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Abstract

We propose an approach to reverberant speech recognition adopting deep learning in the front-end as well as
back-end of a reverberant speech recognition system, and a novel method to improve the dereverberation performance
of the front-end network using phone-class information. At the front-end, we adopt a deep autoencoder (DAE) for
enhancing the speech feature parameters, and speech recognition is performed in the back-end using DNN-HMM
acoustic models trained on multi-condition data. The system was evaluated through the ASR task in the Reverb
Challenge 2014. The DNN-HMM system trained on the multi-condition training set achieved a conspicuously higher
word accuracy compared to the MLLR-adapted GMM-HMM system trained on the same data. Furthermore, feature
enhancement with the deep autoencoder contributed to the improvement of recognition accuracy especially in the
more adverse conditions. While the mapping between reverberant and clean speech in DAE-based dereverberation is
conventionally conducted only with the acoustic information, we presume the mapping is also dependent on the
phone information. Therefore, we propose a new scheme (pDAE), which augments a phone-class feature to the
standard acoustic features as input. Two types of the phone-class feature are investigated. One is the hard recognition
result of monophones, and the other is a soft representation derived from the posterior outputs of monophone DNN.
The augmented feature in either type results in a significant improvement (7–8% relative) from the standard DAE.
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1 Introduction
In recent years, the automatic speech recognition (ASR)
technology based on statistical techniques achieved a
remarkable progress supported by the ever increasing
training data and the improvements in the computing
resources. Applications such as voice search are now
being used in our daily life. However, speech-recognition
accuracy in adverse environments with reverberation and
background noise, which are commonly observed in home
and public space, is still at low levels. A key breakthrough
for the ASR technology to be accepted widely in the soci-
ety will be the methodology for hands-free input. This
is also critical for realizing conversational robots. Speech
reverberation adversely influences the ASR accuracy in
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such conditions and various efforts have been made to
solve this problem.
Reverberant speech recognition has been tackled by fea-

ture enhancement at the front-end and model adaptation
at the back-end. One of the simplest approaches to feature
enhancement is the cepstral mean normalization (CMN)
[1]. However, since reverberation time is usually longer
than the frame window length for feature extraction, its
effectiveness is limited. A major back-end approach is
the use of maximum-likelihood linear regression (MLLR)
[2] that adapts the acoustic model parameters to the
corrupted speech.
More sophisticated enhancement techniques for ASR

have been investigated. Speech enhancement techniques
include deconvolution approaches that reconstruct clean
speech by inverse-filtering reverberant speech [3–5]
and spectral enhancement approaches that estimate and
remove the influences of the late reverberation [6, 7].
Since an improvement measured by SNR may not be

© 2015 Mimura et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly credited.

http://crossmark.crossref.org/dialog/?doi=s13634-015-0246-6-x&domain=pdf
mailto: mimura@ar.media.kyoto-u.ac.jp
http://creativecommons.org/licenses/by/4.0


Mimura et al. EURASIP Journal on Advances in Signal Processing  (2015) 2015:62 Page 2 of 13

directly related to the ASR accuracy, there also are
approaches to speech enhancement based on speech
recognition likelihoods in the back-end [8].
Recently, following the great success of deep neural

networks (DNN), speech dereverberation by deep autoen-
coders (DAE) has been investigated [9–13]. In these
works, DAEs are trained using reverberant speech fea-
tures as input and the clean speech features as target so
that they recover the clean speech from corrupted speech
in the recognition stage. DAE can effectively and flexibly
learnmapping from corrupted speech to the original clean
speech based on the deep learning scheme.
In this paper, we propose to use deep learning both

in the front-end (DAE-based dereverberation) and back-
end (DNN-HMM acoustic model) in a reverberant
speech-recognition system. Recognition of reverberant
speech is performed combining “standard” DNN-HMM
[14] decoding and a feature enhancement through deep
autoencoder (DAE) [9, 10, 15]. The combination of the
DNN classifier and the DAE can be regarded as a sin-
gle DNN classifier with a very deep structure. However,
we can expect a mutually complementary effect from
the combination of the two networks that are optimized
toward different targets.
We also propose a new scheme (pDAE) for DAE-based

front-end dereverberation, in which the input vector con-
sisting of acoustic features is augmented with phone-class
features. While DAE-based dereverberation is conven-
tionally conducted only with the acoustic information, we
presume that the mapping from reverberant speech to
clean speech is also dependent on the phone information.
Since each dimension of the acoustic feature such as filter-
bank output has a different range of values depending on
phones, the information on “which phone-class the cur-
rent speech frame belongs to” should be helpful for DAE
to recover the clean speech from reverberant speech. We
investigate the following two types of the phone-class fea-
tures: soft and hard features. We evaluate the effect of
these features in the training and recognition stage.
After a brief review on DNNs for reverberant speech

recognition (DAE front-end and DNN-HMM back-end)
and our baseline system combining the two networks, the
detail of the proposed DAE augmented with the phone
class feature is explained in Section 3. Experimental eval-
uations of the method are presented in Section 4 before
the conclusion in Section 5.

2 DNN for reverberant speech recognition
2.1 DNN-HMM
Pattern recognition by neural networks has a long his-
tory [16]. In recent years, deep neural networks (DNN)
have been drawing much attention again in the pattern-
recognition field thanks to the establishment of an effec-
tive pre-training method [17] and the dramatic increase

of computing power and also the available training data.
It has been applied to ASR combined with hiddenMarkov
models (HMM) and reported to achieve significantly
higher accuracy than the conventional GMM (Gaussian
Mixture Model)-HMM scheme in various task domains
[14, 18–20].
In the first place, each layer of the network is trained

as a restricted Boltzmann machine (RBM) independently.
Next, these RBMs are stacked together to constitute a
deep belief network (DBN). An initial DNN is then estab-
lished by adding a randomly initialized softmax layer.
This DNN is trained in a supervised way through error
backpropagation using HMM state IDs as labels.
The activation vector of the l-th hidden layer xl and the

i-th output xoutputi are calculated by

xl = 1

1 + exp
(
−

(
Wlxl−1 + bl

)) , (1)

and

xoutputi =
exp

(
Woutput

i,∗ xL + bLi
)

∑
j exp

(
Woutput

j,∗ xL + bLj
) , (2)

respectively. Here, Wl and bl are the weight matrix and
the bias vector of the l-th hidden layer, respectively.
Woutput and boutput are the weight matrix and the bias
vector of the softmax output layer, respectively. x0 corre-
sponds to the input acoustic feature vector of the DNN.
There have so far been two typical ways to combine

DNNs and HMMs. In one approach, the state emis-
sion probabilities are computed using DNNs instead of
the conventional GMMs. In the other approach, the
output from DNNs are used as input to conventional
GMM-HMMs. The former is called the hybrid approach
[14, 19, 20], and the latter is called the tandem approach
[21–23]. In this paper, we adopt the hybrid approach,
which has a simple structure and therefore is easy to
build. We call these acoustic models built with the hybrid
approach as DNN-HMM hereafter in this paper. Our
DNN-HMM models are built using the standard recipe
described in [14].
One of the advantages of the DNN-HMM is that they

are suited for handling multiple frames, which is vital
especially for reverberant speech recognition where we
need to handle long-term artifacts.

2.2 Speech feature enhancement by deep autoencoders
(DAE)

The DNN structure described in the previous section can
be utilized as a deep autoencoder (DAE) when trained for
a different target [24]. In this case, the lower layers are
regarded as an encoder to obtain an efficient code and
the upper layers are regarded as a decoder that “reverses”



Mimura et al. EURASIP Journal on Advances in Signal Processing  (2015) 2015:62 Page 3 of 13

the encoder. As a whole, a DAE has a vertically symmetric
network structure (Fig. 1). Unlike DNNs for classification,
DAEs are typically trained to reconstruct signals using
error backpropagation with themean-squared error as the
loss function [25].
Initialization by RBM training is very important in

DAEs as well. However, each of the networks in the
decoder layers are initialized with the same RBM of the
counterpart in the encoder layer. In the decoder lay-
ers, network weights are initialized as the transpose of
those used for the corresponding encoder layer network,
and biases are initialized using visible biases from RBMs
instead of hidden biases that are used for the encoder
layers. We use the identity function as the output func-
tion of the DAE, and the output activation of the DAE is
calculated as

xoutput = WLxL−1 + bL (3)

TheDAE-based speech processing was pioneered by [9],
andDAEs have been applied to front-end feature enhance-
ments in robust speech recognition [10–12, 15]. DAEs for
speech enhancement are trained using the clean speech
features as target and the corrupted speech features as
input (denoising autoencoders [26]). DAE-based derever-
beration has also been investigated recently [10–12]. It
is shown that networks with a deep structure can effec-
tively and flexibly learn mapping from corrupted speech

to the original clean speech based on the deep learning
scheme. However, in these pioneering works, the speech
recognition experiments were conducted using traditional
GMM-HMM systems. Most recently, the system combin-
ing the front-end dereverberation based on deep learn-
ing and the DNN-HMM back-end is being investigated
[13, 27].

2.3 Combination of DAE front-end and DNN-HMM
back-end

We first investigate using deep learning both in front-end
(DAE-based dereverberation) and back-end (DNN-HMM
acoustic model) in reverberant speech recognition [13].
The combination of the DNN classifier and the DAE can
be regarded as a single DNN classifier with a very deep
structure (Fig. 2). We can expect a mutually complemen-
tary effect from the combination of the two networks that
are optimized toward different targets. The DNN part of
the DNN-HMM and the DAE are trained separately using
the same multi-condition data.
Since the dereverberation using the DAE is performed

not on the STFT level ([10]) but the feature level
([11, 12]) in our system, we can feed the DAE out-
put to the DNN-HMM acoustic model without any fea-
ture extraction process. However, we have options with
regard to adding delta parameters and splicing the context
frames.

Fig. 1 Deep auto encoder
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Fig. 2 Baseline system combining the DAE front-end and DNN-HMM back-end

The input vector of DNN consists of multiple frames of
filterbank outputs to handle long-term information. It is
also important to add delta and acceleration parameters to
the feature vector of each frame for obtaining better ASR
performance as shown in the later section. On the other
hand, it may bemore difficult to learn network parameters
when the target vector of DAE has a larger dimension. To
manage this tradeoff, we investigate three options for DAE
target.
In the first option, we use only the static part in the fil-

terbank feature of the center frame as a DAE target. In this
setting, while the number of dimensions of the DAE out-
put is very small, we need to calculate delta parameters of
DAE outputs and splice multiple frames of the resulting
vectors before feeding to the DNN-HMM acoustic model.
In the second option, the DAE outputs delta and accelera-
tion parameters of filterbank features of the center frame
along with static parameters. Here, we still need to splice
the DAE outputs. In the third one, the DAE outputs mul-
tiple frames of features including delta and acceleration
parameters simultaneously. When using this option, we
can directly input the DAE outputs to the DNN-HMM
acoustic model.

3 DAE augmented with a phone-class feature
3.1 pDAE using phone-class information
Recently, extension of DNN-HMM is investigated by aug-
menting input with additional information, for example
speaker adaptation using I-Vectors [28, 29] and noise-
aware training using noise information [30]. Saon et al.
[28] proposed a method to train a single network that

conducts speaker adaptation and phone classification
simultaneously by feeding I-Vectors (speaker identity fea-
tures) to the network. Considering that there are vari-
ations in the acoustic features from different speakers
caused by the factors such as variations in vocal tract
lengths, the speaker-identity features are helpful for the
normalization of the variations.
In this work, we propose to use a phone-class feature as

an additional input of the DAE to enhance the derever-
beration performance. Since the acoustic features in clean
speech vary depending on phones, the phone-class infor-
mation is expected to be helpful for the DAE to recover
the clean speech from corrupted speech. We refer to this
proposed DAE as pDAE (Fig. 3). The training procedure
of pDAE is the same as the standard DAE, except that the
input is augmented with an additional phone-class feature
of the center frame of the input. The activation vector of
the first hidden layer for frame t is calculated as

x1(t) = 1

1 + exp
(
−

(
W 1

ax0(t) + W 1
pp(t) + b1

)) (4)

Here, p(t) is the phone class feature for frame t. The
weight of the first hidden layer consists of two different
matrices; W 1

a is applied to the standard acoustic feature
x0(t), andW 1

p is to the phone class feature p(t).
The concept of the proposed method is similar to the

stochastic matching proposed by Sankar et al. [31], where
the feature normalization is conducted by a function that
depends on the phone information. In this work, the map-
ping is done by the more general deep-learning scheme
(DAE).
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Fig. 3 Feature enhancement by pDAE using a phone-class feature

3.2 Phone-class features
The following two types of phone-class features are inves-
tigated in this study: soft and hard features.
The soft phone-class feature PCsoft is a soft representa-

tion of phone classification results. It is defined as a vector
containing all the phone state posteriors for the frame cal-
culated with a DNN trained for phone state classification.
We use monophone state posteriors (135-dimensional)
instead of triphone state posteriors (3113-dimensional)
which are used in the acoustic model in order to keep the
dimension of the input vector not much larger than the
original vector (440-dimensional). The monophone DNN
is trained using the same multi-condition data used for
the triphone DNN training. pDAE using the PCsoft feature
is illustrated in Fig. 4. This is similar to the MLP-derived
features used in the tandem approach [21–23].
A hard phone-class feature PChard is defined as themost

probable phone state for the frame and is encoded using
the 1-of-K scheme. The element corresponding to the
phone state which has the largest posterior probability is
1, and all other elements are 0. We can derive the PChard
from PCsoft by identifying the phone state with the highest
posterior probability.
Another hard feature is PCoracle

hard , and it is defined as the
“ground truth” phone state for the frame. It is also encoded
using the 1-of-K scheme, where the element correspond-
ing to the correct state is 1 and others are set to be 0.
With the training data for which manual transcription is
available, we can compute the PCoracle

hard features from the
forced-state alignments using the manual transcripts.
In the recognition time, the “ground truth” phone

sequence for the input utterance is not available and,
therefore, PCoracle

hard features cannot be obtained. Instead,
we can use an approximate version of it that we call
PCdecode

hard . We first recognize the input without using a

DAE and obtain a best word sequence hypothesis. Then,
the phone HMM state labels for all the input frames are
generated by performing forced alignment using the word
sequence hypothesis. These state labels are converted into
PCdecode

hard features in the same manner as PCoracle
hard . The

PCdecode
hard feature is expected to be more reliable than the

PChard feature which is computed frame by frame because
it take advantage of the initial recognition results gener-
ated using triphone models as well as the language model.
However, computation of the PCdecode

hard features requires
an extra decoding pass and may not be suitable for online
real-time processing. Note that it is not straightforward
to define a soft feature that has to do with all the mono-
phone states from the one-best or evenN-best recognition
results.
From the definitions above, the soft feature PCsoft and

the hard features, PChard, PCoracle
hard , and PCdecode

hard all have
the same number of dimensions, which is the number of
different states in the monophone GMM-HMM. There-
fore, we can try various combinations of phone class
features for training and recognition stages. In Section 4.5,
we investigate the best combination of them.

4 Experimental evaluations
4.1 Task and data set
The proposed system was evaluated following the instruc-
tions for the ASR task of the Reverb Challenge 2014 [32].
For training, we used the standard multi-condition data
that is generated by convolving cleanWSJCAM0 data with
room impulse responses (RIRs) and subsequently adding
noise data. The amount of the training data is 15.5 h (7861
utterances). Evaluation data consists of “SimData” and
“RealData”. SimData is a set of reverberant speech gen-
erated by convolving clean speech with various RIRs and
adding measured noise data to make the resulting SNR
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Fig. 4 Feature enhancement by pDAE using PCsoft feature

to be 20 dB. RIRs were recorded in three different-sized
rooms (small, medium, and large) and with two micro-
phone distances (near = 50 cm and far = 200 cm). The
reverberation time (T60) of the small, medium, and large
rooms are about 0.25, 0.5, and 0.7 s, respectively. These
rooms are different from those for measuring RIRs used
in generating multi-condition training data. RealData was
recorded in a different room from those used for measur-
ing RIRs for SimData. It has a reverberation time of 0.7 s.
There are two microphone distances in RealData, which
are near (≈100 cm) and far (≈250 cm). Utterance texts
for both SimData and RealData were chosen from WSJ-
CAM0 prompts. All the reverberant speech recordings
were made with eight microphones.
In the experiments in this paper, we only use a single

channel both for training and testing. The speech recogni-
tion performance is measured by word error rate (WER)
in a 5K vocabulary speech-recognition task. For train-
ing, we used the 7861 utterances of multi-condition data,
which was also the training data for multi-condition base-
line GMM-HMM. The training tools for the DNN-HMM
and DAE were implemented using Python. We used the
CUDAMat library [33] to perform matrix operations on a
GPU for speeding up the training procedures. For decod-
ing, we used the HDecode command from HTK-3.4.1
with a small modification to handle DNN output. The

language model we used is the standard WSJ 5K trigram
model1.
The baseline triphone GMM-HMMs have 3113 shared

states, and each state has 10 Gaussian-mixture compo-
nents. The acoustic features are MFCCs. The results
obtained with the GMM-HMM systems trained using the
clean data and the multi-condition data (GMM-HMM
(cln) and GMM-HMM (mc)) are shown in row 1 and 2
of Table 1, respectively. While the performance with the
clean GMM-HMM is very low in the adverse conditions,
it is effectively enhanced by the multi-condition train-
ing. The results with the MLLR-adapted multi-condition
GMM-HMM system are shown in Table 1, row 3. MLLR
adaptation was conducted using all utterances of each test
condition, which is defined by the combination of the
room size and the microphone distance. The model adap-
tation also improved the performance in all reverberant
conditions.

4.2 DNN-HMM
Here, we describe the details of the DNN-HMM system
we used for the evaluation experiments.
A 1320-dimensional feature vector consisting of eleven

frames of 40-channel log Mel-scale filter bank outputs
(LMFB) and their delta and acceleration coefficients is
used as the input to the network. The targets are chosen
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Table 1 Speech recognition performance on reverb challenge 2014 test set (WER (%))

SimData RealData

Room 1 Room 2 Room 3 Ave. Room 1 Ave.

Near Far Near Far Near Far Near Far

(1) GMM-HMM (cln) 10.79 16.11 33.62 81.72 43.97 88.35 45.92 87.93 85.92 86.95

(2) GMM-HMM (mc) 14.38 14.06 15.03 28.85 19.06 35.57 21.16 46.79 45.44 46.13

(3) GMM-HMM (mc, w MLLR) 12.39 12.71 14.23 26.23 17.11 33.92 19.43 42.89 42.27 42.59

(4) DNN-HMM (cln) 6.85 10.22 16.18 45.52 23.12 60.25 27.05 65.25 66.78 65.99

(5) DNN-HMM (cln) + DAE 6.25 6.78 7.65 13.67 9.04 16.75 10.03 30.66 31.87 31.25

(6) DNN-HMM (cln) + pDAE (PCsoft ) 5.51 6.44 7.06 12.74 8.17 14.26 9.04 27.37 26.60 27.00

(7) DNN-HMM (cln) + pDAE (PCdecodehard ) 5.18 6.12 7.14 12.57 7.66 12.42 8.54 27.75 26.60 27.20

(8) DNN-HMM (mc) 5.42 6.37 7.27 12.56 7.85 12.90 8.74 28.59 30.87 29.67

(9) DNN-HMM (mc) + DAE 9.30 9.69 8.36 11.92 9.30 15.25 10.62 24.37 25.52 24.93

(10) DNN-HMM (mc) + pDAE (PCsoft ) 8.59 9.13 7.77 11.53 8.74 13.53 9.87 23.47 23.09 23.29

(11) DNN-HMM (mc) + pDAE (PCdecodehard ) 7.29 7.86 7.48 10.87 8.09 11.06 8.78 22.74 22.96 22.85

(12) DNN-HMM (retrain) + DAE 6.10 6.32 7.04 13.04 6.89 13.50 8.83 31.30 32.14 31.71
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to be the 3113 shared states of the baseline GMM-HMMs.
The six-layer network consists of five hidden layers and a
softmax output layer. Each of the hidden layers consists
of 2048 nodes. The network is initialized using the RBMs
trained with reverberant speech.
The fine-tuning of the DNN is performed using cross

entropy as the loss function through error backpropaga-
tion supervised by state IDs for frames. The mini-batch
size for the stochastic gradient descent algorithm was
set to be 256. The learning rate was set to be 0.08 ini-
tially, and it was halved if the improvement in the frame
accuracies on the held-out set between two consecutive
epochs fell below 0.2%. The momentum was set to be
0.9. The training was stopped after 20 epochs. The state
labels for the frames were generated by the forced align-
ment of clean data with HVite command of HTK3.4 using
the baseline GMM-HMM acoustic model. The HMM
model parameters other than emission probabilities such
as transition probabilities were copied from the baseline
GMM-HMM.
The WER for the evaluation data set obtained with the

DNN-HMM system trained using multi-condition data
(“DNN-HMM(mc)”) are shown in the row 8 of Table 1.
For all subsets of the “SimData” of the evaluation set, the
DNN-HMM system achieved drastically higher accura-
cies than the adapted GMM-HMM system. In the most
adverse condition (Room 3, Far), theWER was reduced by
21.0 points (from 33.92 to 12.90%). For the “RealData”, the
DNN-HMM system achieved a higher accuracy than the
the adapted GMM-HMMs by 12.9 points.
The DNN-HMM system was trained on the clean

training set as well as the multi-condition training set.
The WER obtained with this clean DNN-HMM (“DNN-
HMM(cln)”) system are shown in row 4 of Table 1. The
accuracies by the clean DNN-HMMs are drastically lower
than the multi-condition DNN-HMMs. We see that the
multi-condition training is effective for DNN-HMMs as
well as GMM-HMMs from these results.

4.2.1 Evaluation for clean test data
We also performed evaluation experiments on clean
speech (“ClnData”). The WER obtained with the baseline
GMM-HMM systems are shown in rows 1 through 3 of
Table 2. The results with the multi-condition DNN-HMM
system is shown in row 5. We see that the accuracies
for clean speech deteriorate significantly with the GMM-
HMMs trained using multi-condition data. Meanwhile,
the results obtained by DNN-HMMs trained using multi-
condition data were much better than those with the
GMM-HMMs trained using clean data.
The accuracies by the clean DNN-HMMs (Table 2, row

4) were better than the multi-condition DNN-HMMs,
although the difference between them were not as large
as the difference between the clean and multi-condition

Table 2 System performance on clean data (WER (%))

ClnData

Room 1 Room 2 Room 3 Ave.

Baseline (cln, w/o MLLR) 7.79 8.26 7.80 7.96

Baseline (mc, w/o MLLR) 18.60 18.57 17.80 18.33

Baseline (mc, w MLLR) 13.88 14.01 13.44 13.78

DNN-HMM (cln) 4.02 4.47 4.38 4.29

DNN-HMM (mc) 6.25 6.40 6.38 6.35

GMM-HMM systems. These results show that DNN-
HMM trained with the multi-condition data is robust
against mismatch of the input condition.

4.2.2 Importance of delta feature
To confirm the importance of delta and acceleration
parameters in DNN-based acoustic modeling for rever-
berant speech recognition, we evaluated the DNN-HMM
system trained with only the static part of the acoustic
feature of the multi-condition data.
As shown in the Table 3, removing the delta and

acceleration parameters caused significant performance
degradation in both of the real and simulated condi-
tions, although the input vector contains LMFB features
of 11 context frames. These results clearly show that delta
and acceleration parameters are important. Therefore, we
decided to add delta and acceleration coefficients to the
outputs of the DAE front-end in some way before feeding
to the DNN-HMM acoustic model.

4.2.3 Matched condition training
In general, multi-condition training is an effective
strategy, since the run-time reverberation condition is
unknown in the system development stage. However, the
part of the training data with mismatched reverberation
conditions to the run time may cause an adverse effect.
We could expect better performance if we prepare models
trained with single reverberation conditions and choose a
best-matchedmodel at the run time in someway, although
the choice of the best-matched model at run time itself is
non-trivial.
To see the possible effectiveness of this approach, we

trained DNNs with simulated training data that would
match the “RealData” part of the evaluation data. We gen-
erated two simulated training-data sets using the RIR for
“Near” and “Far” microphone distances in a “Large” room.

Table 3 Importance of delta and acceleration parameters
(WER (%))

SimData RealData

DNN-HMM (mc, w delta) 8.74 29.67

DNN-HMM (mc, w/o delta) 10.73 33.05
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Each of the resulting training sets has the same size as
the whole multi-condition training set. The experimental
results are shown in Table 4.
The accuracy for “RealData”-“Far” is improved with the

“Large”-“Far” model. However, the accuracies for both
conditions in “RealData” are drastically degraded with the
“Large”-“Near” model. Although both labeled “Near”, the
microphone distances of 50 cm in “Large”- “Near” (train-
ing) and 100 cm in “RealData”-“Near” (test) seem to have
made a big difference in the reverberated speech.
From these preliminary experimental results, we see

that the recognition performance can be improved with
the collection of single condition models, when a single-
condition model matches the run-time condition very
well. However, when the selected single-condition model
is not matched well, it does not perform as well as the
multi-condition model.

4.3 Denoising deep autoencoder (DAE)
Here, we describe the detail of the DAE front-end. The
input of the DAE was set to be the eleven-frame sequence
of 40-channel LMFB features (440-dimensional). The tar-
get for the DAE was one frame (40-dimensional) of the
clean speech which corresponds to the center frame of
the input. Other target options will be investigated in
Section 4.3.3.
The DAE is fine-tuned using reverberant speech as the

input and clean speech as the target. The input frames
and the output frames for the training were adjusted to
be time-aligned in the multi-condition training-data gen-
eration process. The last portions of reverberant speech
utterance files exceeding the length of the clean speech
were trimmed to equalize the lengths of input and output.
The DAE has six layers in total. The number of the lay-

ers was determined using a development set. The number
of nodes in each layer is set to be 2048 except for input
and output layers2. The network is initialized using the
same RBMs as used for initializing the DNNs described in
the last subsection, which were trained using reverberant
speech. The lower three layers were initialized using the
weights of the first three RBMs and the hidden unit biases.
The upper three layers were initialized using the transpose
of the weightsmentioned above and the visible unit biases.

Table 4 Performances of single-condition DNN-HMMs on
RealData (WER (%))

RealData

Room 1

Near (= 100 cm) Far (= 250 cm)

DNN-HMM (mc) 28.59 30.87

DNN-HMM (Large Near (= 50 cm)) 37.18 39.13

DNN-HMM (Large Far (= 200 cm)) 28.71 27.95

While the RBM we used for the initialization of the out-
put layer originally has 40 * 11 nodes in the upper layer, we
used only the 40 nodes corresponding to the center frame.
The fine-tuning of the DAE was performed by error

backpropagation with squared error as the loss func-
tion. The parameters such as the mini-batch size and the
momentum are set to be the same as those for DNN
training. However, the initial learning rate was set to be
0.001, which is smaller than the one for DNN training.
The learning rate was halved if the improvement in the
frame accuracies on the held-out set between consecutive
two epochs fell below 0.2%. The frame accuracies were
calculated using the “DNN-HMM (cln)” and the features
enhanced with the network obtained at each epoch end.
The evaluation results with the combination of the DAE

and the clean DNN-HMM are shown in Table 1, row
5. The accuracies are drastically improved in all condi-
tions from the clean DNN-HMM without DAE (row 4
of the same table). The DAE has done an effective fea-
ture enhancement as expected. Interestingly, these results
are comparable to those from the multi-condition DNN-
HMMwithout DAE (Table 1, row 8).
The results with the combination of the DAE and the

multi-condition DNN-HMM are shown in Table 1, row
9. The combination of the DAE front-end and the multi-
condition DNN-HMM significantly improved the WER
for very adverse “RealData” conditions, while it was not
effective for “SimData” conditions, which have similar
RIRs to the training data. Since SimData is very simi-
lar to the training data, either of the DAE front-end or
the multi-condition DNN-HMMback-end is sufficient for
dereverberation, and the simultaneous use of the both
results in significant degradation in the accuracies. On the
other hand, RealData has different characteristics from
the training data, and the combination of the DAE and the
multi-condition DNN-HMM has a complementary effect.
Figure 5 shows an example of DAE-enhanced utter-

ances. The smearing in the spectral pattern along with the
time axis is ameliorated in the DAE-enhanced features.

4.3.1 MFCC vs. LMFB
It is widely accepted that the LMFB feature is more
effective in DNN-based acoustic modeling than the cep-
strum feature such as MFCC. But it is not clear if
LMFB is the best choice for the DAE-based front-
end dereverberation. Therefore, here we compared the
MFCC and LMFB features. The MFCC feature consists
of 12-dimensional MFCC, �MFCC, ��MFCC, power,
�power, and ��power. The recognition results obtained
by MFCC-based and LMFB-based systems are shown in
Table 5.
When used without the DAE-based front-end, the accu-

racy with the DNN-HMM (mc) was degraded significantly
by using MFCC as the acoustic feature (from row 3 to
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Fig. 5 Example of DAE-enhanced utterance

row 1). More importantly, when using MFCC, the DAE
front-end yielded little improvement (from row 1 to row
2), while the improvement by the DAE was significant in
the LMFB-based system (from row 3 to row 4). From these
results, we understand that it is essential to use the LMFB
feature as the acoustic feature in the combined system.

4.3.2 DNN-HMM retrainedwith DAE output
The speech-feature parameters enhanced by the DAEmay
have different characteristics from the original reverber-
ant speech. Therefore, we retrained the DNN using the
DAE output and performed speech recognition experi-
ments. This time, the RBMs for initializing the network
were also trained using the DAE output as training data.
The WER obtained using this retrained network is

shown in Table 1, row 12. We see that improvement
of the accuracy is observed for “SimData”, but not for
“RealData”. The DAE is trained using the simulated
reverberant speech data generated in the same manner
as SimData. Therefore, DNN-HMM retrained using the
multi-condition speech data processed through the DAE
is best matched to the DAE-processed SimData test set.
That is the reason why it outperforms 5 and 9 where
DNN-HMMs were trained using the unmatched training
data. However, it does not work well with the RealData,
because the RealData has much different characteristics
(room size and microphone distance) from the training
data and the SimData, and the retrained model may have
over-fitted to the training data.

Table 5 Comparison of acoustic feature (WER (%))

Feature SimData RealData

DNN-HMM (mc) MFCC 10.97 32.97

DNN-HMM (mc) + DAE MFCC 11.80 32.51

DNN-HMM (mc) LMFB 8.74 29.67

DNN-HMM (mc) + DAE LMFB 10.62 24.93

4.3.3 Autoencoder target options
In the experiment above, the DAE was trained with only
the center frame of static LMFB feature parameters as tar-
get. However, as described in Section 3.1, we have some
target options. Here, we compare the following three types
of DAE: DAE trained with the 11 frames of LMFB feature
with delta and acceleration parameters (“DAE(1320)”),
DAE trained with the center frame of the LMFB feature
with delta and acceleration parameters (“DAE(120)”), and
DAE trained with the center frame of LMFB feature with-
out delta and acceleration parameters (“DAE(40)”). The
recognition results obtained with these three DAEs are
shown in Table 6.
Clearly different tendencies were observed in “Sim-

Data” and “RealData”. In “SimData”, which has similar
RIR to the training data, as the number of dimensions
of the target (therefore output) increased, the accuracy
is slightly improved. On the other hand, in “RealData”,
increasing the target dimensions caused significant per-
formance degradation. From these results, we understand
that the DAE with the smallest number of target dimen-
sions is the least susceptible to over-fitting and the most
robust against unknown reverberation conditions, while it
requires additional processes for adding delta parameters
and splicing context frames, which are computationally
inexpensive.

Table 6 Comparison of autoencoder target options (WER (%))

SimData RealData

DNN-HMM (cln) + DAE (40) 10.03 31.25

DNN-HMM (cln) + DAE (120) 9.29 33.61

DNN-HMM (cln) + DAE (1320) 9.28 34.68

DNN-HMM (mc) + DAE (40) 10.62 24.93

DNN-HMM (mc) + DAE (120) 9.70 26.32

DNN-HMM (mc) + DAE (1320) 9.65 28.21
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4.4 DAE augmented with phone class feature (pDAE)
Then, we evaluated the dereverberation performance of
the proposed DAE augmented with the phone-class fea-
ture. The training procedure for pDAE is the same as
that for the baseline DAE, except that the input vector
is augmented with the 135-dimensional phone-class fea-
ture. The input layer of pDAE has 575 (440 + 135) nodes.
The mean and variance of the phone-class feature vec-
tor are normalized in the same manner as the filterbank
feature. The frame accuracy obtained on the held-out set
during the fine-tuning of the pDAE and the baseline DAE
is shown in Fig. 6. Here, we used PCsoft as the phone-class
feature. The frame accuracy was calculated using the clean
DNN-HMM back-end and outputs of the DAE and the
pDAE at the end of each epoch. We observe that pDAE
is consistently better than the baseline DAE, suggesting
that feeding the phone-class information to the DAE is
effective.
The evaluation results with the combination of the

pDAE (PCsoft) and the clean DNN-HMM back-end are
shown in Table 1, row 6. In all “SimData” conditions, the
WERwas reduced from the baseline DAE (Table 1, row 5).
In more adverse “Far” conditions in “Room 2” and “Room
3”, the improvements are larger. In “RealData” conditions,
the WER was reduced by 4.25 points from the baseline
DAE, and the improvement is significantly higher than in
“SimData”. The phone-class information is more effective
when the mismatch between the training data and the test
data is larger.

The WER with the combination of the pDAE (PCsoft)
and the multi-condition DNN-HMM back-end is shown
in Table 1, row 10. In all “SimData” conditions, the per-
formance degradation observed in the combination of
the multi-condition DNN-HMM and the standard DAE
front-end (Table 1, row 9) was mitigated by using the
pDAE. In “RealData”, theWER was reduced by 1.64 points
from the baseline DAE, confirming that the phone infor-
mation is effective even when using the multi-condition
DNN-HMM back-end, which is more robust for reverber-
ant speech. The improvement from the standard DAE in
both “SimData” and “RealData” conditions is statistically
significant at the 1% level.

4.5 Comparison of soft and hard phone-class features
Next, we compared the two types of the phone-class fea-
tures described in Section 3.2. We evaluated six different
combinations of the features in the training and recog-
nition stage through speech-recognition experiments on
“RealData” using the multi-condition DNN-HMM back-
end.
Comparison of PCsoft and PCoracle

hard in the training stage
is shown in the two columns in Table 7. The dereverber-
ation performance of the pDAE is degraded by using the
PCoracle

hard feature in the training stage, whichever type of
the phone-class feature is used in the recognition stage,
although the PCoracle

hard feature is more accurate than the
PCsoft feature. One of the reasons for this may be that the
PCsoft feature has richer information.

Fig. 6 Frame accuracy by DAE and pDAE on held-out set
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Table 7 Comparison of phone-class features (WER (%))

Recognition\Training PCsoft PCoraclehard

PCsoft 23.29 24.10

PChard 23.27 24.34

PCdecodehard 22.85 23.29

(cf.) PCoraclehard 13.74 14.25

We also conducted an oracle experiment where we
used the PCoracle

hard feature derived from the manual tran-
scription of the test data. As shown in the last row of
Table 7, the WER was surprisingly reduced, which clearly
confirms our hypothesis that phone-class information is
useful for the DAE-based dereverberation. However, the
hard version of the PCsoft feature (PChard) did not yield
any improvement.
On the other hand, the results with the PCdecode

hard fea-
ture derived from the initial recognition result is better
than those with the PCsoft feature as expected, though it
requires another recognition pass. The WER in all rever-
berant conditions including “SimData” obtained with the
PCdecode

hard feature is shown in row 7 and 11 in Table 1. Com-
pared with the results of the PCsoft feature (row 6 and 10),
the combination with the multi-condition DNN results in
further WER reduction in all conditions.

5 Conclusions
In this paper, we investigated an approach to reverber-
ant speech recognition adopting deep learning in the
front-end as well as back-end of the system and evalu-
ated it through the ASR task (one channel) of the Reverb
Challenge 2014.
The DNN-HMM system trained with the multi-

condition training set achieved a conspicuously higher
word accuracy compared with the MLLR-adapted GMM-
HMM system trained with the same data. Furthermore,
feature enhancement with the DAE contributed to the
improvement of recognition accuracy especially in the
more adverse conditions.
We have also proposed a novel approach to reverberant

speech recognition based on the DAE augmented with the
phone-class information. The proposed method signifi-
cantly and consistently improved the recognition accuracy
in all reverberant conditions. We compared two types
of the phone-class feature and concluded that the PCsoft
feature, which does not require an extra decoding step,
is enough for significant improvement while using the
PCdecode

hard feature in the recognition stage can yield further
improvement. It is also shown that using the PCsoft feature
is more effective than the PCoracle

hard feature in the training
phase.
The average WER on “RealData” obtained with the pro-

posed pDAE using the PCdecode
hard feature (Table 1, row 11)

was 1.0 points better than the best result in the same con-
dition (“1ch”, “no own data”, “no full batch”) of the Reverb
Challenge 2014.

Endnotes
1The WERs in this paper are much lower than those in

the results we submitted to the Reverb Challenge 2014
(http://reverb2014.dereverberation.com/result_asr.html)
mainly because the trigram language model was used in
this paper and the bigram model was used in the
Challenge.

2We conducted small preliminary experiments to
introduce a bottleneck layer with a fewer number of
units, but the recognition performance was degraded.
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