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Abstract

We consider broadcasting a block of packets to multiple wireless receivers under random packet erasures using
instantly decodable network coding (IDNC). The sender first broadcasts each packet uncoded once, then generates
coded packets according to receivers’ feedback about their missing packets. We focus on strict IDNC (S-IDNC), where
each coded packet includes at most one missing packet of every receiver. But, we will also study its relation with
generalized IDNC (G-IDNC), where this condition is relaxed. We characterize two fundamental performance limits of
S-IDNC: (1) the number of transmissions to complete the broadcast, which measures throughput and (2) average
packet decoding delay, which measures how fast each packet is decoded at each receiver on average. We derive a
closed-form expression for the expected minimum number of transmissions in terms of the number of packets and
receivers and the erasure probability. We prove that it is NP-hard to minimize the average packet decoding delay of
S-IDNC. We also prove that the graph models of S- and G-IDNC share the same chromatic number. Next, we design
efficient S-IDNC transmission schemes and coding algorithms with full/intermittent receiver feedback. We present
simulation results to corroborate the developed theory and compare our schemes with existing ones.
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1 Introduction
The broadcast nature of wireless medium allows one
sender to simultaneously serve multiple receivers who are
interested in the same data. We consider a block-based
wireless broadcast systemwhere a sender wishes to deliver
a block of data packets to a set of receivers. The chan-
nels between the sender and the receivers are subject to
independent random packet erasures. In such systems,
a traditional approach is to retransmit the data packets
under a receiver feedback mechanism, such as Automatic-
Repeat-reQuest (ARQ) [1]. This approach, though simple,
is inefficient in terms of throughput, as the transmit-
ted packets are non-innovative to the receivers who have
already received them.
The advent of network coding (NC) [2] starts a new

era for high-throughput network coded wireless com-
munications [3–17]. By linearly adding all data packets
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together with randomly chosen coefficients from a suf-
ficiently large finite field, random linear network coding
(RLNC) can almost surely achieve the minimum block
completion time [9–11, 18], which is defined as the num-
ber of transmissions it takes to complete the broadcast.
Due to the inverse relation between block completion
time and throughput under a fixed block size, RLNC can
almost surely achieve optimal throughput.
However, with RLNC, data packets are block-decoded

by solving a set of linear equations, which can only take
place after a sufficient number of coded packets have
been received. RLNC thus may suffer from high decoding
computational load [11], as well as large average packet
decoding delay (APDD) [16], which reflects how fast
each data packet is decoded at each receiver on average.
High decoding computational load may not be afford-
able by receivers with limited computational and energy
resources, such as mobile and sensor receivers [11]. Large
APDD is undesirable in applications where individual data
packets are useful, such as image transmissions and video
streaming [19–21].
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To alleviate decoding computational load and APDD,
the sender can transmit all the data packets uncoded once
at the beginning of the broadcast. This method allows
the receivers to directly obtain a subset of data pack-
ets. It is also throughput optimal and constitutes the
systematic transmission phase of RLNC [11]. But in the
subsequent coded transmission phase, RLNC still requires
block decoding and suffers from high decoding computa-
tional load and APDD.
To further mitigate these issues in the coded

transmission phase, instantly decodable network coding
(IDNC) techniques [3, 12–15] have been introduced.
They make online coding decisions based on receivers’
feedback about their packet reception state, under the
restriction that coding/decoding is over the binary field.
In other words, IDNC techniques shift the computational
load to the sender, and allow receivers to perform sim-
ple binary XOR based instant packet decodings, as the
sender (such as a base station) usually has much more
computational and energy resources than the receivers.
For a handy example of IDNC techniques, consider the

packet reception state in Table 1. There are 4 data pack-
ets, p1,2,3,4, and 2 receivers, R1,2. R1 has received p3,4 and
only wants p1,2, while R2 has received p1,2 and only wants
p3,4. Consider two IDNC coded packets X1 = p1 ⊕p3 and
X2 = p2 ⊕ p4, where ⊕ denotes the binary XOR oper-
ator. By transmitting X1 and X2 and assuming no packet
erasures, both receivers can instantly decode one wanted
data packet after each transmission. Hence, there are two
data packets decoded in the first transmission and two
data packets decoded in the second transmission. The cor-
responding APDD is 1+1+2+2

4 = 1.5. In contrast, if RLNC
is applied, all data packets are decoded after the second
transmission, yielding an APDD of 2.
We also note from the above example that an IDNC

coded packet of X = p1 ⊕ p2 ⊕ p3 is not instantly decod-
able to R1. Restrictions on such packets separate IDNC
techniques into two variations. The first one, called strict
IDNC (S-IDNC) [13–15], prohibits the transmissions of
non-instantly decodable packets to any receiver. Effec-
tively, each coded packet can include at most one wanted
data packet of every receiver. The second one, called gen-
eralized IDNC (G-IDNC), removes this restriction for
more coding opportunities.
Therefore, S-IDNC can be thought of as a sub-class

of G-IDNC, in the sense that every valid S-IDNC
coded packet is also a valid G-IDNC coded packet.

Table 1 A example of packet reception state

p1 p2 p3 p4

R1 wants wants has has

R2 has has wants wants

Although G-IDNC has been extensively studied under
various wireless broadcast settings, including basic ones
[12, 12, 22–28] and those with limited/lossy feedback
[29, 30] or with hard deadline [31], most developed
algorithms are heuristics, leaving the optimal G-IDNC
in terms of throughput and APDD still unknown or
intractable due to prohibitively large computational com-
plexity. Hence in this paper, we take a step back, aiming
to understand the performance limits and optimal imple-
mentations of a sub-class of G-IDNC, namely, S-IDNC.
This will facilitate the applications of S-IDNC, while also
providing new insights into the more general G-IDNC
class.
So far, studies on theoretical performance characteri-

zation and implementations of S-IDNC have been quite
limited in both breath and depth. S-IDNC was graphically
modeled in [13], which then proved that the minimum
clique partition solution [13] of the associated graph can
be an S-IDNC solution that minimizes the block com-
pletion time. However, this solution does not take into
account the issues of decoding delay and the robustness
of coded transmissions to erasures. S-IDNC has shown
to be asymptotically throughput optimal when there are
up to three receivers or when the number of data packets
approaches infinity [20], but the general relation between
the throughput of S-IDNC and system parameters has not
been characterized before. In addition and to the best of
our knowledge, the minimum packet decoding delay of
S-IDNC is still unknown. Moreover, there have not been
S-IDNC transmission schemes that can work with inter-
mittent receiver feedback. Another unaddressed problem
is a systematic performance comparison between S-IDNC
and G-IDNC.
In this paper, we study the above problems and provide

the following contributions:

1. We characterize the throughput performance limits
of S-IDNC. Specifically, we derive a closed-form
expression for the expected minimum block
completion time in terms of the number of packets
and receivers and their erasure probabilities.

2. We prove that it is NP-hard to minimize the APDD
of S-IDNC. We derive an upper bound on the
minimum packet decoding delay in terms of the
minimum block completion time.

3. We introduce the concept of packet multiplicity,
which measures the robustness of data packets
against packet erasures. We develop optimal and
heuristic algorithms that find S-IDNC solutions with
the minimum number of coded packets and with high
packet multiplicities. These solutions are better than
the minimum clique partition solution identified in
[13]. We also design S-IDNC transmission schemes
under full and intermittent receiver feedback.
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4. We also provide new results on the relation between
S-IDNC and G-IDNC. For example, we prove the
equivalence between the chromatic number of S- and
G-IDNC graphs.

2 Systemmodel and notations
2.1 Transmission setup
We consider a block-based wireless broadcast scenario, in
which the sender needs to deliver a block of K data pack-
ets, denoted by PK = {pk}Kk=1, to N receivers, denoted by
RN = {Rn}Nn=1 through wireless channels that are subject
to independent random packet erasures.
Initially, the K data packets are transmitted uncoded

once using K time slots, constituting a systematic trans-
mission phase [11]. Then, each receiver provides feedback
to the sender about the packets it has received.1 The com-
plete packet reception state is represented by an N × K
state feedback matrix (SFM) A, where an,k = 0 if Rn has
already received pk , and an,k = 1 if Rn has missed (and
thus still wants) pk . The set of data packets wanted by Rn
is called theWants set of Rn and is denoted byWn. The set
of receivers who want pk is called the Target set of pk and
is denoted by Tk . The size of Tk is denoted by Tk . Packets
with larger Tk are more desired by receivers.

Example 1. Consider the SFM in Fig. 1a with K = 6
data packets and N = 5 receivers. The Wants set of R1 is
W1 = {p1,p5,p6}. The Target set of p3 is T3 = {R3,R5}
and thus T3 = 2.

Then based on A, the sender starts the second phase,
called the coded transmission phase, in which coded pack-
ets are transmitted until the broadcast is completed, i.e,
until all receivers have recovered all the K data packets. A
sketch of the two-phase transmission scheme is plotted in
Fig. 2.

2.2 Coded transmission phase: two types of IDNC
In the coded transmission phase, the sender generates
IDNC coded packets under the binary field F2. Explicitly,

IDNC coded packets are of the form X = ⊕
pk∈M pk ,

whereM is a selected subset ofPK , and is called an IDNC
coding set. There are three possible types of decodability
of X at each receiver:

Definition 1.1. An IDNC coded packet X is instantly
decodable for receiver Rn if M contains exactly one data
packet from the Wants setWn of Rn, i.e., if |M ∩ Wn| = 1.

Definition 1.2. An IDNC coded packet X is non-
instantly decodable for receiver Rn if M contains two or
more data packets from the Wants set Wn of Rn, i.e., if
|M ∩ Wn| > 1.

Definition 1.3. An IDNC coded packet X is non-
innovative for receiver Rn if M contains no data packets
from the Wants set Wn of Rn, i.e., if |M ∩ Wn| = 0.
Otherwise, it is innovative.

Restrictions on the above three types of packet decod-
ability separate IDNC into two variations. The first one is
called strict IDNC (S-IDNC), which is the main subject
of our study. It prohibits the transmission of any non-
instantly decodable coded packets to any receiver. This
restriction implies that any two data packets wanted by the
same receiver cannot be coded together. We thus have the
concept of conflicting and non-conflicting data packets:

Definition 2. Two data packets pi and pj conflict if at
least one receiver wants both of them, i.e., if ∃n : {pi,pj} ⊆
Wn. Otherwise they do no conflict.

An S-IDNC coding set is thus a set of pairwise non-
conflicting data packets. The conflicting state between all
data packets can be represented by an undirected graph
Gs(V , E). Each vertex vi ∈ V represents a data packet pi.
Two vertices vi and vj are connected by an edge ei,j ∈ E if
pi and pj do not conflict. Thus, every complete subgraph
of Gs, a.k.a., a clique, represents an S-IDNC coding set. In
the rest of the paper, we will use the terms “coded packet”,

Fig. 1 An example of SFM and its S- and G-IDNC graphs
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Fig. 2 The considered two-phase transmission schemes. Receiver feedback must be collected by the end of the systematic transmission phase (solid
arrow). Intermediate feedback during the coded transmission phase (dashed arrows) are optional

“coding set”, and “clique” interchangeably, and denote the
last two byM.
The main limitation of S-IDNC is that a coded packet

which is instantly decodable for a large subset of receivers
may be prohibited because it is non-instantly decodable
for a small subset of receivers. In the second type of
IDNC, called generalized IDNC (G-IDNC), the restriction
on non-instantly decodable packets is removed for more
coding opportunities.2
G-IDNC can also be graphically modeled [23]. The

difference is that, in the G-IDNC graph Gg(V , E), a data
packet pk wanted by different receivers are individually
represented by different vertices vn,k , for all an,k = 1. Con-
sequently, the number of vertices in Gg is equal to the
number of “1”s in A. Two vertices vm,i and vn,j are con-
nected by an edge if: (1) i = j, or (2) if pi /∈ Wn and pj /∈
Wm. In the first case, pi = pj, and thus by sending pi both
Rm and Rn can decode. In the second case, by sending pi⊕
pj, Rm and Rn can decode pi and pj, respectively, because
they already have pj and pi, respectively. Similar to S-
IDNC, every clique of Gg represents a G-IDNC coding
set.
We note that an S-IDNC coded packet is always a

G-IDNC coded packet, but the reverse is not necessar-
ily true. Below is an example of S- and G-IDNC coded
packets.

Example 2. Consider the SFM and its S- and G-
IDNC graphs in Fig. 1. The G-IDNC graph indicates that
(v1,1, v5,3, v4,4) is a clique. The corresponding G-IDNC cod-
ing set is (p1,p3,p4), and thus Xg = p1 ⊕ p3 ⊕ p4
is a G-IDNC coded packet. Xg is instantly decodable
for R1,R4,R5 because they only want one data packet
from Xg . Xg is non-instantly decodable for R3 because
R3 wants both p3 and p4. Xg is non-innovative for
R2.
Due to the existence of R3, Xg is not an S-IDNC

coded packet. Whereas the S-IDNC graph indicates that
(v1, v2, v3) is a clique. The corresponding coding set is
(p1,p2,p3), and thus Xs = p1 ⊕ p2 ⊕ p3 is an S-IDNC

coded packet, which can be verified to also correspond to
clique (v1,1, v2,2, v3,3, v5,3) in the G-IDNC graph.

We then introduce the notion of IDNC solution. A
set of IDNC coding sets is called an IDNC solution if,
upon the reception of the coded packets of all these
coding sets, every receiver can decode all its wanted
data packets. An S-IDNC solution is denoted by Ss.
The set of all S-IDNC solutions of a given SFM is
denoted by Ss. Similarly, we can also define Sg and Sg for
G-IDNC.
For the SFM in Fig. 1, by partitioning the S-IDNC

graph into three disjoint cliques, we can obtain, among
others, an S-IDNC solution with three cliques/coding
sets: Ss = {(p1,p4), (p2,p5), (p3,p6)}. We can also
partition the S-IDNC graph into four disjoint cliques
and obtain Ss = {(p1,p2,p3),p4,p5,p6}. Similarly,
a disjoint clique partition of the G-IDNC graph is
{(v1,1, v2,2, v5,3, v4,4), (v3,3, v1,6, v2,6, v4,6), (v1,5, v3,5, v5,5),
(v3,4, v4,4)}, indicating a G-IDNC solution of Sg =
{(p1,p2,p3,p4), (p3,p6), (p5), (p4)}.
To assess the performance of IDNC solutions, we now

introduce our measures of throughput and decoding
delay.

2.3 Throughput and decoding delay measures
An S-IDNC solution Ss requires a minimum of |Ss| coded
transmissions. We call USs � |Ss| the minimum block
completion time of Ss. It measures the best throughput of
Ss, because the total number of transmissions in the sys-
tematic and coded transmission phases is lower bounded
by K + U§s , yielding a throughput of K

K+U§s
packet per

transmission. We further denote by Us the absolute mini-
mumblock completion time over all the S-IDNC solutions
of A, i.e., Us � min{U§s : §s ∈ Ss}. Similarly, we denote by
Ug the absolute minimum block completion time over all
the G-IDNC solutions of A.
Decoding delay reflects how fast each data packet is

decoded by each receiver on average. In this paper, we
measure decoding delay by average packet decoding delay
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(APDD)D, which is the average time it takes for a receiver
to decode a data packet. For example, the APDD of all
receivers is calculated as:

D = 1
T

∑
∀an,k=1

un,k , (1)

where un,k is the time index when Rn decodes pk , and T =∑K
k=1 Tk , which is also the number of “1”s in A.
Given an IDNC solution S , by letting un,k be the first

time index when S allows Rn to decode pk , (1) produces
the minimum APDD of S . We further denote by Ds (resp.
Dg) the absolute minimum APDD over all S- (resp. G-)
IDNC solutions ofA. We also note that in the specific case
of an S-IDNC solution Ss, un,k is indeed the index of the
first coding set in Ss that contains pk , as every receiver
who wants pk can decode it from this coding set.

Example 3. Consider the SFM in Fig. 1a. Suppose that
an S-IDNC solution with four coded packets X1 = p1 ⊕p2,
X2 = p3 ⊕ p6, X3 = p4, and X4 = p5 are transmitted in
this order. The receivers’ decoding time {un,k} are summa-
rized in Table 2. The minimum APDD of this solution is
DSs = (1 × 2 + 2 × 5 + 3 × 2 + 4 × 3)/12 = 2.5.

In each time slot of the coded transmission phase,
the sender selects and broadcasts a coding set through
erasure-prone wireless channels. We denote by UT the
block completion time of the coded transmission phase,
and byDT the APDD of this phase, calculated as in (1).UT
and DT measure the throughput and decoding delay per-
formance of this phase, respectively. They vary according
to the IDNC solutions, transmission schemes, and erasure
patterns. But it always holds that UT � Us and DT � Ds
if S-IDNC is applied. Therefore, Us and Ds reflect the
performance limits of S-IDNC. Hence, we will first study
these limits in the next section, and then design S-IDNC
transmission schemes and coding algorithms in Sections 4
and 5, respectively.

3 Performance limits and properties of IDNC
In this section, we study performance limits and proper-
ties of S-IDNC and compare it with G-IDNC.

Table 2 The decoding delay of original data packets at the
receivers

p1 p2 p3 p4 p5 p6

R1 1 0 0 0 4 2

R2 0 1 0 0 0 2

R3 0 0 2 3 4 0

R4 0 0 0 3 0 2

R5 0 0 2 0 4 0

3.1 Absolute minimum block completion time Us

We first study the throughput limit of S-IDNC, measured
by the absolute minimum block completion timeUs. It has
been proved that Us is equal to the size of the minimum
clique partition solution3 of Gs [13], denoted by Sc. This
equivalence holds because of the following property:

Property 1. Removing any vertex from the S-IDNC
graph does not change the connectivity of the remaining
vertices.

This property holds because vertices in Gs represent dif-
ferent data packets. Thus, to remove all vertices from Gs
(i.e., to complete the broadcast), at least |Sc| cliques must
be removed, which yields Us = |Sc|.
According to graph theory, |Sc| is equal to the chromatic

number4 χ(Gs) of the complementary graph Gs, which has
the same vertex set as Gs, but has opposite vertex connec-
tivity. We thus have Us = χ(Gs). Bounds and approxi-
mations on the chromatic number of a given graph have
been well-studied in the graph theory literature [33–35].
They provide some insights into the Us of a given SFM.
In this subsection, we are interested in the probabilistic
characterization of Us, as Gs is the consequence of ran-
dom packet erasures in the systematic transmission phase.
Specifically, we address the following question: what is the
relation between Us and system parameters, including the
number of data packets and receivers, as well as the packet
erasure probability?
For wireless broadcast, a common assumption on ran-

dom packet erasures is that they are independently and
Bernoulli distributed at each receiver Rn with an erasure
probability of Pe,n. Under this assumption, a similar ques-
tion has already been introduced and answered for the
RLNC technique. RLNC has been proved to be asymptot-
ically throughput-optimal, for each RLNC coded packet is
almost surely linearly independent of the previous RLNC
coded packet(s) when the finite field is sufficiently large
[11]. Hence, RLNC is able to offer the smallest block com-
pletion time among all NC techniques. It has also been
shown in [6, 36, 37] that the block completion time of
RLNC scales as O(ln(N)) when K is a constant. Conse-
quently, the throughput of RLNC vanishes with increasing
number of receivers N. To prevent zero throughput, it
has been proved in [38] that K should scale faster than
ln(N).
Since the throughput of RLNC is already optimal, it can-

not be exceeded by the throughput of S-IDNC. Hence, we
can infer that the throughput of S-IDNC should also fol-
low a vanishing behavior with increasing N. However, its
rate and specific dependence on system parameters have
not been fully characterized in the literature. In this sub-
section, we answer this question through the following
theorem:
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Theorem 1. The mean of the absolute minimum block
completion time Us is a function of the block size K, the
number of receivers N, and packet erasure probability
{Pe,n}Nn=1:

E[Us] = −K
(
1
2

+ o(1)
) N∑

n=1
logK

(
1 − P2e,n

)
, (2)

where o(1) is a small term that approaches zero with
increasing K.

Proof. Our approach is to model the complementary S-
IDNC graph Gs after the systematic phase as a random
graph with i.i.d. edge generating probability. Recall that
two vertices in Gs are connected if the two data packets
conflict, i.e., if at least one receiver has missed both pack-
ets. Therefore, the generating probability of every edge,
denoted by Pc, is calculated as:

Pc = 1 −
N∏

n=1

(
1 − P2e,n

)
. (3)

Then, the key is to prove that different edges are gen-
erated independently. We first consider the independence
between two adjacent edges. Without loss of generality
let us consider the generation of e1,2 and e1,3, two edges
that are adjacent via v1, and are incident to v2 and v3,
respectively. We denote by P(e1,2) the probability that e1,2
is generated. It holds that P(e1,2) = P(e1,3) = Pc in (3). We
further denote by P(e1,2|v1) the probability that e1,2 is gen-
erated conditioned on that v1 is generated. We then argue
the following relations:

1. P(e1,2, v1) = P(e1,2), because the generating of e1,2
already indicates that v1 is generated. Similarly, we
also have P(e1,3, v1) = P(e1,3);

2. P(v1|e1,2, e1,3) = 1 because of the same reason as
above;

3. P(e1, e2|v1) = P(e1|v1) · P(e2|v1), because if v1 is
already generated, the generating of e1 (resp. e2) only
depends on whether p2 (resp. p3) is wanted by some
of the receivers who want p1. Since wanting p2 and
p3 are independent events for every receiver, the
generating of e1 and e2 is independent conditioned
on that v1 is generated;

4. P(v1)2 ≈ P(v1) ≈ 1, and the accuracy increases
quickly with increasing number of receivers N. This
is because P(v1) is the probability that at least one
receiver has missed p1 in the systematic transmission
phase. It has a value of 1 − ∏N

n=1(1 − Pe,n), which
quickly approaches to 1 with increasing N.

Then, to prove that e1,2 and e1,3 are generated indepen-
dently, we only need to show that P(e1,2, e1,3) = P(e1,2) ·
P(e1,3):

P(e1,2, e1,3) = P(e1,2, e1,3|v1) · P(v1)
P(v1|e1,2, e1,3) (4)

= P(e1,2|v1) · P(e1,3|v1) · P(v1)
≈ P(e1,2|v1) · P(e1,3|v1) · P(v1)2

= P(e1,2, v1) · P(e1,3, v1)
= P(e1,2) · P(e1,3),

where (4) follows Bayes’ rule. Hence, the generation of e1,2
and e1,3 are asymptotically independent of each other.
On the the other hand, it is intuitive that two disjoint

edges in Gs are generated independently. Therefore, we
can assume that all edges in Gs are generated indepen-
dently.
Consequently, Gs can be modeled as an Erdõs-Rényi

random graph [39], which has K vertices and i.i.d. edge
generating probability of Pc. Figure 3 compares the mean
number of edges (with a value of K(K − 1)/2 · Pc) of our
proposed random graph model and the simulated aver-
age number of edges in Gs. Our model shows virtually no
deviation under all considered values of N and K.
From graph theory, given K and Pc, almost every ran-

dom graph Gs has a chromatic number of [40]:

χ(Gs) = K
logK

(
1
2

+ o(1)
)
log

1
1 − Pc

. (5)

Since Us = χ(Gs), the above value is the mean of Us. By
substituting (3) into (5) we obtain (2).

Theorem 1 has the following important corollary:

Corollary 1. The mean E[Us] of the absolute minimum
block completion time of S-IDNC increases almost linearly
with the number of receivers when all receivers experience
similar packet erasure probabilities.

Proof. This corollary can be proved by letting
{Pe,n}Nn=1 = Pe, which will transform (2) into a linear
function of N :

E[Us] = −K
(
1
2

+ o(1)
) N∑

n=1
logK

(
1 − P2e

)

= −K
(
1
2

+ o(1)
)
logK

(
1 − P2e

) · N . (6)

Then, by noting that the mean block completion time of
the coded transmission phase is lower bounded by E[Us],
we conclude that the throughput of S-IDNC degrades
with increasing number of receivers. Such degradation is
common among network coding techniques that aim to



Yu et al. EURASIP Journal on Advances in Signal Processing  (2015) 2015:94 Page 7 of 17

Fig. 3 The mean and simulated number of edges in Gs when {Pe,n}Nn=1 = 0.2 and K ∈ [20, 100]

reduce decoding delay [41]. In the next subsection, we will
study the APDD of S-IDNC.

3.2 Absolute minimum average packet decoding delayDs

Unlike Us, to the best of our knowledge, there is no
existing hardness result on finding Ds. In this subsection,
we address it through the following theorem and then
propose an upper bound on Ds.

Theorem 2. It is NP-hard to find the absolute minimum
APDD Ds of S-IDNC.

In order to prove it, we first reveal the perfect decoding
scenario of each receiver.We first note that it is impossible
for a receiver to decode more than u wanted data pack-
ets from the first u coded packets, for any u > 0. Then
for every receiver Rn, its perfect decoding scenario is to
decode one of its |Wn| wanted data packet from each of
the first |Wn| coded packets. Intuitively, this scenariomin-
imizes both the BCC and APDD experienced by Rn. By
extending the perfect decoding scenario to all receivers,
we obtain the concept of perfect S-IDNC solution:

Definition 3. An S-IDNC solution is perfect and is
denoted by Sp if every receiver Rn can decode one of its
|Wn| wanted data packets from each of the first |Wn|
coding sets in Sp.

By its definition, Sp offers the perfect packet decoding
scenario for all receivers; every coded packet allows all
receivers that are still missing data packets to decode one

wanted data packet. Therefore, its APDD, denoted byDSp ,
is a lower bound of Ds, and can only be achieved if Sp
exists. The value of DSp is:

DSp = 1
T

N∑
n=1

wn∑
i=1

i. (7)

The hardness of deciding the existence of Sp is as fol-
lows:

Theorem 3. It is NP-complete to decide the existence of
Sp for a given SFM.

It is proved through a reduction from a graph γ -
colorability (γ � 3) problem, which is well-known to be
NP-complete [34]. The proof is given in Appendix 1. Then
by noting thatDSp can only be achieved by Sp, Theorem 3
has the following corollary:

Corollary 2. It is NP-complete to decide the achievabil-
ity of DSp for a given SFM.

Corollary 2 proves Theorem 2 by contradiction; if it
is easy to find Ds for a given SFM, then we can eas-
ily decide the achievability of DSp by comparing Ds with
DSp , as Ds = DSp means that DSp is achievable, and
Ds > DSp means that DSp is not achievable. However, this
result contradicts with Corollary 2. Hence, it is NP-hard to
find Ds.
Besides the NP-hardness,Ds has the following property:



Yu et al. EURASIP Journal on Advances in Signal Processing  (2015) 2015:94 Page 8 of 17

Property 2. The absolute minimum APDD Ds is upper
bounded by Us as

Ds �
Us + 1

2
. (8)

Proof. Given an S-IDNC solution Ss = {Mu}Uu=1, let
T(u) = ∑

pk∈Mu Tk be the number of receivers who can
decode a data packet from Mu. The minimum APDD of
Ss is thus:

DSs = 1
T

U∑
u=1

T(u) · u. (9)

which is maximized when {T(u)}Uu=1 = T
U . In this case,

DSs = U+1
2 . Applying this result to an S-IDNC solution

with absolute minimum block completion time U = Us,
we obtain the result.

Our proof indicates that, although it is NP-hard to
achieveDs, we can still effectively reduce APDD by reduc-
ing the sizes of our S-IDNC solutions. Before we further
explore this result to implement S-IDNC, we would like to
compare the performance limits of S-IDNC that we have
just derived with G-IDNC.

3.3 S-IDNC vs. G-IDNC
In this subsection, we address the question of how does
S-IDNC compare with G-IDNC?
We first note that the NP-hardness of finding Ds

also holds for Dg . This is because the perfect S-
IDNC solution Sp is also the best possible G-IDNC
solution. For the throughput, we first present a rela-
tion between S- and G-IDNC graphs (proved in the
appendix):

Theorem 4. The minimum clique partition solutions of
S-IDNC and G-IDNC graphs have the same size. In other
words, χ(Gs) = χ(Gg).

This theorem, together with Corollary 1, indicates that
χ(Gg) also increases almost linearly with N when all
receivers experience similar erasure probabilities. How-
ever, the above theorem does not imply Us = Ug . This is
because G-IDNC does not have Property 1. Explicitly, by
removing a vertex from Gg , more edges and larger cliques
may be generated, and thus the absolute minimum block
completion timeUg can be smaller than χ(Gg) of the orig-
inal G-IDNC graph Gg [24]. We thus have Ug � Us. We
note, however, that a systematic way of finding Ug other
than brute-force search remains widely open.

4 S-IDNC transmission schemes
In this section, we design S-IDNC transmission schemes
to compensate for packet erasures in the coded transmis-
sion phase. To this end, the sender has to regularly collect
feedback from the receivers about their packet recep-
tion state to make online coding decisions. We consider
transmission schemes with two different types of feedback
frequency, namely:

1. Fully-online feedback: feedback is collected after
every coded transmission. However, this could be
costly in wireless communications. We thus also
consider a reduced feedback frequency next;

2. Semi-online feedback: feedback is only collected after
transmitting a complete S-IDNC solution;

To be able to design S-IDNC transmission schemes, two
questions need to be answered first:

1. What is the optimization objective for throughput
and decoding delay improvement?

2. What does the sender need to send to achieve it?

Before addressing these questions, we first highlight
some challenges:

Remark 1. Under random packet erasures, a reason-
able measure of throughput is the mean block completion
time E[UT ] of the coded transmission phase. However, it
is intractable to minimize E[UT ]. To see this, let us con-
sider the stochastic shortest path (SSP) method [23]. In SSP
method, the state space comprises the current SFM and its
successors, and thus has a prohibitively large size with a
value of 2T , where T is the number of “1”s in A. The action
space for each state comprises all cliques/coding sets, which
is NP-hard to find [42]. Then, E[UT ] is recursively min-
imized by examining all the states and the associated
actions. Such examination is necessary, because the packet
erasures can take any pattern and are not predictable. But
it makes E[UT ] intractable to minimize. To overcome this
difficulty, we will turn to optimization objectives that are
heuristic, but still based on SSP optimization principles.

Remark 2. It is intractable to minimize the APDD DT
of the coded transmission phase due to the NP-hardness of
finding Ds, because otherwise by setting Pe = 0, the min-
imum DT is equal to Ds. To overcome this difficulty, we
will give higher priority to the minimization of block com-
pletion time. In other words, we first minimize the block
completion time. Then among the resultant coding deci-
sions, we choose the one that minimizes the decoding delay.
Our prioritization reflects the motivation of using network
coding, that is, to achieve better throughput performance.
It also provides bounded decoding delay performance as
we have shown in (8). This will also be confirmed by our
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simulations, which show that DT generally decreases with
decreasing UT .

4.1 Fully-online transmission scheme
In this scheme, the current state in SSP is the cur-
rent SFM A, the absorbing state is the all-zero SFM
and is denoted by A0. The action space comprises
all the S-IDNC coding sets of A. The cost of each
action is one, for it consumes one transmission. The
block completion time UT is thus equal to the number
of transitions (a.k.a. path length or distance) between
A and A0.
According to Remark 1, it is intractable to choose an

action/coded packet that minimizes the expected path
length (and thus E[UT ]). As a heuristic alternative, we
propose to choose an action/coded packet that belongs
to the shortest path from A to A0, which has a length
of Us. This choice guarantees that, upon the reception
of the coded packet at all interested receivers, the short-
est distance between the updated state A′ and A0 is
minimized to Us − 1. To this end, the coded packet
must belong to a minimum clique partition solution Sc.
Otherwise, the shortest distance between A′ and A0 is
still Us.
We then reduce APDD by forcing the coded packet to

be maximal (and thus serving the maximal number of
receivers). However, cliques in a minimum clique par-
tition solution are not necessarily maximal. Hence, we
further require the coded packet to belong to a set of
Us maximal cliques that together cover all the data pack-
ets. This set is also an S-IDNC solution and is denoted
by Sm.
In conclusion, we propose the following coded packet

Mf for fully-online transmission scheme:
Given an SFM instance, the preferred coded packet Mf

is the most wanted coded packet in Sm, where Sm is an
S-IDNC solution that contains Us maximal cliques.

4.2 Semi-online transmission scheme
The current and absorbing states in this scheme is the
same as in the fully-online scheme. But the action space
becomes the set of all S-IDNC solutions Ss, and the
cost of each action is the solution size |Ss|, which is
equal to the length of a semi-online transmission round.
The total cost is thus equal to the block completion
time.
According to Remark 1, it is intractable to minimize

the expected total cost (and thus E[UT ]). As a heuristic
alternative, we propose to minimize the expected cost of
the shortest path between A and A0. The shortest path
includes only one transition, representing the event that
every coded packet of the chosen solution Ss is received
by all the interested receivers after only one semi-online

round. Denote the probability of this event by Ps. Then the
expected cost is |Ss|/Ps, where Ps is calculated as:

Ps =
K∏

k=1

∏
Rn∈Tk

(
1 − Pdke,n

)
. (10)

Here, dk is called the packet multiplicity and is defined
below.

Definition 4. Themultiplicity dk of data packet pk is the
number of coding sets in Ss that comprise pk.

We note that the minimum clique partition solution Sc
is not a preferred semi-online S-IDNC solution. Although
Sc offers the smallest solution size (|Sc| = Us), it does not
maximize Ps because every data packet has a multiplicity
of only one due to disjoint cliques in Sc. In contrast, the
Sm we have proposed for the fully-online case can offer
a higher Ps than Sc due to possibly overlapping maximal
cliques, while also offering the smallest solution size.
We still wish to answer the following question before

choosing Sm as our preferred semi-online S-IDNC solu-
tion: Is there a solution that, though is large in its size,
provides higher packet multiplicities, so that Ps is maxi-
mized?
An explicit answer to this question is difficult to obtain,

because it requires the examination of all the solutions of
size greater than Us. Such search is costly and does not
provide any insight into this question. Moreover, a larger
solution is unlikely to provide higher packet multiplicities
due to the following property of S-IDNC solutions:

Property 3. Every coding set in an S-IDNC solution
comprises at least one data packet with a multiplicity of
one.

This property holds because if every data packet in a
coding set has a multiplicity of greater than one, then
this coding set can be removed from the solution with-
out affecting the completeness of the solution. Due to the
above property, an S-IDNC solution Ss has at least |Ss|
data packets with a multiplicity of only one. According
to (10), these unit-multiplicity data packets reduce Ps the
most. Hence, S-IDNC solutions with a larger size may
have more unit-multiplicity data packets than Sm, and
thus are not preferable.
Therefore, we choose Sm for throughput improvement.

Then, by taking into account our secondary optimization
objective, i.e., the APDD, we define our preferred semi-
online S-IDNC solution as follows:
Given an SFM instance, the preferred semi-online S-

IDNC solution is Sm, which comprises a set of Us maximal
cliques. The cliques are sorted for transmission in the
descending order of their numbers of targeted receivers to
minimize the APDD.
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A flow-chart of the proposed two transmission schemes
are presented in Fig. 4. Both the fully- and semi-online
IDNC schemes require findingSm. Since packetmultiplic-
ity is not a concern in graph theory, algorithms that find
Sm do not exist in the graph theory literature. Hence, we
will design algorithms dedicated for S-IDNC in the next
section. Before moving on, we briefly compare S-IDNC
and G-IDNC under the above two transmission schemes.

4.3 S-IDNC vs. G-IDNC
With fully-online feedback, the sender can update the G-
IDNC graph Gg and add new edges representing coding
opportunities after every transmission. The throughput
of G-IDNC is thus better than S-IDNC. But, the price is
high computational load, because G-IDNC graph is much
larger than S-IDNC graph (O(NK) vs. O(K)). On the
other hand, it has been proved in [30] that, when receiver
feedback is not available, the best strategy for the sender
is not to update Gg (compared with certain probabilistic
update strategy). Therefore, during a semi-online trans-
mission round, the sender only sends the minimum clique
partition solution of Gg , which, according to Theorem 4,
has the same size as the minimum clique partition solu-
tion of S-IDNC.

5 S-IDNC coding algorithms
The two transmission schemes we proposed in the last
section require finding Sm, an S-IDNC solution that con-
tains Us maximal coding sets. In this section, we develop
its optimal and heuristic algorithms.

5.1 Optimal S-IDNC coding algorithm
Our optimal algorithm finds all valid Sm in two steps:

Step-1 Find all the maximal coding sets (maximal
cliques): This problem is NP-hard in graph
theory [42], and thus cannot be optimally solved
by an algorithm whose computational
complexity is a polynomial of the number K of
data packets. However, it can be solved by

exponential algorithms such as Bron-Kerbosch
(B-K) algorithm [42]. We use B-K algorithm to
optimally find the group of all maximal cliques
and denote the group byA.

Step-2 Find all valid Sm fromA: We propose a
branching algorithm in Algorithm 1. The
intuition behind this algorithm is that, if a data
packet pk belongs to dk maximal coding sets in
A, then one of these dk maximal coding sets must
be included in Sm for the completeness of Sm.
In the extreme case where dk = 1, the sole
maximal coding set that contains pk must be
included in Sm. Below is an example of
Algorithm 1.

Example 4. Consider the graph model in Fig. 5. In
Step-1, we find all the maximal cliques: A = {(p1,p3),
(p2,p3,p5), (p3,p4), (p4,p6), (p5,p6)}. Then in Step-2:

1. Initially, S = ∅, S = A \ S = A, and the set of data
packets not included in S is
P = {p1,p2,p3,p4,p5,p6}. Since p1 is only included
in (p1,p3) and p2 is only included in (p2,p3,p5),
these two coding sets must be added to S . Hence,
S = {(p1,p3), (p2,p3,p5)} after the first two
iterations;

2. The set of data packets not included in S is
P = {p4,p6}, and the remaining maximal coding sets
are S = A \ S={(p3,p4), (p4,p6), (p5,p6)}}. Since p4
has a multiplicity of 2 under S due to (p3,p4) and
(p4,p6), we branch S into two successors:
S1 = {(p1,p3), (p2,p3,p5), (p4,p5)} and
S2 = {(p1,p3), (p2,p3,p5), (p4,p6)}. Since S2
contains all data packets and there are no other
branching opportunities, the algorithm stops and
outputs S2 as Sm.

B-K algorithm and Algorithm 1 constitute our opti-
mal S-IDNC coding algorithm. It is optimal because it
exhaustively finds all the valid Sm from all the maximal

Fig. 4 The fully- and semi-online transmission schemes
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Algorithm 1Optimal S-IDNC solution search
1: input: the group of all maximal coding sets,A;
2: initialization: a set B of solutions, B only contains an

empty solution S = ∅. A counter u = 1;
3: while no solution in B contains all data packets, do
4: while there is a solution in B with size u − 1, do
5: Denote this solution by S = {M1, · · · ,Mu−1}.

Denote the data packets included in S by P =⋃u−1
i=1 {Mi} and all data packets not included in S

by P = PK \P . Also denote the maximal coding
sets not included in S by S = A \ S ;

6: Pick from P the data packet p that has the small-
est multiplicity d under S . Denote the d coding
sets which contain p byM′

1, · · · ,M′
d;

7: Branch S into d new solutions, S ′
1, · · · ,S ′

d . Then,
add M′

1, · · · ,M′
d to these solutions, respec-

tively. The sizes of the new solutions are u;
8: end while
9: u = u + 1;

10: end while
11: Output the solutions in B that contain all data

packets.

coding sets. Among these solutions, we can choose the
one that optimizes a secondary criteria, such as the one
offering the smallestDS , or the largest PS, calculated using
(10).

5.2 Hybrid S-IDNC coding algorithm
Algorithm 1 is memory demanding, because the number
of candidate solutions grows exponentially with branch-
ing. Thus, we propose a heuristic alternative to it. The
idea is to iteratively maximize the number of data packets
included in Sm. The algorithm is given in Algorithm 2.
B-K algorithm and Algorithm 2 constitute our hybrid

S-IDNC coding algorithm. It produces only one S-IDNC
solution, with no guarantee on the solution size. It is
still computational expensive due to B-K algorithm. Thus,
we develop a polynomial time heuristic S-IDNC coding
algorithm next.

Algorithm 2 Hybrid S-IDNC solution search
1: input: the group of all maximal coding sets,A;
2: initialization: an empty solution S = ∅, a counter

u = 1, packet set P = PK ;
3: while S does not contain all data packets, do
4: find the coding setM inA that contains the largest

number of data packets in P ;
5: Add M to S and remove data packets in M from

P ;
6: u = u + 1;
7: end while
8: Output the solution S .

5.3 Heuristic S-IDNC coding algorithm
Algorithm 3 is a simple algorithm that heuristically finds
the maximum (the largest maximal) clique of a graph. The
intuition behind this algorithm is that, a vertex is very
likely to be in the maximum clique if it is incident by the
largest number of edges. Variations of this algorithm have
been developed in the literature [12, 13, 23]. But, this algo-
rithm has not been applied to finding a complete S-IDNC
solution, and its computational complexity has not been
identified yet.

Algorithm 3 Heuristic maximum clique search
1: input: graph G(V , E);
2: initialization: an empty vertex set Vkeep;
3: while G is not empty do
4: add to Vkeep the vertex v which has the largest

number of edges incident to it;
5: update G by deleting v and all the vertices not con-

nected to v (These vertices can be ignored because
they cannot be part of the target clique, which con-
tains v);

6: end while
7: vertices inVkeep are pair-wise connected, and no other

vertices can be added to them. Hence, Vkeep is a
maximal clique.

Fig. 5 An example of the two-step optimal S-IDNC coding algorithm
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The computational complexity of Algorithm 3 is
polynomial in the number of data packets K. The highest
computational cost occurs when the input graph is com-
plete, i.e., when all vertices are connected to each other.
In this case, only one vertex will be removed in each itera-
tion. Thus, the number of remaining vertices in iteration-i
will be K − i, ∀i ∈ [0,K − 1]. Then, to find the vertex with
the largest number of incident edges, we need K − i com-
parisons. The total computational cost is thus in the order
of

∑K−1
i=0 K − i = K(K − 1)/2. Hence, the computational

complexity of Algorithm 3 is at mostO(K2).
We apply Algorithm 3 to iteratively find Sm in

Algorithm 4. In each iteration, we find a clique using
Algorithm 3, maximize it by adding more vertices to it
whenever possible, and then remove it from the S-IDNC
graph. This will increase the multiplicities of the added
vertices/packets. Below is an example:

Example 5. Consider the graph Gs in Fig. 1b. In the
first two iterations, the algorithm will choose M1 =
(p1,p2,p4) and M2 = (p3,p6), respectively. In the third
iteration, Vcovered = {p1,p2,p3,p4,p6} and the algorithm
can only choose M3 = (p5). Among all the data pack-
ets in Vcovered, p2 can be added to M3. Thus M3 =
{p2,p5}. The algorithm then stops and outputs Sm =
{(p1,p2,p4), (p3,p6), (p2,p5)}.

Algorithm 4 Heuristic S-IDNC solution search
1: input: a graph G(V , E);
2: initialization: an empty vertex set Vcovered, a working

graph Gw = G, and a counter i = 0;
3: while Vcovered �= V do
4: Find the maximum clique in Gw using Algorithm 3.

Denote it byMi ;
5: Find the vertices in Vcovered which are connected to

Mi. Denote their set by Vi (They are the candidate
vertices that could be added toMi.);

6: Generate a subgraph of G whose vertex set is Vi.
Denoted this subgraph by G′

i(Vi, Ei);
7: Find the maximum clique in G′

i using Algorithm 1,
denoted it by M′

i (All vertices in M′
i are connected

to each other and thus can all be added toMi.);
8: Update Vcovered by adding vertices inMi into it;
9: Update Gw by removingMi from it;

10: Update Mi as Mi = Mi ∪ M′
i (The new clique is

at least as large as the old one, and thus provides
higher packet multiplicity);

11: i = i + 1;
12: end while

In conclusion, we proposed an optimal coding algo-
rithm that exhaustively finds all the possible Sm, and also
proposed its hybrid and heuristic alternatives. Both the

optimal and hybrid algorithms are exponential-time algo-
rithms in terms of K due to their use of B-K algorithm,
while the heuristic algorithm is a polynomial-time one.
The output Sm is used as the S-IDNC solution for the
semi-online transmission scheme. If fully-online trans-
mission scheme is applied, the transmitted coding setMf
is chosen from Sm.

6 Simulations
In this section, we present the simulated throughput and
decoding delay performance of S-IDNC (abbreviated as S-
in the figures) under different scenarios, including under
fully- and semi-online transmission schemes, and under
the use of optimal, hybrid and heuristic coding algorithms
(abbreviated in the figures as Fully-, Semi-, Opt., Hybr.,
and Heur., respectively).
We also compare S-IDNC with RLNC and G-IDNC.

For RLNC, we assume a sufficiently large finite field, so
that its throughput is almost surely optimal and serves
as a benchmark. For G-IDNC, although its best perfor-
mance is at least as good as S-IDNC (as we have explained
in Section 3.3), this advantage will not necessarily be
reflected in our simulation results. This is because there
has not been any optimal G-IDNC algorithm. Instead, we
apply a heuristic algorithm (abbreviated as Heur. G- in the
figures) proposed in [23], which aims at minimizing the
block completion time. This aim coincides with our opti-
mization priorities for S-IDNC in Remark 2, namely, to
minimize the block completion time first.
We conduct four sets of simulations. In all simulations

we apply a block size of K = 15. In the first three sets, we
fix Pe = 0.2 and set the number of receiversN ∈ [5and40].
In the fourth set, we fix N = 15 and set Pe ∈ [0.05, 0.4].
The purposes of the four sets of simulations are as fol-

lows. The first set compares the performance limits of
the three techniques. The results are presented in Fig. 6.
The second (resp. third) set of simulations compares the
throughput and decoding delay performance under fully-
online (resp. semi-online) transmission schemes. The
results are presented in Fig. 7 (resp. Fig. 8). We note
that the performance of RLNC is the same under both
schemes, because RLNC is feedback-free. In the fourth
set, we evaluate the performance of our hybrid algorithm
under different packet erasure probabilities and compare
it with fully-online heuristic G-IDNC and RLNC. The
results are presented in Fig. 9.
Our observations on S-IDNC are as follows:

• The absolute minimum block completion time of
S-IDNC increases almost linearly with N. This result
matches Corollary 1;

• The fully-online transmission scheme always
provides better throughput and decoding delay
performance than the semi-online one;
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Fig. 6 The throughput and decoding delay performance limits of S- and G-IDNC, and RLNC

• The optimal coding algorithm always provides better
throughput performance than its hybrid and heuristic
alternatives. This result verifies our choice of Sm for
throughput improvement, because only the optimal
coding algorithm can always produce Sm, which has
|Sm| = Us;

• However, the optimal coding algorithm does not
necessarily minimize the APDD. For example, in
Fig. 6b, the hybrid algorithm provides slightly smaller
APDD than the optimal one when there are no packet
erasures and when the number of receivers isN � 15;

• The performance gap between the optimal and
hybrid algorithms is always marginal, and is much
smaller than their gap with the heuristic one. Hence,

the hybrid algorithm strikes a good balance between
performance and computational load.

A cross comparison of RLNC, S-, and G-IDNC shows
that:

• The throughput of RLNC is always the best. The
throughput of S-IDNC is very close to RLNC when
the number of receivers is small. Their gap increases
with N;

• In general, the APDD of both S- and G-IDNC is
better than RLNC. This advantage only vanishes
when the block completion time of S- and G-IDNC
becomes much larger than RLNC, which takes place
when N is much larger than K;

Fig. 7 The throughput and decoding delay performance of fully online transmission scheme when different coding algorithms are applied. It is
compared with the performance of heuristic fully-online G-IDNC and RLNC
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Fig. 8 The throughput and decoding delay performance of semi-online transmission scheme when different coding algorithms are applied. It is
compared with the performance of heuristic semi-online G-IDNC and RLNC

• With a moderate number of receivers N = 15, the
APDD of S-IDNC is better than RLNC under all
simulated values of packet erasure probability;

• There is no clear winner between the performance of
heuristic G-IDNC and optimal S-IDNC. We can
expect that G-IDNC will outperform S-IDNC if its
optimal coding algorithm is developed.

In summary, our simulations verified our theorems,
propositions, and algorithms. They also demonstrated
that, if we are concerned with both throughput and
decoding delay performance, S-IDNC is a good alterna-
tive to RLNC when the number of receivers is not too
large.

7 Conclusions
In this paper, we studied the throughput and average
packet decoding delay (APDD) performance of S-IDNC in
broadcasting a block of data packets to wireless receivers
under packet erasures. By using a random graph model,
we showed that the throughput of S-IDNC decreases
with increasing an number of receivers. By introduc-
ing the concept of perfect S-IDNC solution, we proved
the NP-hardness of APDD minimization. We derived
an upper bound on APDD and showed that minimiz-
ing the IDNC solution size can effectively reduce APDD.
By applying stochastic shortest path method, we showed
that it is intractable to make optimal coding decisions
in the presence of random packet erasures. We then

Fig. 9 The throughput and decoding delay performance of hybrid S-IDNC with different feedback frequencies and under different Pe . It is compared
with the performance of heuristic fully-online G-IDNC and RLNC
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used heuristic objective functions to determine the pre-
ferred coded packet(s) to send when fully- or semi-online
receiver feedback is collected. We developed optimal and
heuristic S-IDNC coding algorithms that minimize the
solution size and increase packet multiplicity. We also
compared S-IDNC with G-IDNC by proving the equiva-
lence between the chromatic number of the complemen-
tary S-IDNC and G-IDNC graphs.
Our work provides new understandings of S-IDNC.

It will facilitate the extension of S-IDNC to applica-
tions in other network settings, such as cooperative data
exchange and distributed data storage. We are also inter-
ested in designing approximation and heuristic algorithms
for APDD minimization.

Endnotes
1We assume that there exists an error-free feedback

link from each receiver to the sender that can be used
with an appropriate frequency. The feedback content is
the index of the data packets it has received. Each index
has a length of log2 K bits. The feedback frequency will
be studied in Section 4.

2In traditional G-IDNC, non-instantly decodable
packets will be discarded by the receivers. Storing such
packets may further improve throughput with extra
computational cost. This problem is beyond the scope of
this paper. Interested readers are referred to [32] for a
recent treatment.

3The minimum clique partition solution of a graph G is
the minimum set of disjoint cliques of G that together
cover all the vertices.

4The chromatic number of a graph G is the minimum
number of colors to color the vertices so that any two
connected vertices have different colors.

Appendix 1: Proof of Theorem 3
In this appendix we prove that it is NP-complete to decide
the existence of the perfect S-IDNC solutionSp for a given
SFMA. Our approach takes two steps: firstly, a polynomial
reduction from a graph γ -colorability problem to hyper-
graph coloring problem, and then a polynomial reduction
from hypergraph coloring problem to our problem of
finding Sp.
Before we start, we first introduce some related con-

cepts and theorems. A graph G(V , E) is called γ -colorable
if there exists a partition of V into γ sets, denoted by
{Vi}γi=1, such that |Vi ∩ en| � 1 for any en ∈ E . In other
words, vertices in G can be colored using γ colors such
that every pair of adjacent vertices have different colors.
According to graph theory, it is NP-complete to decide
whether a graph G(V , E) is γ -colorable or not for any
γ � 3.
A hypergraphH is defined by a set of verticesV and a set

of hyperedges E . Each hyperedge en ∈ E can be incident

to any number of vertices, i.e., |en| � 1. H is called γ -
uniform if every hyperedge is incident to γ vertices, i.e.,
|en| = γ for all en ∈ E . H is called strongly γ -colorable
[43] if there exists a partition of V into γ sets, denoted by
{Vi}γi=1, such that |Vi ∩ en| � 1 for any en ∈ E . In other
words, vertices of H can be colored using γ colors, such
that every color appears at most once in every hyperedge.
We now prove that it is NP-complete to decide whether

a γ -uniform hypergraph is strongly γ -colorable or not for
any γ � 3.
Given any γ � 3 and a graph G(V , E) with K vertices

and N edges, we construct a hypergraph H(V ′, E ′) as fol-
lows: for every edge en ∈ E , we generate a hyperedge e′

n
by adding to en γ − 2 dummy vertices vn,1 · · · vn,γ−2. The
resulted e′

n is incident to γ vertices, where γ − 2 of them
are dummy vertices only incident by e′

n. Consequently, H
is a γ -uniform hypergraph with K + (γ − 2)N vertices.
Since en ⊂ e′

n for all n ∈ [1,N], G is a subgraph ofH. Then,
the reduction is as follows:

• If G is γ -colorable, then for every hyperedge e′
n, there

are already two differently colored vertices. Then, by
heuristically color the remaining γ − 2 dummy
vertices in e′

n using the remaining γ − 2 colors for all
n ∈ [1,N], we obtain a strong γ−coloring ofH.

• IfH is strongly γ -colorable, then since G ⊂ H, G is
already colored with at most γ colors, say with
γ ′ � γ colors. To obtain a γ -coloring of G, we can
heuristically choose γ − γ ′ vertices of G and
assigning each of them with a different new color.

The above reduction indicates that an algorithm that
can optimally solve the strong γ -coloring problem for
any γ -uniform hypergraph will also solve the γ -coloring
problem of any graph: given any G, we construct H as
described above and passH to the algorithm for solution.
Then, by noting that it is NP-complete to decide

whether G is γ -colorable or not, our reduction proves
that it is NP-complete to decide whether a γ -uniform
hypergraph is strongly γ -colorable or not.
We now prove the NP-completeness of deciding the

existence of Sp by reducing a γ -uniform hypergraph to a
SFM A, and reducing the strong γ -coloring ofH to Sp.
Given any γ -uniform hypergraph H(V , E) with K ver-

tices and N hyperedges, we construct an instance of A
with K data packets and N receivers: we identify each
vk ∈ V with a data packet pk , and identify each en ∈ E with
a receiver Rn who wants the data packets represented by
the vertices in en, i.e., lettingWn = en. In the resulting A,
every receiver wants γ data packets. Then, the reduction
is as follows:

• IfH is strongly γ -colorable, then since every en has γ

vertices, we know that every color appears exactly
once in every en. In other words, there exists a
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partition {Vi}γi=1 of V such that Vi ∩ en = 1 for all
n ∈[ 1, n]. Then, by identifying each Vi with a coding
setMi, we have |Mi ∩ Wn| = 1. Hence,
S = {Mi}γi=1 is a S-IDNC solution that allows all
receivers to instantly decode one of their γ wanted
data packets from the coded packet of each of the γ

coding sets. According to Definition 3, S is a perfect
S-IDNC solution Sp.

• If A has the perfect S-IDNC solution Sp = {Mi}γi=1,
then |Mi ∩ Wn| = 1 for all n ∈ [1,N]. Then by
identifying eachMi with a vertex set Vi, we obtain a
partition {Vi}γi=1 of V such that |Vi ∩ en| = 1 for all
n ∈ [1,N]. By definition, this partition is a strong
γ -coloring ofH.

The above reduction indicates that an algorithm that
can optimally find the perfect solution for any SFM A will
also solve the strong γ -coloring problem of any γ -uniform
graph: given any such H, we construct an instance of
A as described above and pass A to the algorithm for
solution.
Then, by noting that it is NP-complete to decide

whether a γ -uniform hypergraph is strongly γ -colorable
or not, our reduction proves that it is NP-complete to
decide whether the perfect solution Sp exists or not for a
given A.

Appendix 2: Proof of Theorem 4
Theorem 4 requires the proof of χ(Gs) = χ(Gg). Since
every S-IDNC solution is also a G-IDNC solution, but a
G-IDNC solution is not necessarily an S-IDNC solution,
we have Us � Ug , and thus χ(Gs) � χ(Gg). Hence, here
we only need to prove that χ(Gs) � χ(Gg).
We first introduce the concept of affiliated S-IDNC

graph Gas of a G-IDNC graph Gg , which is construct as
follows. Given Gg that involves K data packets and N
receivers, we generate a graph Gas with K vertices, each
representing a data packet. We then connect vi and vj
in Gas if for every pair of {m, n} ∈ [1,N], vi,m and vj,n
are connected upon their existence in Gg . In other words,
we claim that pi and pj do not conflict if every vertex
that represents pi in Gg is connected to every vertex that
represents pj in Gg .
Given an SFM A, we can easily show that its S-IDNC

graph Gs is the same as the affiliated S-IDNC graph Gas of
its G-IDNC graph Gg . Hence, our task becomes to prove
that χ(Gas) � χ(Gg), where χ(Gas) = Us. This statement
is true if the following property is true:
After removing any clique Mg from Gg , the chromatic

number of the affiliated S-IDNC graph Gas is reduced by at
most one.
Since Gg is nonempty as long as Gas is nonempty, this

property indicates that any clique partition solution of

Gg must have a size of at least χ(Gas), which will prove
that χ(Gas) � χ(Gg). Property 6 can be proved through
induction:

1. IfMg does not contain any conflicting data packets
in Gas, then χ(Gas) is reduced by at most one;

2. IfMg contains one pair of conflicting data packets in
Gas, then χ(Gs) is reduced by at most one;

3. IfMg already contains m pairs of conflicting data
packets in Gas, then modifyingMg to contain one
more pair of conflicting data packets in Gas cannot
further reduce χ(Gas).

The first statement is self-evident, because the set
of data packets included in such Mg is a clique of
Gas. By removing it, χ(Gas) can be reduced by at most
one.
To prove the second statement, without loss of general-

ity we assume that the pair of conflicting data packets is
(p1,p2). Then the set of data packets included inMg takes
a form of {Ms,p1,p2}, where Ms is the set of pair-wise
non-conflicting data packets, and thus is a clique of Gas.
Since p1 conflicts with p2, there exists at least one pair of
unconnected vertices in Gg that represents p1 and p2. This
pair is not included in Mg , and thus is kept after remov-
ingMg from Gg . Hence, in the updated affiliated S-IDNC
graph G′

as, v1 and v2 exist, and are unconnected. Let the
chromatic number of G′

as be U ′, then the minimum clique
partition of G′

as takes a form of {M1, · · · ,MU ′ }, which
keeps p1 and p2 in different coding sets. Then, since Ms
is a clique of Gas, {Ms,M1, · · · ,MU ′ } is a partition of Gas
with a size of U ′ + 1. Thus, U ′ � χ(Gas) − 1, implying
that χ(Gs) is reduced by at most one after removing Mg
from Gg .
The proof of the third statement is similar to the sec-

ond one, and thus is omitted here. According to the above
three statements, no matter how many conflicting data
packets are included in Mg , after removing Mg from Gg ,
the chromatic number of the affiliated S-IDNC graph Gas
is reduced by at most one. Therefore, χ(Gg) � χ(Gas).
Since Gas is the same as Gs, we have χ(Gg) � χ(Gs) and
Theorem 3 is proved.
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