32). Thus, the mirrored baker’s dynamic
system can be rewritten as follows:

v =

⎡
⎢⎢⎣
x1
y1
x2
y2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
as1 0
0 cs1
as2 0
0 cs2

⎤
⎥⎥⎦
[
x0
y0

]
+

⎡
⎢⎢⎣
bs1
ds1
bs2
ds2

⎤
⎥⎥⎦ = GT

s1,s2u + ts1,s2

(41)

We can first perform the ML estimation discussed in
Section 3.1 and thus obtain the ML detection of the
itinerary {ŝML

1 , ŝML
2 }. By taking the ML detection of the

itinerary as true value, the linear MMSE estimator is
invoked to estimate the original value of {x0, y0} as follows:

ûMMSE
(
ŝML
1 , ŝML

2
) =

(
GŝML

1 ,ŝML
2

GT
ŝML
1 ,ŝML

2
+3σ 2I

)−1
GŝML

(
r−tŝML

1 ,ŝML
2

)
.

(42)

Then, a limiting procedure is performed to obtain admis-
sible decoding results.
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4 Improvement II—single-input (1-D) baker’s
analog code

Inspired by the performance analysis in Section 2.4, to
enhance the original baker’s map performance, effective
protection must be performed equally to all sources.
Besides the mirrored structure proposed in the last
section, here we propose an alternative improving strat-
egy that is to feed the y-sequence with input x0, which
actually forms a single-input (1-D) baker’s analog code .
By feeding the two inputs of the original baker’s map with
one source x0, the problem of poor protection of y0 van-
ishes and protection of x0 is enhanced. In other words, the
protection to all sources is equal and strengthened. Fur-
thermore, another unconspicuous yet profound aspect of
motivation of this 1-D scheme is that it performs a hidden
repetition code of the itinerary, which is explained in full
detail as follows.
As pointed out in the papers [18] and [19], reliably deter-

mining the itinerary is a key factor impacting decoding
performance. In the original baker’s analog coding sys-
tem, the y-sequence does not help to protect the itinerary
since each of its signal is uncorrelated with x0. Recall
that the codeword of the y-sequence of the baker’s sys-
tem is generated by the inverse tent map function using
sign sequence from the x-sequence. By feeding the y-
sequence with x0, we have y1 = G−1

sign(x0) (x0). Equiva-
lently, x0 = G (y1). So actually y1 can be regarded as the
state immediately before x0 in the tent dynamic system,
which we denote as x−1. Following this manner, we can
regard yi as the immediate previous state of yi−1 in a tent
map dynamic sequence for i = 2, · · · ,N − 1. Thus, by
rewriting the y-sequence signal as {yN−1, yN−2, · · · , y0} �
{x−(N−1), x−(N−2), · · · , x0} and concatenating it with the
x-sequence signals, we actually obtain a long tent map
analog code (except that there are two copies of x0 here).
Moreover, this obtained equivalent tent map sequence
has its special pattern: the first half itinerary is reversely
identical with the second half itinerary. In other words,
the 1-D baker’s analog code actually constructs a hid-
den repetition code for the itinerary sequence. Both
the x- and y- sequences now become analog “parity
bits” of the itinerary. This interesting alternative view

of the 1-D baker’s dynamic system is illustrated in
Fig. 4.
Next, sticking to the notations introduced above for the

baker’s system, we give out the decoding results for this
one-dimensional baker’s analog code.

4.1 ML decoding scheme
Similar to the previous discussion, for each given itinerary
s, the optimal solution to inner minimization x∗

0,s is
obtained by

xinner0,s =
⎧⎨
⎩

el,s, if x∗
0,s<el,s,

eu,s, if x∗
0,s>eu,s,

x∗
0,s1,s2otherwise,

with x∗
0,s = aTs (rx−bs)+cTs (ry−ds)

aTs as+cTs cs
.

(43)

The ML estimate is obtained by going over all possible
itineraries and selecting the xinner0,s which minimizes the
likelihood function.

4.2 MMSE decoding scheme
Defining the following parameters

A = ‖as‖2 + ‖cs‖2; B = aTs (bs − rx) + cTs (ds − ry);
C = ‖bs − rx‖2 + ‖ds − ry‖2;

E = exp
{
B2 − AC
2σ 2A

}
; D = Q

(√
A

σ
el,s + B

σ
√
A

)

− Q
(√

A
σ

eu,s + B
σ
√
A

)
;

J = exp
{

− 1
2σ 2A

(
el,s + B

A

)2
}

− exp
{

− 1
2σ 2A

(
eu,s + B

A

)2
}
,

(44)

The MMSE estimate if given as

x̂MMSE
0 =

∑
s

√
2π
A2

E
(

σ
AJ −

√
2πB
A3/2 D

)
∑

s

√
2π
A ED

. (45)

Fig. 4 1-D baker’s dynamic encoding system



Liu et al. EURASIP Journal on Advances in Signal Processing  (2015) 2015:58 Page 11 of 18

4.3 ML-MMSE decoding scheme
Assume that the ML detection of the itinerary is ŝML, then
the received signal can be written in an affine form of x0 as[

rx
ry

]
=

[
aŝML

cŝML

]
x0 +

[
bŝML

dŝML

]
. (46)

The linear MMSE estimate is obtained by performing a
limiting procedure to the following value:

x̂MMSE
0 (ŝML) = aTŝML(rx − bŝML) + cTŝML(ry − dŝML)

‖aŝML‖2 + ‖cŝML‖2 + 3σ 2 .

(47)

5 Simulation results and discussions
In this section, numerical results and discussions are
presented. The MSE performance of ML, MMSE, and
ML-MMSE decoding algorithms for mirrored baker’s and
single-input baker’s system is presented in Figs. 5 and 6,
respectively, where Eu represents the average power for
each source signal and N0 denotes the unilateral power
spectral density. In our experiment, the source signals are
independent and uniformly distributed over [−1,+1]. For
each coding system, codes with N = 3 and N = 5 are
tested. The associated CRLBs (determined explicitly in
Eq. (48)) and uncoded performance are plotted to serve as
benchmarks. Numerical results verify the validity of the
decoding algorithms developed in previous sections and

show that both of the mirrored and single-input structure
have improved MSE performance of the original baker’s
coding system.
Figure 7 compares the performance of the mirrored and

single-input baker’s map and the tent map analog codes
proposed in [16, 17], where code rates of 1/6 and 1/10
are considered for each coding scheme. Although the tent
map encoding scheme can be proved to have a lower
CRLB, its actual performance is disadvantageous to the
improved baker’s schemes over a wide SNR range.
Generally, the distortion of analog transmission systems

can be decomposed into two parts [2]: anomalous dis-
tortion and weak distortion. Weak distortion, stemming
from the channel noise, can become very small and close
to zero as long as the channel noise is sufficiently small.
As analyzed in [13], to reduce the distortion of estima-
tion, the transmitted signal must be stretched as much as
possible, which can be intuitively seen as “amplifying” the
signal. However, due to transmission power constraint,
transmitted signals have to be bounded, and thus, the
stretching cannot be arbitrarily extensive without fold-
ing. This means the stretched signal will have multiple
folds. The ML decoding projects the received signal to a
valid codeword with minimum Euclidean distance. Pro-
jection onto an erroneous fold results into an anomalous
distortion, which introduces a rather notable estimation
error. In practical code design, the weak distortion and

0 5 10 15 20 25 30 35

−18

−16

−14

−12

−10

−8

−6

−4

−2

E
u
/N

0

lo
g 2(M

S
E

)

MSE Performance for Mirrored Baker’s Analog Code

ML,N=5
MMSE,N=5
ML−MMSE,N=5
CRLB,N=5
ML,N=3
MMSE,N=3
ML−MMSE,N=3
CRLB,N=3
Uncoded
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the anomalous distortion are two competing aspects—
lengthening the codeword curve will relieve the weak
distortion but will inevitably introduce more folds and a
narrower space between folds and hence a higher chance
for anomalous distortion; likewise, shortening the code-
word curve will reduce the chance for anomalous distor-
tion but increase the weak distortion. The key is to strike
a best balance between these competing factors.
Specifically, the weak error can be accurately character-

ized by the CRLB, and the anomalous error can be roughly
indicated by the BER.
The CRLB for x0 and y0 of the mirrored baker’s system

is given in the following, which is also CRLB of the single-
input baker’s code

CRLBmirror
x0 = −E−1

x0

⎧⎨
⎩
(

∂2

∂x20
log p(r1,x, r1,y, r2,x, r2,y|x0, y0)

)2
⎫⎬
⎭

= σ 2∑N−1
k=0 a21,k + ∑N−1

k=0 a22,k

= σ 2∑N−1
k=0 22k + ∑N−1

k=0 2−2k

= 3σ 2

4N − 41−N + 3
= CRLBmirror

y0 = CRLB1−d
y0 .

(48)

For comparison,the CRLB for the tent map code code rate
1/(2N) is given as

CRLBtent
x0 = 3σ 2

42N − 1
. (49)

It is not hard to verify the fact that

CRLBtent
x0 < CRLBmirror

x0 = CRLB1−d
x0 ,∀N ∈ N

+. (50)

This means under equal bandwidth expansion (or code
rate), the tent map system will always have a lower weak
distortion.
For tent map and baker’s map coding systems, itinerary

errors cause anomalous distortion. To compare the
anomalous distortion of different analog coding systems,
we examine the bit error rate (BER) performance of the
itinerary bits for each code. We test the tent map code,
mirrored baker’s code, and single-input code with N = 5,
each of which has itinerary length of 4. The BER of each
itinerary bit for different systems is illustrated in the sub-
figures in Fig. 8. It should be noted that in Fig. 8, the tent
map code has a code rate of 1/5 while the mirrored baker’s
and single-input baker’s systems have a code rate of 1/10.
The BER performance for the first four itinerary bits of the
tent map system with rate 1/10 is even worse than that for
the tent map code with rate 1/5.
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From the figures in Fig. 8, themirrored baker’s map code
and single-input baker’s map code have obvious advantage
in the itinerary BER performance. The mirrored structure
exhibits equal protection for different itinerary bits, and
the BER decays with steeper slope than that of the tent
map code. Comparatively, the single-input baker’s system
presents an unequal protection of different itinerary bits.
The BER for itinerary bits with smaller indices decays
much faster than that with larger indices. Since errors in
itinerary bit with smaller index cause more serious dis-
tortion, the single-input baker’s system performs a clever
unequal protection to itinerary bits adaptive to their
significance. This also explains the single-input baker’s
map code’s advantageous performance over the mirrored
baker’s map code in the medium SNR range.
From the above comparison, it can be seen that although

the improved baker’s analog codes have larger weak dis-
tortion than the tentmap code, their anomalous distortion
has been effectively suppressed. Themodified baker’s map
codes achieve a better balance between the protection
against two kinds of distortion and consequently outper-
form the tent map code in a wide SNR range.
Next, we compare the baker’s map code with optimum

performance theoretically attainable (OPTA) and existing
analog coding schemes in literature [12–14]. OPTA can
be obtained by equating the rate distortion function with

the channel capacity. From [24], we know that the rate dis-
tortion function depends on the source distribution and
usually does not have a closed-form expression. One of the
few exceptions is the Gaussian source, whose distortion
function can be obtained analytically (Theorem 13.3.2 in
[24]). In the Gaussian case, OPTA can be obtained in a
closed form and this is part of the reasons why the exist-
ing literature tends to choose Gaussian sources as the case
of study, like [12–15] do. However, Gaussian sources can-
not be fed directly to the family of baker’s map encoders,
whose inputs are required to be bounded ([−1,+1]). Nev-
ertheless, to make our proposal comparable with OPTA
and other previous works, we perform the comparison
in an approximated manner by using a truncated Gaus-
sian source. The source signal is first generated from
the Gaussian distribution N (m, σ 2) = N (0, (1/3)2). We
then truncate it using a limiting range of 3σ = 1, such
that 99.7% of the probability mass falls in the region of
[−1,+1]. The signal value is set as +1 if it exceeds +1,
and −1 if it drops below −1. We performed mirrored
baker’s coding on this truncated Gaussian source, and
the results are shown in Fig. 9. It should be noted that
in the figure, the OPTA bound is calculated with the
true Gaussian source (the only source that is analyti-
cally tractable). Since the simulated coding schemes use
a truncated Gaussian source, we therefore see a small
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discrepancy, and the baker’s code actually appears to
slightly outperform the OPTA at the low SNR region. At
the same time, we also plot the series of the Shannon-
Kotel’nikov spirals with parameters optimized for dif-
ferent channel SNR (Fig. 9 in [12]). It should be noted
that the MSE performance of the mirrored baker’s code
and Shannon-Kotel’nikov spirals in Fig. 9 are obtained by
the ML method, which can be improved by the MMSE
method according to [14] and our previous discussion.
The advantage of the parameterized Shannon-

Kotel’nikov spiral curve approach is that by optimizing
the parameters with respect to the source distribution
and the channel condition, the performance of the code
can be made within some 5 dB from the OPTA [12]. The
cost, however, is that one must know the exact source dis-
tribution and the accurate SNR information. As shown in
Fig. 9, each curve represents a Shannon-Kotel’nikov spiral
with its parameter optimized towards one specific chan-
nel SNR. Every time the channel condition changes (i.e., a
different SNR), the parameter(s) must be adapted or the
code will suffer from a quick performance deterioration
due to channel mismatch.
The proposed baker’s analog codes do not require the

knowledge of the source distribution nor the channel SNR
in order to perform encoding and ML decoding. Instead
of designing a sequence of codes, the one optimized for
each channel SNR in [12], in our approach, a single code
is used for a wide range of SNR range. Figure 9 reflects
that our proposal’s SDR (in dB) has identical slope for high
channel SNR, or diversity, as that of optimized Shannon-
Kotel’nikov spirals. The improved baker’s analog codes
universally outperform the Shannon-Kotel’nikov spirals
optimized for low-channel SNR and have obvious advan-
tage in the low SNR range for all Shannon-Kotel’nikov
spirals. Additionally, the ML decoding algorithm of our
proposed chaotic analog codes has simple closed-form
expression, which is absent for spiral codes.
Last, we compare the proposed analog encoding sys-

tem with the conventional digital encoding systems for
analog signal transmission. In our experiment, the source
signals are uniformly distributed between the range
[−1,+1]. For digital systems, uniform quantization and
turbo codes with recursive systematic convolutional code(
1, 1+D+D2+D3

1+D+D3

)
are used. The BCJR (log-MAP) algorithm

with eight decoding iterations is performed for decoding
the turbo code. Uniform puncturing is utilized to appro-
priately adjust the code rate when applicable. Due to the
different significance of bits obtained by quantization,
equal error protection (EEP) and unequal error protection
(UEP) are considered. The details of the tested systems are
given as follows:

1. Analog: (6, 2) analog code is used by utilizing the
mirrored baker’s code with N = 2 and puncturing

the system signals (y0, x0) for the second branch.
Assuming that codewords are transmitted using
in-phase and quadrature forms (which can be
regarded as ∞-QAMmodulation), the system has
bandwidth expansion of 3/2.

2. Digital-EEP: 8-bit quantization, (3072, 2048, 2/3)
turbo code, and 256-QAM are used. System
bandwidth expansion is 3/2.

3. Digital-UEP1: 8-bit quantization is performed. The
four least significant bits (LSB) are left uncoded. The
four most significant bits (MSB) are encoded by
(4096, 2048, 1/2) turbo code. Both the coded and
uncoded bits are 256-QAMmodulated. System
bandwidth is 3/2.

4. Digital-UEP2: 8-bit quantization is performed. The
two LBS are uncoded. The six MSB are encoded by
(3410, 2046, 3/5) turbo code. All bits are 256-QAM
modulated. System bandwidth is 3/2.

5. Digital-UEP3: 8-bit quantization is performed. The
four LSB are uncoded. The four MSB are encoded by
(2560, 2048, 4/5) turbo code. The coded and
uncoded bits go through 64-QAMmodulation.
System bandwidth is 3/2.

The performance of the proposed analog and four dig-
ital systems is plotted in Fig. 10. The proposed analog
code exhibits an obvious advantage to the digital competi-
tors over a wide range when SNR has low and medium
values. The digital systems enter their waterfall region at
rather high SNR and exhibits error floor, which is the
result of the quantization noise. In fact, due to the band-
width limitation, quantization noise will always exist for
the digital transmission schemes and eventually forms
an error floor that limits the overall system performance
even as the SNR increases to infinity. In Fig. 10, the
digital coding schemes outperform the analog scheme
in a narrow Eu/No range, which is due to the fact that
the digital error correction codes’ performance boosts
drastically in a very narrow SNR range (the so-called
waterfall region). The digital codes’ resilience to noise,
although powerful, is finally suppressed by the quantiza-
tion noise. Comparatively, analog coding schemes have a
very graceful performance evolution, and their distortion
can be made arbitrarily small if the channel is sufficiently
good.

6 Conclusions
This paper introduces a family of pure analog chaotic
dynamic encoding schemes based on the baker’s map
function. We first discuss the coding scheme using the
original baker’s map function, including its encoding
and decoding schemes. Mean square error analysis
indicates that the intrinsic unbalanced protection of
its input results in an unsatisfying performance. Based
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on that, two improvement encoding schemes are
proposed—mirrored baker’s and single-input baker’s
system. These two schemes provide sufficient protection
to all encoded analog sources. The various decoding
methods for the original baker’s coding system are
extended to the modified systems. Compared to the
classical tent map analog code, the improved baker’s map
encoding schemes achieve a better balance between the
anomalous and weak distortion and have advantageous
performance in a wide practical SNR range. Moreover,
our improved encoding schemes also exhibit competition
or even better performance than the classical analog
joint source-channel coding scheme, especially in the low
SNR range, while maintaining much lower complexity
in the decoding procedure. We also compare the ana-
log and conventional digital systems using turbo code
to transmit analog source signals. The digital systems
suffer from granularity noise due to quantization, large
decoding latency, and threshold effect. Comparatively,
the analog coding scheme has a graceful perfor-
mance degradation and outperforms over a wide SNR
region.

Appendix
In this appendix, we provide detailed proof of the closed-
form solution of the MMSE decoder for the original
baker’s map code in (19).

Following notations in Section 2, we start from Eq. (15);
the MMSE estimate of x0 can be given as

x̂MMSE
0 = E{x0|rx, ry} =

∫ +1

−1
x0f (x0|rx, ry)dx0 (51)

=
∑
s

∫
Cs
x0f (x0|rx, ry)dx0 (52)

=
∑
s

∫
Cs
x0

f (rx, ry|x0)f (x0)
f (rx, ry)

dx0 (53)

= 1
2 f (rx, ry)

∑
s

∫
Cs

x0
∫ +1

−1
f (rx, ry|x0, y0)f (y0|x0)dy0dx0

(54)

= 1
4 f (rx, ry)

∑
s

∫
Cs
x0

∫ +1

−1
f (rx, ry|x0, y0)dy0dx0

(55)

= 1
4 f (rx, ry)

∑
s

∫
Cs
x0

∫ +1

−1

[
1√
2πσ

]2N

exp
{

− 1
2σ 2

N−1∑
k=0

{[
rx,k −(ak,snx0+bk,sn)

]2

+ [
ry,k − (ck,sny0+dk,sn)

]2}}
dy0dx0. (56)
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In the above equations, we utilize the fact that x0 and
y0 are independently uniformly distributed over the range
[−1,+1]. To proceed with the above derivation, we intro-
duce some intermediate parameters as follows:

A1 = ‖as‖2; B1 = aTs (bs − rx); C1 = ‖bs − rx‖2;
A2 = ‖cs‖2; B2 = cTs (ds − ry); C2 = ‖ds − ry‖2;

(57)

Thus, the calculation in (51) can be further written as

x̂MMSE
0 =

(
2πσ 2)−N

4 f (rx, ry)
∑
s

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
∫
Csn

x0 exp
{
− 1
2σ 2

[
A1x20+2B1x0+C1

]}
dx0︸ ︷︷ ︸

I1(s)

·
∫ +1

−1
exp

{
− 1
2σ 2

[
A2y20 + 2B2y0 + C2

]}
dy0︸ ︷︷ ︸

I2(s)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
.

(58)

Similarly, the MMSE estimator of ŷMMSE
0 can be also

obtained starting from (15) and is determined as

ŷMMSE
0 = E{y0|rx, ry} =

∫ +1

−1
y0f (y0|rx, ry)dy0 (59)

=
∫ +1

−1
y0

∫ +1

−1

f (rx, ry|x0, y0)f (y0)f (x0|y0)
f (rx, ry)

dx0dy0

(60)

= 1
4f (rx, ry)

∫ +1

−1
y0

2N−1−1∑
n=0

∫
Csn

f (rx, ry|x0, y0)dx0dy0
(61)

=
(
2πσ 2)−N

4f (rx, ry)
∑
s

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
∫ +1

−1
y0 exp

{
− 1
2σ 2

[
A2y20 + 2B2y0 + C2

]}
dy0︸ ︷︷ ︸

I3(s)

·
∫
Csn

exp
{
− 1
2σ 2

[
A1x20 + 2B1x0 + C1

]}
dx0︸ ︷︷ ︸

I4(s)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
.

(62)

Observing Eqs. (58) and (62), the term f (rx, ry) still
needs to be determined, which can be calculated as

f (rx, ry) =
∫ +1

−1

∫ +1

−1
f (rx, ry|x0, y0)f (x0)f (y0)dx0dy0

(63)

=
(
2πσ 2)−N

4
∑
s

(I2(s)I4(s)) (64)

where I2(s) and I4(s) are defined in (58) and (62), respec-
tively. Here we further introduce the following notations:

E1 = exp
{
B2
1 − A1C1
2σ 2A1

}
; D1 = Q

(√
A1
σ

el,s + B1

σ
√
A1

)

− Q
(√

A1
σ

eu,s + B1

σ
√
A1

)
;

E2 = exp
{
B2
2 − A2C2
2σ 2A2

}
; D2 = Q

(
−

√
A2
σ

+ B2

σ
√
A2

)

− Q
(√

A2
σ

+ B2

σ
√
A2

)
;

J1 = exp
{
− 1
2σ 2 A1

(
el,s + B1

A1

)2
}

− exp
{
− 1
2σ 2 A1

(
eu,s + B1

A1

)2
}
;

J2 = exp
{

− 1
2σ 2 A2

(
1 + B2

A2

)2
}

− exp
{

− 1
2σ 2 A2

(
−1 + B2

A2

)2
}
,

(65)

where the function Q(·) is the well-known Gaussian-Q
function which is defined as

Q(x) �
∫ ∞

x

1√
2πσ

e−
t2
2 dt. (66)

After somemanipulations, the integrals I1(s), I2(s), I3(s),
and I4(s) defined previously can be given by use of the
notations in (17) as

I1(s) = E1

(
σ 2

A1
J1 −

√
2πB1σ

A3/2
1

D1

)
; I2(s) =

√
2π
A2

σE2D2;

I3(s) = E2

(
σ 2

A2
J2 −

√
2πB2σ

A3/2
2

D2

)
; I4(s) =

√
2π
A1

σE1D1;

(67)

Thus, by substituting Eqs. (57), (65) and (67) into (58)
and (62), we can finally obtain the MMSE estimator of x0
and y0 as follows:

x̂MMSE
0 =

∑
s

√
2π
A2

E1E2D2

(
σ
A1
J1 −

√
2πB1
A3/2
1

D1

)
∑

s
2π√
A1A2

E1E2D1D2
, (68)

ŷMMSE
0 =

∑
s

√
2π
A1

E1E2D1

(
σ
A2
J2 −

√
2πB2
A3/2
2

D2

)
∑

s
2π√
A1A2

E1E2D1D2
. (69)

The proof has been completed.

Endnote
1Here we ambiguously use the terminology partition,

since every two adjacent cells overlap with their common
endpoints. But this does not harm the decoding
procedure.
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