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Abstract

In this paper, we develop a new tracking method for the direction of arrival (DOA) parameters assuming multiple
incoherently distributed (ID) sources. The new approach is based on a simple covariance fitting optimization
technique exploiting the central and noncentral moments of the source angular power densities to estimate the
central DOAs. The current estimates are treated as measurements provided to the Kalman filter that model the
dynamic property of directional changes for the moving sources. Then, the covariance-fitting-based algorithm and
the Kalman filtering theory are combined to formulate an adaptive tracking algorithm. Our algorithm is compared to
the fast approximated power iteration-total least square-estimation of signal parameters via rotational invariance
technique (FAPI-TLS-ESPRIT) algorithm using the TLS-ESPRIT method and the subspace updating via FAPI-algorithm.
It will be shown that the proposed algorithm offers an excellent DOA tracking performance and outperforms the
FAPI-TLS-ESPRIT method especially at low signal-to-noise ratio (SNR) values. Moreover, the performances of the two
methods increase as the SNR values increase. This increase is more prominent with the FAPI-TLS-ESPRIT method.
However, their performances degrade when the number of sources increases. It will be also proved that our method
depends on the form of the angular distribution function when tracking the central DOAs. Finally, it will be shown that
the more the sources are spaced, the more the proposed method can exactly track the DOAs.
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1 Review
1.1 Introduction
The most commonly considered system model in the
direction of arrival (DOA)-finding techniques is the point
source model where the signals are assumed to be gener-
ated from far-field point sources [1–4]. However, in real
surroundings, especially in modern wireless communica-
tion systems, local scattering in the source vicinity causes
angular spreading. Therefore, the researchers considered
a more realistic signal model called spatially distributed
source model. Depending on the nature of scattering,
distributed sources have been classified into two types:
coherently and incoherently distributed (CD and ID)
sources [5, 6]. For ID source model contrary to the CD
case, the rank of the noise-free covariance matrix is differ-
ent to the number of sources. Moreover, it increases with
the angular spread. Therefore, traditional subspace-based
methods become not applicable in this case. To deal with
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this problem, efforts have been directed to specifically
design new techniques to estimate the angular parame-
ters for ID sources. Some of them that are able to handle
a single ID source were developed in [7–13]. Many other
estimators were also developed to estimate the angular
parameters of multiple ID sources. In fact, some subspace
methods were proposed in [5, 14, 15] wherein the effective
dimension of the signal subspace is defined as the number
of the first eigenvalues of the noise-free covariance matrix
where most of the signal energy is concentrated.
Despite their high accuracy, these methods suffer from

a heavy computational load. To reduce the complexity,
the so-called TLS-ESPRIT algorithm was derived in [16]
which is based on the total least square (TLS) estimation
of signal parameters via rotational invariance technique
(ESPRIT).
Moreover, more computationally attractive but less effi-

cient methods using the beamforming techniques were
developed in [17, 18]. Later, Shahbazpanahi et al. pro-
posed a new algorithm based on central and noncentral
moments of the sources angular power densities [19]. In
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addition to its reduced complexity, this method is appli-
cable to the multisource scenarios with different angular
power densities. Recently, authors derived in [20] a new
algorithm for the estimation of the angular parameters
of multiple ID sources. It exploits the property of the
inverse of the covariance matrix to estimate the angular
parameters.
Despite its efficiency, this method requires that the mul-

tiple sources have an identical angular distribution. More-
over, it estimates the angular parameters (central DOAs
and angular spreads) together with a 2D search.
All the aforementioned techniques assume the sources

to maintain the same positions, and then their central
DOAs are constant in time. This assumption is, however,
too restrictive in wireless communication applications
where mobile terminals often change their spatial posi-
tions. Therefore, several approaches have been proposed
to deal with the problem of tracking the discrete DOAs at
different time points. Most of them are based on subspace
tracking techniques such as the projection approximate
subspace tracking (PAST) of [21] and the orthonor-
mal projection approximate subspace tracking (OPAST)
of [22].
In this context, authors have proposed in [23] a sim-

ple DOA tracking scheme involving the PAST-algorithm
and the Kalman filter to track the DOAs. Later, in [24],
a fast implementation of the power iterations method
for subspace tracking (FAPI) was derived. Recently, the
researchers proposed in [25–27] new tracking algorithms
based on some modifications of the Kalman filter and the
existing subspace tracking techniques. All these tracking
algorithms are limited to the point source model.
To deal with the problem of estimating the time-varying

DOAs in scattering channels, a simple DOA tracking
method based on the TLS-ESPRIT [16] and subspace
updating via FAPI algorithm has been recently proposed
in [28] for ID sources. Despite its relatively reduced com-
putational cost, this method was shown to exhibit poor
tracking success rate at low signal-to-noise ratios (SNRs).
More recently, a DOA tracking method based on a sup-
port vector regression approach was developed in [29] for
coherently distributed source. Therefore, we aim in this
paper to consider the problem of tracking DOAs at differ-
ent time points in scattering channels. As the assumption
of uncorrelated ID sources has been shown to be rel-
evant in wireless communications environments with a
high base station than the CD source case [30], we assume
in this paper that the sources are ID.
We then derive a new method that outperforms the

method derived in [28]. This method is based on a simple
covariance fitting optimization technique as developed
in [19] to estimate the central DOAs in each observed
time interval. In fact, this technique can estimate the
central DOAs regardless of the angular spreads, and it

is applicable to the multisource scenarios with differ-
ent angular power densities. The new tracking method
also uses the famous Kalman filter to model the mobil-
ity of the sources and track the different DOAs during
the tracking period. The Kalman filter (KF) can reduce
estimation errors and avoid the data association prob-
lem when applied to angle tracking due to the nature of
prediction correction.
This paper is organized as follows. In subsection 1.2,

we introduce the system model that will be used through-
out the article and we define the problem in terms of
notation and assumptions. In subsection 1.3, we formulate
the new algorithm. In subsection 1.4, the proposed algo-
rithm is compared to the one of [28] through computer
simulations.
Throughout this paper, matrices and vectors are repre-

sented by bold upper and lowercase characters, respec-
tively. Vectors are, by default, in column orientation, while
(.)∗, (.)T and (.)H refer to conjugate, transpose, and con-
jugate transpose, respectively. Moreover, E{.} and tr(.)
stand for the statistical expectation and trace operators,
respectively. Furthermore, eig(.) and diag(.) represent the
eigenvalues of amatrix and the diagonal matrix of a vector,
respectively. Finally, ⊗ stand for the Kronecker operator.

1.2 Systemmodel
Consider a uniform linear array of L identical sensors
(i.e., with the same gain, phase, and sensitivity pattern).
The array receives signals distributed from K ID narrow-
band1 far-field sources with the same central frequency
ω0. Then, the output of the lth array sensor can be mod-
elled as a complex signal as follows [16–20]:

xl(t) =
K∑

k=1

∫ π/2

−π/2
al(θ)sk(θ ,ψk , t)dθ + nl(t), (1)

where al(θ) is the response of the lth sensor to a unit
energy source emitting from the direction θ . Moreover,
sk(θ ,ψk , t) is the angular signal distribution of the kth
source that is parameterized by the parameter vector,
ψk = [

θ̄k , σk
]T , containing its central DOA, θ̄k , and angu-

lar spread, σk . For each kth source, the central DOA is
defined as the mass center of the corresponding normal-
ized angular power density, ρk(.), as follows:

θ̄k =
∫ π

2

− π
2

θρk(θ ,ψk)dθ , (2)

where ρk(θ ,ψk) satisfies the following identity:

∫ π/2

−π/2
ρk(θ ,ψk)dθ = 1, k = 1, 2, . . . ,K . (3)
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Furthermore, the angular spread for each kth source is
obtained from the second central moment as follows:

σk =
(∫ π/2

−π/2
(θ − θ̄k)

2ρk(θ ,ψk)dθ

)1/2
. (4)

Finally, nl(t) represents the additive zero-mean, Gaus-
sian distributed, circular, spatially and temporally white
noise (i.e., uncorrelated between the receiving antenna
elements and between different snapshots).
Stacking the received data over the L sensors, at given

time instant t, in a vector x(t) = [x1(t), x2(t), . . . , xL(t)]T ,
it follows from (1) that:

x(t) =
K∑

k=1

∫ π/2

−π/2
a(θ)sk(θ ,ψk , t)dθ + n(t), (5)

where

a(θ) = [a1(θ), . . . , aL(θ)]T ,
n(t) = [n1(t), . . . , nL(t)]T ,

are the array response and sensor noise vectors, respec-
tively. We also define the angular auto-correlation kernel
for the kth source as the conjugate auto-correlation func-
tion between the signals distributed from the kth source
and impinging on the array from two different directions
θ and θ ′ as follows:

pkk
(
θ , θ ′;ψk ,ψk

) = E
{
sk(θ ,ψk , t)s∗k

(
θ ′,ψk , t

)}
. (6)

We assume that the sources are ID. This means that for
each source, the signal components arriving from differ-
ent scatterers are uncorrelated. Therefore, we have for the
kth source [16, 19, 20]:

pkk
(
θ , θ ′;ψk ,ψk

) = σ 2
skρk(θ ,ψk)δ

(
θ − θ ′) , (7)

where δ(θ − θ ′) is the Dirac delta-function and σ 2
sk is the

power of the kth source. Now, since the sources and noise
are uncorrelated, then from (5) the covariance matrix of
x(t) is explicitly given by:

Rxx = E
{
x(t)xH(t)

}
,

=
K∑

k=1

K∑
k′=1

∫ π/2

−π/2

∫ π/2

−π/2
pkk′ (θ , θ ′;ψk ,ψk′ )a(θ)aH(θ ′)dθdθ ′

+ σ 2
n IL,

(8)

where σ 2
n is the unknown noise power. Moreover, the

function pkk′
(
θ , θ ′;ψk ,ψk′

)
stands for the angular cross-

correlation kernel between the kth and k′th sources
impinging on the array from the directions θ and θ ′. It is
defined as follows:

pkk′
(
θ , θ ′;ψk ,ψk′

)=E
{
sk(θ ,ψk , t)s∗k′(θ ′,ψk′ , t)

}
. (9)

By assuming all the distributed sources to be mutu-
ally uncorrelated (i.e., every two different ID sources are
uncorrelated), it follows that [19]:

pkk′
(
θ , θ ′;ψk ,ψk′

)=pkk
(
θ , θ ′;ψk ,ψk

)
δkk′ , (10)

where δkk′ is the Kronecker delta function defined as
δkk′ = 0 for k �= k′ and 1 otherwise. Therefore, using (7)
in (10), it follows that:

pkk′(θ , θ ′;ψk ,ψk′) = σ 2
skρk(θ ,ψk)δ(θ − θ ′)δkk′ . (11)

Consequently, (8) reduces simply to:

Rxx=
K∑

k=1

∫ π/2

−π/2
σ 2
skρk(θ ,ψk)a(θ)aH(θ)dθ + σ 2

n I. (12)

which can be further written in the following more suc-
cinct form:

Rxx=
K∑

k=1
σ 2
skR

(k)
ss (ψk) + σ 2

n IL, (13)

where R(k)
ss (ψk) is the normalized noise-free auto-

covariance matrix of the kth source given by:

R(k)
ss (ψk)=

∫ π/2

−π/2
ρk(θ ,ψk)a(θ)aH(θ)dθ . (14)

Furthermore, we suppose that the sources often change
their spatial positions resulting thereby in time-varying
central DOAs θ̄(t) = [

θ̄1(t), . . . , θ̄K (t)
]T . We also assume

that the change in θ̄(t) is either zero or negligible over
each interval of the DOA estimation step [nT , (n + 1)T],
where n = 0, 1, . . . and T represents the sampling period,
i.e.,

θ̄(t) ≈ θ̄(nT), for t ∈ [nT , (n + 1)T] , n = 0, 1, . . . .
(15)

In principle, the motion of each source is slowly chang-
ing within a time increment T. Hence, we suppose that
the change of the angular spread of each source is negligi-
ble during the tracking period. Then, the tracking problem
aims at estimating θ̄(t), t = T , 2T , . . . fromN snapshots of
array data measured within each time increment T while
keeping the angular spread the same during the tracking
period.

1.3 Derivation of the DOA tracking algorithm for
incoherently distributed sources

In this subsection, we propose a simple covariance-fitting-
based DOA tracking scheme that tracks the central DOAs
of multiple uncorrelated ID sources. The implementation
of our new approach involves the two following functional
structures:

• A covariance-fitting-based DOA estimator that
exploits the central and noncentral moments of the
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source angular power densities in order to estimate
the central DOAs over [nT , (n + 1)T] and

• A Kalman filter that tracks these DOAs during the
tracking period.

In fact, to estimate the central DOAs of the uncorrelated
ID sources over [nT , (n + 1)T], we propose to exploit
the technique developed in [19] for constant DOAs. This
method consists of approximating the covariance matrix
using central and noncentral moments of the source angu-
lar power densities. Based on this approximation, these
moments are estimated using a simple covariance fit-
ting optimization technique. Finally, the central DOAs are
obtained from the moment estimates. The advantage of
this method is that it has a reduced computational cost
and it addresses multiple sources with different angular
power densities.
Once the estimated central DOAs are obtained, we

then propose a Kalman-filtering-based tracking algo-
rithm to model the dynamic property of directional
changes for the sources. The KF ensures the associa-
tion between the estimates made at different time points
thanks to its predictability characteristic. Indeed, at each
stage during the tracking process, the central DOAs pre-
dicted by the Kalman filter are used to smooth the
central DOAs estimated via the covariance-fitting-based
algorithm.

1.3.1 Estimation of the central angles via the
covariance-fitting-based algorithm

In this subsection, we will recall briefly the covariance fit-
ting optimization technique developed in [19] to estimate
the central DOAs from N samples received over the time
interval [nT , (n + 1)T] over which the central DOAs are
assumed to be invariant. Therefore, we will use θ̄k and ψk
instead of θ̄k(t) and ψk(t), respectively.
As mentioned previously, the method developed in

[19] is based on the approximation of the covari-
ance matrix using central and noncentral moments of
the sources’ angular power densities. Actually, the nth
noncentral moment of the angular power density of the
kth source around an arbitrary DOA ˜̄θk is defined as
follows:

Mnk(
˜̄θk)=

∫ π/2

−π/2
(θ − ˜̄θk)nρk(θ ,ψk)dθ . (16)

In (16), ˜̄θk represents a coarse initialization of the true
central DOA θ̄k of the kth source. Note here that if ˜̄θk = θ̄k ,
then Mnk(

˜̄θk) becomes the nth central moment, Mnk(θ̄k),
of the kth source angular power density.
It was proved in [19] that for the kth source, the value of

the first noncentral moment around an arbitrary DOA ˜̄θk

determines the deviation of ˜̄θk with respect to the central
DOA θ̄k , i.e.,

M1k(
˜̄θk) = θ̄k − ˜̄θk . (17)

Therefore, we conclude from (17) that in order to esti-
mate the central DOA of the kth source, one should
calculate an estimate for the first noncentral moment of
its angular power density. To do so, one use a simple
covariance fitting optimization technique.

Covariance fitting optimization technique This tech-
nique is based on the approximation of the covariance
matrix using a few noncentral moments of the source
angular power densities. In fact, the covariancematrix Rxx
can be approximated as follows [19]:

Rxx � R̃ + σ 2
n I, (18)

where

R̃ =
K∑

k=1

R−1∑
r=0

σ 2
skMrk(

˜̄θk)Crk(
˜̄θk), (19)

with

Crk(
˜̄θk) = 1

r!
∂rC(θ)

∂θ r
|
θ= ˜̄θk . (20)

Moreover, R is an integer whose choice is discussed later,
and C(θ) is defined as follows:

C(θ) = a(θ)aH(θ). (21)

Equation 18 represents an approximation of the exact
covariance matrix Rxx using KR + 1 matrices. Note
here that (19) is obtained using the R-term Taylor series
approximation ofC(θ) around ˜̄θk . In practical situations, R
should not be much larger than 1. The approximation (18)
is used to estimate the different noncentral moments and
then derive the central DOAs from the first noncentral
moment. In fact, we consider the following vectors:

˜̄θ =
[ ˜̄θ1, ˜̄θ2, . . . , ˜̄θK

]T
, (22)

m( ˜̄θ) =
[
mT

1 ( ˜̄θ1),mT
2 ( ˜̄θ2), . . . ,mT

K ( ˜̄θK ), σ 2
n

]T
, (23)

mk(
˜̄θk) = σ 2

sk

[
1,M1k(

˜̄θk),M2k(
˜̄θk), . . . ,M(R−1)k(

˜̄θk)
]T

.

(24)

Assuming some initial value ˜̄θ for the vector θ̄ , the non-
central moment vector m( ˜̄θ) is obtained using the LS
criterion as follows:

m̂( ˜̄θ) = argmin
m

‖R̂xx − R̃ − σ 2
n I‖2,

= argmin
m

tr
{(

R̂xx − (R̃ + σ 2
n I)

)2}
. (25)
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where R̂xx represents the sample covariance matrix
defined as:

R̂xx = 1
N

N∑
t=1

x(t)xH(t). (26)

After straightforward manipulations as shown in [19],
we find the following relation:

Q( ˜̄θ)m( ˜̄θ) = p( ˜̄θ), (27)

where [
Q( ˜̄θ)

]
ij

= tr
{
Cml(

˜̄θl)Crk(
˜̄θk)

}
, (28)[

p( ˜̄θ)
]
i

= tr
{
Cml(

˜̄θl)R̂xx
}
, (29)

with i = (l − 1)R+m+ 1, j = (k − 1)R+ r + 1(1 ≤ l, k ≤
K , 0 ≤ m, r < R).
Moreover, we have from [19]:[

Q( ˜̄θ)
]
KR+1,j

= tr
(
Crk(

˜̄θk)
)
, (30)[

Q( ˜̄θ)
]
i,KR+1

= tr
(
Crk(

˜̄θk)
)
, (31)[

Q( ˜̄θ)
]
KR+1,KR+1

= L, (32)[
p( ˜̄θ)

]
KR+1

= tr
(
R̂xx

)
. (33)

Therefore, from (27), the noncentral moments can be
estimated as follows:

m̂( ˜̄θ) = Q−1( ˜̄θ)p( ˜̄θ), (34)

Note here that if the matrix Q( ˜̄θ) is singular, we can
replace its inverse by pseudoinverse.
Consequently, the central angles can be estimated as

follows: ̂̄θk = M̂1k(
˜̄θk) + ˜̄θk , (35)

where M̂1k(
˜̄θk) is the first estimated noncentral moment

of the angular density of the kth source obtained from
m̂( ˜̄θ). Moreover, ˜̄θk is an arbitrary DOA that should be
chosen sufficiently close to θ̄k to reduce the estimation
errors.
To obtain a more accurate value of the estimated DOA,

we replace ˜̄θk by ̂̄θk already calculated, and we solve again
(27) to obtain the estimates of the central moments m̂(̂θ̄).
Finally, we obtain a new value of the estimated central
angle from the first estimated central moment M̂1k (̂θ̄k).
This operation is repeated a few times.

Algorithm for the estimation of the central DOAs We
can summarize the covariance-fitting-based algorithm to
estimate the central DOAs at a fixed time as follows:

1. Compute the sample covariance matrix R̂xx and
specify the initial values of ˜̄θk , k = 1, 2, . . . ,K ;

2. Compute m̂( ˜̄θ) from (34) and deduce M̂1m( ˜̄θk) using
(23) and (24);

3. Compute ̂̄θk = M̂1k(
˜̄θk)+ ˜̄θk and update ˜̄θk = ̂̄θk ; and

4. Repeat steps 2 and 3 few times to obtain good
estimates of the central DOAs.

These estimates will be treated as measurements and
provided to the celebrated Kalman filter to track the
DOAs.

1.3.2 The KF tracking algorithm
In order to model the dynamic directional changes for
the moving sources, we propose a Kalman-filtering-based
tracking algorithm. At each stage during the tracking pro-
cess, instead of using the array output directly as a mea-
surement, we propose to consider the current estimates
of the central DOAs obtained with the covariance-fitting-
based algorithm described in the previous subsection as
measurements, predicted and updated via the Kalman
state equation. To do so, we define the state vector for the
kth source as follows:

yk(t) =
[
θ̄k(t), ˙̄θk(t), ¨̄θk(t)

]T
, (36)

where θ̄k(t) represents the source central DOA of the the
kth source, ˙̄θk(t) is its first-order derivative reflecting its
moving speed, and ¨̄θk(t) is its acceleration at time t, k =
1, 2, . . . ,K . We model the dynamics and the measurement
equations of the kth source as follows:

yk(t + 1) = Fyk(t) + wk(t), (37)
ˆ̄θk(t) = hyk(t) + vk(t), (38)

where F is the state transition matrix defined as follows:

F =
⎛
⎝ 1 T 1

2T
2

0 1 T
0 0 1

⎞
⎠ . (39)

Moreover, h is the measurement matrix given by:

h =[1, 0, 0] . (40)

Furthermore,wk(t) is the process noise vector caused by
external circumstances like wind and bumps in the road.
It is assumed to be Gaussian distributed with zero mean
and covariance matrix:

Qk = σ 2
w

⎛
⎜⎝

T4

4
T3

2
T2

2
T3

2 T2 T
T2

2 T 1

⎞
⎟⎠ . (41)

In this paper, similar to [23, 31], we suppose that σ 2
w is

constant during the tracking period and small. Besides,
vk(t) is the measurement noise which is supposed to be
zero-mean with variance σ 2

vk(t) and uncorrelated with
wk(t).
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As in the proposed KF tracking scheme, instead of using
the array output directly as the measurement process, we
use the most current data to form the DOA estimates
via the covariance-fitting-based algorithm, the measure-
ment noise is then due to the estimation inaccuracy of the
covariance-fitting-based method.
To justify the use of the Kalman filter, we should show

that the estimation error caused by the covariance-fitting-
based algorithm is Gaussian distributed. In fact, we have
from (35) that the estimated central DOA of the kth
source ̂̄θk is obtained as follows:

̂̄θk = M̂1k(
˜̄θk) + ˜̄θk , (42)

where M̂1k(
˜̄θk) represents the ((k − 1)R+ 2)th element of

m̂( ˜̄θ). Then, we have the following estimation error that
also represents the measurement noise of the kth source:

vk(t) = ̂̄θk − θ̄k , (43)

= M̂1k(
˜̄θk) + ( ˜̄θk − θ̄k), (44)

= M̂1k(
˜̄θk) + 
θ̄k , (45)

in which 
θ̄k = ˜̄θk − θ̄k is deterministic and is negligi-
ble ( ˜̄θk should be chosen sufficiently close to θ̄k and then

θ̄k → 0). Therefore, to show that the estimation error
generated from central DOA estimation is Gaussian, we
should prove that M̂1k(

˜̄θk) is Gaussian distributed. In fact,
we have that M̂1k(

˜̄θk) is the ((k − 1)R + 2)th element of
m̂( ˜̄θ). Moreover, we have from (34) that:

m̂( ˜̄θ) = Q−1( ˜̄θ)p( ˜̄θ). (46)

Otherwise, we verify from (28), (30), (31), and (32) that
Q−1( ˜̄θ) depends only on Cij(

˜̄θk) for fixed values of i and
j. Then, this term is deterministic. While we have from
(29) and (33), p( ˜̄θ) depends on the estimated covariance
matrix:

R̂xx = 1
N

N∑
t=1

x(t)xH(t). (47)

Therefore, we can define a functional relation linking
the estimate M̂1k(

˜̄θk) to the statistics R̂xx as follows:

M̂1k(
˜̄θk) = alg(R̂xx). (48)

Otherwise, the snapshots x(t)t=1,...,N are random and
mutually independent. Then, using the classical central
limit theorem [32], we have for a large number of snap-
shots N that R̂xx follows a normal distribution. We can
then conclude from [33] that M̂1k(

˜̄θk) = alg(R̂xx) is
asymptotically Gaussian distributed. Consequently, the
measurement noise is Gaussian. We will also verify in
subsection 1.4 that the estimation error of the covariance-
fitting-based algorithm is Gaussian distributed.

In practice, the variance of the measurement noise for
the kth source, σ 2

vk(t), is basically determined by the
variance of the estimation error of the covariance-fitting-
based algorithm over each time interval [nT , (n + 1)T].
Note here that Rao et al. suggested in [34] in a similar
context that the variances of the measurement noise can
be approximated by the diagonal entries of the Cramér-
Rao bounds (CRBs) for large number of samples. More-
over, Sanchez-Araujo and Marcos proposed in [23] to
utilize the asymptotic (for N > 1) theoretical variance
expression of the considered DOA estimation method to
calculate the variance of the measurement noise. There-
fore, the variances of the measurement noise due to the
estimation error of the covariance-fitting-based algorithm{
σ 2
vk(t)

}K
k=1 should be calculated at each time interval

[ nT , (n+ 1)T]. Moreover, these variances as suggested by
Rao et al. can be theoretically approximated by the diag-
onal entries of the CRBs derived in [35] for ID sources
for a large number of samples. In fact, considering the
unknown parameter vector, υ, as follows:

υ =
[
θ̄
T , σT , σ 2

n

]T
, (49)

=
[
θ̄
T , ξT

]T
, (50)

in which the vector θ̄ contains the central DOAs of the ID
sources, the vector σ , is the vector of the unknown angular
spreads and σ 2

n is the unknown noise power. Therefore,
the associated FIM can be written as:

I(υ) =
( I θ̄ ,θ̄ Iξ ,θ̄
I θ̄ ,ξ Iξ ,ξ

)
, (51)

whose ijth entry is expressed as:

[I]ij = Ntr
{

∂Rxx
∂υi

R−1
xx

∂Rxx
∂υj

R−1
xx

}
, (52)

with υi is the ith element of υ. The CRB of the unknown
parameter vector, υ, is defined as follows:

CRB(υ) = I−1(υ), (53)

As we are interested to the CRB of the central DOAs θ̄

which we denote as CRB(θ̄), we use the inversion of block
matrices of Lemma [36] to obtain the following expression
of CRB(θ̄):

CRB(θ̄) =
(
I θ̄ ,θ̄ − IT

ξ ,θ̄ I
−1
ξ ,ξ Iξ ,θ̄

)−1
. (54)

Then, the variances of the measurement noise
{σ 2

vk(t)}Kk=1 can be approximated by the diagonal entries
of CRB(θ̄) at each time interval [nT , (n + 1)T] for large
number of samples.
We assume that the motion of each source is mutually

independent. We define the total state vector of the K
moving sources as y(t) = [

yT1 (t), . . . , yTK (t)
]T . Then, from
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(37) and (38), the dynamic and measurement models are
given by the following equations:

y(t + 1) = F̄y(t) + w(t), (55)
ˆ̄θ(t) = H̄y(t) + v(t), (56)

where

F̄ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 T 1
2T

2 · · · 0
0 1 T · · · 0
0 0 1 · · · 0
...

. . .
...

0 · · · 1 T 1
2T

2

0 · · · 0 1 T
0 · · · 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (57)

H̄ =
⎛
⎜⎝

1 0 0 · · · 0
...

. . .
...

0 · · · 1 0 0

⎞
⎟⎠ . (58)

In addition, w(t) = [
wT
1 (t), . . . ,wT

K (t)
]T and v(t) =

[v1(t), . . . , vK (t))]T are Gaussian distributed with zero-
mean vectors and covariances Q̄ and R(t), respectively,
defined as follows:

Q̄ = σ 2
w

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

T4

4
T3

2
T2

2 · · · 0
T3

2 T2 T · · · 0
T2

2 T 1 · · · 0
...

. . .
...

0 · · · T4

4
T3

2
T2

2
0 · · · T3

2 T2 T
0 · · · T2

2 T 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (59)

R(t) = diag
([

σ 2
v1(t), . . . , σ

2
vK (t)

])
. (60)

The proposed tracking algorithm of the central DOAs θ̄

can then be summarized as follows.

• Initially, the covariance-fitting-based algorithm is
used twice to obtain two angle estimates ˆ̄θ(−1) and
ˆ̄θ(0) at t = 0. Then, the initial state vector is
ŷ(0|0) =

[ ˆ̄θ1(0), ( ˆ̄θ1(0) − ˆ̄θ1(−1))/T , 0, . . . , ˆ̄θK (0),

( ˆ̄θK (0) − ˆ̄θK (−1))/T , 0
]T

.
• Calculate the initial variances of the measurement

noise {σ 2
vk(0)}Kk=1 which represent the variances of

the estimation error of the covariance-fitting-based
algorithm at t = 0. These variances can also be
obtained from the diagonal entries of (54) for a large
number of samples.

• Calculate the covariance matrix of the initial state
vector ŷ(0|0) as follows:

P(0|0) = diag
([

σ 2
v1(0), . . . , σ

2
vK (0)

]) ⊗
⎛
⎝ 1 1

T 0
1
T

2
T2 0

0 0 0

⎞
⎠ ,

= R(0) ⊗
⎛
⎝ 1 1

T 0
1
T

2
T2 0

0 0 0

⎞
⎠ . (61)

• For t = 1, 2, . . . , we do the following steps

– Prediction of DOA angles: obtain the
predicted estimates ŷ(t|t − 1) of the state
vector y(t) from the existing estimates
ŷ(t − 1|t − 1) available at time t − 1 and its
covariance matrix P(t|t − 1) by the equations:

ŷ(t|t − 1) = F̄ ŷ(t − 1|t − 1), (62)

P(t|t − 1) = F̄P(t − 1|t − 1)F̄T + Q̄. (63)

Then, we obtain the predicted central DOAs
vector ˆ̄θ(t|t − 1) from ŷ(t|t − 1) as follows:

θ̂(t|t − 1) = H̄ŷ(t|t − 1). (64)

– Central DOA estimation via the
covariance-fitting-based method : we estimate
the central angles ˆ̄θ(t) via the
covariance-fitting-based algorithm as
described in the previous subsection.

– Updating the covariance matrix of the
measurement noise vector R(t): we calculate
the variances of the measurement noise{
σ 2
vk(t)

}K
k=1, and we then deduce the

covariance matrix
R(t) = diag

([
σ 2
v1(t), . . . , σ 2

vK (t)
])
.

– Updating the estimated DOA angles: in this
last step, we aim to find the estimate ŷ(t|t) of
the state vector y(t). Therefore, we should first
estimate the innovation errors δθ̄ defined as:

δθ̄(t) = ˆ̄θ(t) − ˆ̄θ(t|t − 1). (65)

Because the motion of each source is mutually
independent, the innovation errors vector
δθ(t) is zero mean with covariance
H̄P(t|t − 1)H̄T + R(t). After the
determination of δθ̄(t), we update the state
vector by the following equation:

ŷ(t|t) = ŷ(t|t − 1) + G(t)δθ̄(t), (66)

where G(t) is the Kalman gains vector at time
t given by:

G(t) = P(t|t − 1)H̄T
[
H̄P(t|t − 1)H̄T + R(t)

]−1
.
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The covariance matrix of ŷ(t|t) is obtained as:

P(t|t) = (I − G(t)H̄)P(t|t − 1). (67)

Finally, we obtain the updated central DOA
vector ˆ̄θ(t|t) from ŷ(t|t) as follows:

ˆ̄θ(t|t) = H̄ŷ(t|t). (68)

1.4 Simulation results
In this subsection, we will present some figures to illus-
trate the effectiveness of our proposed algorithm in differ-
ent scenarios and compare it to themethod derived in [28]
(referred to as FAPI-TLS-ESPRIT method). It will be seen
that our new method outperforms the FAPI-TLS-ESPRIT
method.
Throughout this section, we consider a zero-mean,

Gaussian distributed, spatially and temporally white noise.
We also consider a uniform linear array of 11 sensors sep-
arated by a half-wavelength λ/2. The sources are tracked
over an interval of 40 s with T = 1 s. During each 1-s
interval, N = 500 snapshots of sensor data are generated
and used to estimate the central DOAs via the covariance-
fitting-based algorithm with R = 3. In addition, three
iterations of steps 2 and 3 of this algorithm are used in
all our examples. Moreover, 100 independent simulation
runs have been performed to obtain each simulated cen-
tral DOA vector. To track the DOAs, we assume that the
variance of the process noise in the KF is constant and

equal to σ 2
w = 0.0001 while the variances of the measure-

ment noise
{
σ 2
vk(t)

}K
k=1 are calculated at each time interval

[ nT , (n + 1)T] as explained in the previous section.
To simulate the FAPI-TLS-ESPRIT method in a proper

way, we consider two identical subarrays of 11 sensors
with a half-wavelength interelement spacing. The inter-
subarray displacement is assumed to be δ = λ/10.
Moreover, to estimate the signal subspace via the FAPI
algorithm, we choose the forgetting factor β = 0.985.
We first consider two narrowband ID sources with

different distributions. The first one is assumed to be
Gaussian distributed (GID) with central DOA θ̄1 = −10°
and angular spread σ1 = 1° and the second one is
Laplacian distributed (LID) with central angle θ̄2 = 30°
and angular spread σ2 = 2.5°. As the case of low
SNR values represents the most challenging scenario in
the literature, we will consider particularly in most of
our simulations the case of low SNR levels. Therefore,
we suppose that the signal-to-noise ratio is SNR =
0 dB. To justify the use of the Kalman filter, we will
verify through Fig. 1a, b that the estimation error of
the covariance-fitting-based algorithm follows Gaussian
distribution.
Figures 2, 3, and 4 show the tracking performances of

our proposed algorithm and the FAPI-TLS-ESPRIT algo-
rithm. Figure 2 displays the tracking trajectories of the
central DOAs estimated by the proposed algorithm and
the FAPI-TLS-ESPRIT method comparing with the true
trajectories, while Fig. 3 exhibits the estimation errors

Fig. 1 Histogram of the estimation errors of the central DOAs −10° (a) and 30° (b) at SNR = 0 dB
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Fig. 2 Tracking trajectories using the proposed algorithm and the FAPI-TLS-ESPRIT method for two GID and LID sources with central DOAs −10° and
30° at SNR= 0 dB and N = 500

of the two methods. The estimation error is defined as
the absolute value of the difference between the mean
value of the estimated DOA and the true DOA. Moreover,
Fig. 4 shows the variances of the estimated central DOAs
obtained for the twomethods.We show from these figures
that our method can accurately track each source tra-
jectory. Moreover, it outperforms the FAPI-TLS-ESPRIT
method. In fact, it can be seen from Fig. 2 that the track-
ing trajectory of the central DOAs estimated with the

FAPI-TLS-ESPRIT method deviates in some points from
the true values. However, our proposed method can
exactly and precisely estimate the true values of the central
DOAs throughout the tracking period. This result is more
illustrated by Figs. 3 and 4. Indeed, we notice from these
figures that the estimation errors and the variances of
the estimated central DOAs of our proposed method are
greatly lower than those made by the other method. This
estimation error and these variances are also stable with

Fig. 3 Estimation errors made by the proposed algorithm and the FAPI-TLS-ESPRIT method for two GID and LID sources with central DOAs−10° and
30° at SNR= 0 dB and N = 500
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Fig. 4 Variances of the estimated central DOAs of the proposed algorithm and the FAPI-TLS-ESPRIT method for two GID and LID sources with
central DOAs −10° and 30° at SNR= 0 dB and N = 500

our algorithm whereas they vary randomly and present
many peaks with the FAPI-TLS-ESPRIT algorithm. Now,
we consider the same scenario of the first example, but
we reduce the number of snapshots N at every iteration
of the tracking process to N = 100 and then to N = 50.
Figures 5 and 6 present the variances of the estimated cen-
tral DOAs obtained for the two methods for N = 100
and N = 50, respectively. We show from these figures
that the variances of the estimated central DOAs of our
proposedmethod are low.Moreover, they are significantly

lower than those made by the FAPI-TLS-ESPRIT method.
This proves that our proposed algorithm has also good
performances even with these moderate numbers of snap-
shots. However, when comparing these figures with Fig. 4,
we can see that the variances of the central DOAs esti-
mates using our proposed algorithm are slightly more
stable when N = 500 than N = 100 and N = 50.
After, we consider two ID sources with the same dis-

tributions as in the previous example but with different
location parameters. The first one is GID with central

Fig. 5 Variances of the estimated central DOAs of the proposed algorithm and the FAPI-TLS-ESPRIT method for two GID and LID sources with
central DOAs −10° and 30° at SNR= 0 dB and N = 100
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Fig. 6 Variances of the estimated central DOAs of the proposed algorithm and the FAPI-TLS-ESPRIT method for two GID and LID sources with
central DOAs −10° and 30° at SNR= 0 dB and N = 50

DOA θ̄1 = 10° and angular spread σ1 = 1.5° and the sec-
ond one is LID with central DOA θ̄2 = 30° and angular
spread σ2 = 2.5°. We also suppose that the SNR = 0 dB
and the number of snapshots isN = 500. Figures 7, 8, and
9 present the tracking trajectories, the estimation errors,
and the variances of the estimated DOAs of our pro-
posed algorithm and the FAPI-TLS-ESPRIT algorithm,
respectively.

These figures illustrate the result proved in the first
example. The proposed algorithm offers an excellent DOA
tracking performance and outperforms the FAPI-TLS-
ESPRIT method at low SNR values. Moreover, when we
compare the estimation error of the first central DOA
made by our proposedmethod in Fig. 3 to that in Fig. 8, we
note that this error in the first case is lower than the cor-
responding error in the second case. The same holds for

Fig. 7 Tracking trajectories using the proposed algorithm and the FAPI-TLS-ESPRIT method for two GID and LID sources with central DOAs 10° and
30° at SNR= 0 dB
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Fig. 8 Estimation errors made by the proposed algorithm and the FAPI-TLS-ESPRIT method for two GID and LID sources with central DOAs 10° and
30° at SNR= 0 dB

the variance of the first estimated central DOA. In fact, we
see clearly from Fig. 4 that, in the first case, this variance is
too low. This can be explained by the fact that in the first
case, the sources are more spaced than in the second case.
Indeed, in Figs. 3 and 4, the central DOAs are θ̄1 = −10°
and θ̄2 = 30° while in Figs. 8 and 9 the central DOAs are
θ̄1 = 10° and θ̄2 = 30°. Therefore, we can conclude that
the more the sources are spaced, the more the proposed
method can exactly track the central DOAs.

Now, we consider the same narrowband ID sources
as in the second example. But we suppose that SNR =
10 dB. The tracking trajectories, the estimation errors, and
the variances of the central DOAs estimated by the two
methods are presented in Figs. 10, 11, and 12, respectively.
We see from Fig. 10 that the two methods can exactly

track the central DOAs at high SNR values. Moreover, we
note from Figs. 11 and 12 that despite the random vari-
ation of the estimation errors and the variances of the

Fig. 9 Variances of the estimated central DOAs of the proposed algorithm and the FAPI-TLS-ESPRIT method for two GID and LID sources with
central DOAs 10° and 30° at SNR= 0 dB
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Fig. 10 Tracking trajectories using the proposed algorithm and the FAPI-TLS-ESPRIT method for two GID and LID sources with central DOAs 10° and
30° at SNR= 10 dB

central DOA estimates by the FAPI-TLS-ESPRIT algo-
rithm, their values are close to those obtained with our
proposed method. Furthermore, comparing Figs. 11 and
12 to Figs. 8 and 9 of the second example, we see clearly
that the performances of the FAPI-TLS-ESPRIT method
increase in particular at high SNR values. Therefore, we
can conclude that the improvement made by our method
with regard to the FAPI-TLS-ESPRIT method is more
prominent for low SNR values.

Next, we reconsider the low SNR assumption (SNR =
0 dB) but we consider two other ID sources. The first one
is assumed to be uniform distributed (UID) with central
DOA θ̄1 = 10° and angular spread σ1 = 2.5° and the sec-
ond one GID with central DOA θ̄2 = 30° and angular
spread σ2 = 1.5°.
Figures 13, 14, and 15 exhibit the tracking performances

of our proposed algorithm and the FAPI-TLS-ESPRIT
algorithm.

Fig. 11 Estimation errors made by the proposed algorithm and the FAPI-TLS-ESPRIT method for two GID and LID sources with central DOAs 10° and
30° at SNR= 10 dB
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Fig. 12 Variances of the estimated central DOAs of the proposed algorithm and the FAPI-TLS-ESPRIT method for two GID and LID sources with
central DOAs 10° and 30° at SNR= 10 dB

It can be seen from Fig. 13 that the tracking trajectory
of the central DOA θ̄1 of the UID source obtained with
our proposed method deviates from the corresponding
true trajectory. This is more illustrated by Figs. 14 and
15 where the corresponding estimation error is almost
equal to 0.4 and the variance of ̂̄θ1 is near to 0.2. Now, we
compare Fig. 14 to Fig. 8 of the second example. These
two figures are obtained in the same conditions but the
only difference is that we assume UID and GID sources

in Fig. 14 instead of GID and LID sources in Fig. 8. We
notice here that the estimation error made by our pro-
posed method is lower than 0.2 assuming Gaussian and
Laplacian distributions. However, it exceeds 0.3 when the
source is UID. Therefore, we can conclude that the pro-
posed method can better track the central DOA when the
source is GID or LID than when it is UID. This can be
explained by the fact that our method (in particular, the
covariance-fitting-based method) depends on the form of

Fig. 13 Tracking trajectories using the proposed algorithm and the FAPI-TLS-ESPRIT method for two UID and GID sources with central DOAs 10° and
30° at SNR= 0 dB
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Fig. 14 Estimation errors made by the proposed algorithm and the FAPI-TLS-ESPRIT method for two UID and GID sources with central DOAs 10° and
30° at SNR= 0 dB

the angular distribution function in the estimation of the
central DOA. However, we show from Figs. 13, 14, and 15
that regardless of the form of the angular distribution, our
proposed algorithm outperforms the FAPI-TLS-ESPRIT
method. Therefore, we can conclude that even if our new
method depends on the form of the angular distribution,
its performances remain satisfactory, whatever the con-
sidered form, by comparing it to the FAPI-TLS-ESPRIT
method. Now, we reconsider in Figs. 16, 17, and 18 two

GID and LID sources. The first one is assumed to be GID
with central DOA θ̄1 = 10° and angular spread σ1 = 1°
and the second one is LID with central DOA θ̄2 = 17° and
angular spread σ2 = 2.5°.
It can be seen from these figures that our proposed

method outperforms the FAPI-TLS-ESPRIT method even
if the sources are closely spaced. However, comparing
these figures to Figs. 2, 3, and 4 of the first example and
Figs. 7, 8, and 9 of the second example where the sources

Fig. 15 Variances of the estimated central DOAs of the proposed algorithm and the FAPI-TLS-ESPRIT method for two UID and GID sources with
central DOAs 10° and 30° at SNR= 0 dB
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Fig. 16 Tracking trajectories using the proposed algorithm and the FAPI-TLS-ESPRIT method for two GID and LID sources with central DOAs 10° and
17° at SNR= 0 dB

are widely spaced, we note that the proposed method can-
not properly track the DOAs when the sources are closely
spaced. This confirms the conclusion previously proved:
the more the sources are spaced, the more the proposed
method can exactly track the DOAs.
Finally, we consider in Figs. 19 and 20 three sources. The

first one is assumed to be GID with central DOA θ̄1 = 10°
and angular spread σ1 = 1°, the second one is LID with
central DOA θ̄2 = 20° and angular spread σ2 = 1.5°, and

the third one is GID with central DOA θ̄2 = 35° and angu-
lar spread σ2 = 2.5°. Figure 19 presents the tracking tra-
jectories of the central DOAs estimated by our proposed
method, while Fig. 20 displays the tracking trajectories
of the central DOAs estimated by the FAPI-TLS-ESPRIT
method. We see clearly from these figures that our pro-
posed method outperforms by far the FAPI-TLS-ESPRIT
method when the number of sources increases. However,
comparing Fig. 19 with other corresponding figures when

Fig. 17 Estimation errors made by the proposed algorithm and the FAPI-TLS-ESPRIT method for two GID and LID sources with central DOAs 10° and
17° at SNR= 0 dB
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Fig. 18 Variances of the estimated central DOAs of the proposed algorithm and the FAPI-TLS-ESPRIT method for two GID and LID sources with
central DOAs 10° and 17° at SNR= 0 dB

we only consider two ID sources, we show that the per-
formances of the proposed method degrade especially for
high time index. Therefore, we can conclude that although
our new method outperforms the FAPI-TLS-ESPRIT, its
performances degrade significantly when the number of
sources increases and they are closely spaced.

2 Conclusions
In this paper, we developed a newmethod for tracking the
central DOAs assuming multiple incoherently distributed
(ID) sources. This method is based on a simple covari-
ance fitting optimization technique to estimate the central
DOAs in each observed time interval. It also uses the
Kalman filter to model the mobility of the sources and
track the different DOAs during the tracking period. Our

method was compared to the FAPI-TLS-ESPRIT algo-
rithm using the TLS-ESPRIT method and the subspace
updating via FAPI-algorithm in different scenarios. We
proved that this new method outperforms the FAPI-TLS-
ESPRIT method. The improvement made by our method
with regard to the FAPI-TLS-ESPRIT method is more
prominent for low SNR values. We also showed that the
proposed method can better track the central DOA when
the source is GID or LID than when it is UID. Therefore,
our method depends on the form of the angular distribu-
tion function when tracking the central DOAs. Moreover,
we proved that the more the sources are spaced, the
more the proposed method can exactly track the central
DOAs. Finally, when the number of sources increases, the
performances of our proposed algorithm decrease.

Fig. 19 Tracking trajectories using the proposed algorithm for three GID, LID, and GID sources with central DOAs 10°, 20°, and 35° at SNR= 0 dB
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Fig. 20 Tracking trajectories using the FAPI-TLS-ESPRIT method for for three GID, LID, and GID sources with central DOAs 10°, 20°, and 35° at
SNR= 0 dB

Endnote
1We assume that the delay spread caused by the

multipath propagation is small compared to the inverse
bandwidth of the transmitted signals. This means that
the narrowband assumption is valid in the presence of
scattering.
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