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Abstract

A new reweighted proportionate affine projection algorithm (RPAPA) with memory and row action projection (MRAP)
is proposed in this paper. The reweighted PAPA is derived from a family of sparseness measures, which demonstrate
performance similar to mu-law and the l0 norm PAPA but with lower computational complexity. The sparseness of the
channel is taken into account to improve the performance for dispersive system identification. Meanwhile, the
memory of the filter’s coefficients is combined with row action projections (RAP) to significantly reduce computational
complexity. Simulation results demonstrate that the proposed RPAPA MRAP algorithm outperforms both the affine
projection algorithm (APA) and PAPA, and has performance similar to l0 PAPA and mu-law PAPA, in terms of
convergence speed and tracking ability. Meanwhile, the proposed RPAPA MRAP has much lower computational
complexity than PAPA, mu-law PAPA, and l0 PAPA, etc., which makes it very appealing for real-time implementation.

Keywords: Proportionate affine projection algorithm, Sparse system identification, Row action projection, Adaptive
filter

1 Introduction
Adaptive filtering has been studied for decades and has
found wide areas of application. The most common adap-
tive filter is the normalized least mean square (NLMS)
algorithm due to its simplicity and robustness [1]. In the
1990’s, the affine projection algorithm (APA), a general-
ization of NLMS was found to have better convergence
than NLMS for colored input [2, 3]. The optimal step size
control of the adaptive algorithm has been widely studied
in order to improve their performance [4, 5]. The impulse
responses in many applications, such as network echo
cancellation (NEC), are sparse, that is, a small percent-
age of the impulse response components have a significant
magnitude while the rest are zero or small. To exploit this
property, the family of proportionate algorithms was pro-
posed to improve performance in such applications [2].
These algorithms include proportionate NLMS (PNLMS)
[6, 7], and proportionate APA (PAPA) [8], etc.
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The idea behind proportionate algorithms is to update
each coefficient of the filter independently of the oth-
ers by adjusting the adaptation step size in proportion
to the magnitude of the estimated filter coefficient [6].
In comparison to NLMS and APA, PNLMS and PAPA
have very fast initial convergence and tracking when the
echo path is sparse. However, the big coefficients con-
verge very quickly (in the initial period) at the cost of
slowing down dramatically the convergence of the small
coefficients (after the initial period). In order to com-
bat this issue, mu-law PNLMS (MPNLMS) and mu-law
PAPA algorithms were proposed [9–11]. Furthermore, the
l0 norm family of algorithms have recently drawn lots of
attention for sparse system identification [12]. Therefore,
a new PNLMS algorithm based on the l0 norm was pro-
posed to represent a better measure of sparseness than the
l1 norm in PNLMS [13].
On the other hand, the PNLMS and PAPA algo-

rithms converge much slower than corresponding NLMS
and APA algorithms when the impulse response is dis-
persive. In response, the improved PNLMS (IPNLMS)
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and improved PAPA (IPAPA) were proposed by intro-
ducing a controlled mixture of proportionate and non-
proportionate adaptation [14, 15]. The IPNLMS and
IPAPA algorithms perform very well for both sparse
and non-sparse systems. Also, recently, the block-sparse
PNLMS (BS-PNLMS) algorithmwas proposed to improve
the performance of PNLMS for identifying block-sparse
systems [16].
In order to reduce the computational complexity of

PAPA, the memory improved PAPA (MIPAPA) algorithm
was proposed to not only speed up the convergence
rate but also reduce computational complexity by taking
into account the memory of the proportionate coeffi-
cients [17]. Dichotomous coordinate descent (DCD) iter-
ations have previous been applied to the PAPA family
of algorithms to implement the MIPAPA adaptive filter
[18, 19]. Meanwhile, an iterative method based on the
PAPA with row action projection (RAP) has been shown
to have good convergence properties with relatively low
complexity [20].
In [21] the proportionate adaptive filter was derived

from a unified view of variable-metric projection algo-
rithms. In addition, the PNLMS algorithm and PAPA
can both be deduced from a basis pursuit perspective
[22, 23]. A more general framework was further pro-
posed to derive PNLMS adaptive algorithms for sparse
system identification, which employed convex optimiza-
tion [24]. Here, a family of PAPA algorithms are firstly
derived based on convex optimization, in which PAPA,
mu-law PAPA, and l0 PAPA are all special cases. Then,
a reweighted PAPA is suggested in order to reduce the
computational complexity. Finally, an efficient implemen-
tation of PAPA is proposed based on RAP and memory
PAPA.
The organization of this article is as follows. The

review of various PAPAs is presented in Section 2.
Section 3 derives the proposed reweighted PAPA and
presents an efficient memory implementation with RAP.
The computational complexity is compared with PAPA,
mu-law PAPA and l0 PAPA in Section 4. In Section 5,
simulation results of the proposed algorithm are pre-
sented. The last section concludes the paper with
remarks.

2 Review of various PAPAs
The input signal x(n) is filtered through the unknown
coefficients to be identified h(n) to get the observed
output signal d(n).

d(n) = xT (n)h(n) + v(n), (1)

where

x(n) = [ x(n), x(n − 1), . . . , x(n − L + 1)]T ,

and v(n) is the measurement noise, and L is the length of
impulse response. We define the estimated error as

e(n) = d(n) − xT (n)ĥ(n − 1), (2)

where ĥ(n) is the adaptive filter’s coefficients. Grouping
the M most recent input vectors x(n) together gives the
input signal matrix

X(n) = [ x(n), x(n − 1), . . . , x(n − M + 1)] .

Therefore, the estimated error vector is

e(n) = d(n) − XT (n)ĥ(n − 1), (3)

in which

d(n) = [ d(n), d(n − 1), . . . , d(n − M + 1)]T ,

e(n) = [ e(n), e(n − 1), . . . , e(n − M + 1)]T ,

where M is the projection order. PAPA updates the filter
coefficients as follows [8]:

P(n) = G(n − 1)X(n), (4)

ĥ(n) = ĥ(n) + μP(n)(XT (n)P(n) + δIM)−1e(n), (5)

in which μ is the step-size, δ is the regularization parame-
ter, IM is theM×M identity matrix, and the proportionate
step-size control matrix G(n − 1) is defined as

G(n − 1) = diag{g(n − 1)}, (6)

g(n − 1) = [ g0(n − 1), g1(n − 1), . . . , gL−1(n − 1)]T , (7)

gl(n − 1) = rl(n − 1)
1
L

∑L
i=0 rl(n − 1)

, (8)

rl = max{ρmax{q, F(|ĥ0|), . . . , F(|ĥL−1|)}, F(|ĥl|)}, (9)

where F(|ĥl|) is specific to the algorithm, q prevents the
filter coefficients ĥl(n − 1) from stalling when ĥ(0) =
0L×1 at initialization and ρ prevents the coefficients from
stalling when they are much smaller than the largest coef-
ficient. The classical PAPA employs step-sizes that are
proportional to the magnitude of the estimated impulse
response as below [8]

F(|ĥl|) = |ĥl|. (10)

The mu-law PNLMS and the mu-law PAPA algorithm
proposed in [9–11] use the logarithm of the coefficient
magnitudes rather than magnitudes directly as below:

F(|ĥl|) = ln(1 + σμ|ĥl|), (11)

in which σμ is a positive parameter.
Based on the motivation that the l0 norm can represent

an even better measure of sparseness than the l1 norm,
the improved PNLMS and PAPA algorithms based on an
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approximation of the l0 norm (l0-PNLMS) were proposed
as below [13]:

F(|ĥl|) = 1 − e−σl0|ĥl|, (12)

where σl0 is a positive parameter. The main disadvantage
of the mu-law or l0 norm PAPA algorithms are their heavy
computation cost because of the L logarithmic or expo-
nential operations. Therefore, a line segment was given to
approximate the mu-law function [9], where

F(|ĥl|) =
{
200|ĥl|, |ĥl| < 0.005;

1, otherwise. (13)

It should be noted that, without loss of performance,
the line segment was normalized to be of unit gain for
|ĥl| ≥ 0.005, compared to the original one proposed
in [9]. Meanwhile, the exponential form in (12) can be
approximated by the first order Taylor series expansions
of exponential functions [12]

e−σ |ĥl| =
{
1 − σl0|ĥl|, |ĥl| < 1

σl0
;

0, otherwise.
(14)

Then (12) becomes

F(|ĥl|) =
{

σl0|ĥl|, |ĥl| < 1
σl0

;
1, otherwise.

(15)

It is interesting to see that the first order Taylor series
approximation of l0 PAPA in (12) is actually the same as
the line segment implementation of mu-law PAPA in (11)
for σl0 = 200.

3 The proposed SC-RPAPAwithMRAP
Based on the minimization of the convex target, the
reweighted PAPA (RPAPA) will be firstly derived from
a new sparseness measure with low computational com-
plexity. Meanwhile, the sparseness controlled RPAPA (SC-
RPAPA) is presented to improve the performance for both
sparse and dispersive system identification. Finally, the
SC-RPAPA with memory and RAP (MRAP) is proposed
by combing the memory of the coefficients with iterative
RAP to further reduce the computational complexity.

3.1 The proposed RPAPA
The proportionate APA algorithm can be deduced from a
basis pursuit perspective [22]

min ‖h̃‖1
subject to d(n) = XT h̃(n),

(16)

where h̃(n) is the correction component defined as

h̃(n) = G(n)X(n)[XT (n)G(n)X(n)]−1 d(n).

According to [24], the family of PAPA algorithms can be
derived from the following target

min J(h̃) =
∫

G−1(n)h̃(n)dh̃

subject to d(n) = XT h̃(n),
(17)

where G−1(n) is the inverse matrix of proportionate
matrix G(n), which is also a diagonal matrix. If the opti-
mization target in (17) is convex, the family of PAPA
algorithms can be derived using Lagrange Multipliers. It
should be noted that, using the approximation∫

G−1(n)h̃(n)dh̃ ≈ 1
2
h̃T (n)G−1(n)h̃(n), (18)

the proposed formulation in (17) becomes the variable-
metric in [21], which is an approximation of the proposed
formulation. The function G(t), t ∈ R should satisfy the
following properties:

1) G(0) = 0, G(t) is even and not identically zero;
2) G(t) is non-decreasing on [ 0,∞);
3) G(t)

t is non-increasing on (0,∞).

The above properties follow the requirements of the
sparseness measure proposed in [25]. From the perspec-
tive of proportionate algorithms, the first two require-
ments are intuitive, since the family of the proportionate
algorithms should be proportionate to the magnitude of
the filter’s coefficients. The third property will guarantee
the convexity of the optimization target. PAPA, mu-law
PAPA and l0 PAPA are all special cases of the sparseness
measures fulfilling all three properties. In this paper, con-
sidering the computational complexity, we propose using
the following reweighted PAPA:

F
(∣∣∣ĥl∣∣∣) =

∣∣∣ĥl∣∣∣∣∣∣ĥl∣∣∣ + σr
, (19)

where σr is a small positive constant.
The proposed reweighted metric is compared with

PAPA, mu-law PAPA and l0 PAPA in Fig. 1. The σ param-
eters for each algorithm were σμ = 1000, σl0 = 50,
σr = 0.01. These parameters were recommended and
widely simulated in the literature for each algorithm [9,
13]. It should be noted that, the plots in [24] set the σ

parameters respectively so that they all contain the point
(0.9, 0.9). However, in actual application, this parameter
should be tuned to maximize the performance. In order
to facilitate the comparison of the different sparseness
measure, they are normalized to pass through the point,
(1, 1) here instead.Without loss of generality, it is assumed
that the filter’s coefficients are normalized and the maxi-
mum possible magnitude is 1. Therefore, it is convenient
to compare the gain distribution of different metrics with
different σ parameters.
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Fig. 1 Comparison of the different metrics

3.2 The proposed SC-RPAPA
It should be noted that the reweighting factor σr in the
proposed RPAPA (19) is related to the sparseness of the
impulse system. It is straightforward to verify that if σr =
0, reweighted PAPA simplifies to APA. If the impulse sys-
tem is more sparse, σr should be relatively larger than∣∣∣ĥl∣∣∣, which makes it more like the PAPA. This agrees
with the fact that we fully benefit from PNLMS only
when the impulse response is close to a delta function
[26]. Therefore, it is natural to take the sparseness of
impulse response into account. The sparsity of an impulse
response could be estimated as

ε̂(n) = L
L − √

L

(
1 − ‖ĥ(n)‖1√

L‖ĥ(n)‖2

)
, (20)

where L > 1 is the length of the channel, ‖ĥ(n)‖1 and
‖ĥ(n)‖2 are the l1 norm and l2 norm of ĥ, respectively.
The value of ε̂(n) is between 0 and 1. For a sparse channel,
the value of the sparseness is close to 1 and for a dispersive
channel, this value is close to 0. Therefore, the SC-RPAPA
is

F
(∣∣∣ĥl∣∣∣) =

∣∣∣ĥl∣∣∣∣∣∣ĥl∣∣∣ + ε̂(n)σmax
, (21)

where σmax is the maximum value for the sparse system
identification. The plot of the reweightedmetric for differ-
ent σ s is presented in Fig. 2. In practical implementation,
we would like to apply the APA algorithm to the dispersive
system under certain sparseness threshold. For example,
the sparsity of the dispersive channel is about 0.4, and

a heuristic implementation that works pretty well in the
simulations is

F
(∣∣∣ĥl∣∣∣) =

∣∣∣ĥl∣∣∣∣∣∣ĥl∣∣∣ + max{ε̂(n) − 0.4, εmin}σmax
, (22)

where εmin = 1e−4 is a minimum sparsity in order to avoid
dividing by zero for ĥl = 0.

3.3 The proposed SC-RPAPA with MRAP
However, the main computational complexity of the fam-
ily of PAPA algorithm is thematrix inversion in (5). Reduc-
tion in complexity is achieved by using 5M DCD itera-
tions, thus requiring about 10M2 additions [18]. Mean-
while, a sliding-window recursive least squares (SRLS)
low-cost implementation of PAPA is given based on DCD,
which does not depend on M. The SRLS implementation
is only efficient when the projection order is very high
(e.g., such as M = 512) [19]. However, it is known that if
the projection order increases, the convergence speed is
faster, but the steady-state error also increases.
Another way to avoid the matrix inversion altogether

is to use the method of RAP [27]. RAP is also known
in the literature as a data reuse algorithm (see [28]). It
has been shown in [29] that RAP is effectively the same
as APA, except that the system of equations problem
that is solved with a direct matrix inversion (DMI) in
APA is solved iteratively in RAP [20].The iterative PAPA
algorithm proposed in [30] was made efficient by imple-
menting it using RAP in [27]. RAP is an iterative approach
to solving a system ofM equations. It cycles through theM
equations J times performing anNLMS-like update on the
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Fig. 2 Reweighted metric with different σ parameters

coefficients for each equation. In this instance, the num-
ber of RAP iterations, J is set to one. It should be noted
that, by limiting J to one, the solution of the system of
equations through RAP is approximate. However, the sim-
ulation results will demonstrate that this approximation
works pretty well, especially for relatively high projection
order. In each sample period a new equation is added
to the system of equations and the oldest equation is
dropped. Thus,M RAP updates are performed on a given
equation every M sample periods. The PAPA algorithm
with RAP updates the coefficients

Initialize ĥ[0] = ĥ(n − 1)
Loop m = 0, 1, . . . ,M − 1

α(m) = μ/(xT (n − m)Pm(n) + δ)

e[m] = d(n − m) − xT (n − m)ĥ[m]

ĥ[m+1] = ĥ[m] + α(m)Pm(n)e[m]

m = m + 1
Update ĥ(n) = ĥ[M]

where Pm(n) is themth column of P(n) defined as

Pm(n) = g(n − 1) � x(n − m),

in which the operation � denotes the Hadamard product
andm = 0, 1, . . . ,M − 1.
The traditional PAPA requiresM × Lmultiplications to

calculate P(n), and in order to further reduce the com-
putational complexity, we propose to apply the memory
of the proportionate coefficients [17] into SC-RPAPA.
Therefore, the matrix P(n) in (4) can be approximated as
P′(n)

P′(n) = [ g(n − 1) � x(n),P′−1(n − 1)] , (23)

whereP′−1(n−1) contains the firstM−1 columns ofP′(n−
1). Meanwhile, we define

p(n) = [ p0(n), p1(n), . . . , pM−1(n)] ,

in which

pm(n) = xT (n − m)P′
m(n),

and P′
m(n) is themth column of P′(n) defined as

P′
m(n) = g(n − m − 1) � x(n − m).

Considering the time-shift property, the calculation of
p(n) could be

p(n) = [ xT (n)P′
0(n),p−1(n − 1)] , (24)

where p−1(n−1) contains the firstM−1 values of p(n−1).
The proposed update for the PAPAwithmemory and RAP
is

Initialize ĥ[0] = ĥ(n − 1)
Loop m = 0, 1, . . . ,M − 1

α(m) = μ/(pm(n) + δ)

e[m] = d(n − m) − xT (n − m)ĥ[m]

ĥ[m+1] = ĥ[m] + α(m)P′
m(n)e[m]

m = m + 1
Update ĥ(n) = ĥ[M]

As mentioned in [17], the proposed RPAPA with MRAP
takes into account the “history” of the proportionate fac-
tors from the lastM steps. The convergence and the track-
ing become faster when the projection order increases.
Meanwhile, combined with the RAP, the computational
complexity is also significantly lower as compared to the
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Table 1 The SC-RPAPA algorithm with MRAP

Initialization ĥ(0) = 0L×1, ρ = 0.01, q = 0.01, δ = 0.01/L

σmax = 0.02, εmin = 1e−4, μ = 0.2

Sparseness
control ε̂(n) = L

L−√
L

(
1 − ‖ĥ(n−1)‖1√

L‖ĥ(n−1)‖2

)
F(|ĥl|) = |ĥl |

|ĥl |+max{ε̂(n)−0.4,εmin}σmax

rl = max{ρmax{q, F(|ĥ0|), . . . , F(|ĥL−1|)}, F(|ĥl|)}
gl(n − 1) = rl(n−1)

1
L

∑L
i=0 rl(n−1)

g(n − 1) =[ g0(n − 1), g1(n − 1), . . . , gL−1(n − 1)]T

Memory
update P′(n) =[g(n − 1) � x(n),P′−1(n − 1)]

p(n) =[ xT (n)P′
0(n),p−1(n − 1)]

Error output e(n) = d(n) − xT (n − m)ĥ(n − 1)

RAP
iteration ĥ[0] = ĥ(n − 1)

for m = 0, 1, . . . ,M − 1

α(m) = μ/(pm(n) + δ)

e[m] = d(n − m) − xT (n − m)ĥ[m]

ĥ[m+1] = ĥ[m] + α(m)P′
m(n)e[m]

m = m + 1

Filter update ĥ(n) = ĥ[M]

MPAPA through avoiding the direct matrix inversion and
using the memory. The proposed SC-RPAPA with MRAP
algorithm is summarized in detail in Table 1.

4 Computational complexity
The computational complexity of the SC-RPAPA with
MRAP algorithm is compared with traditional PAPA,
MPAPA, RPAPA, and SC-RPAPA in Table 2, in terms of
the total number of additions (A), multiplications (M),
divisions (D), comparisons (C), square root (Sqrt), and
direct matrix inversion (DMI) needed per algorithm iter-
ation. All the algorithms require L | · | operations for
calculating the magnitude of the filter’s coefficients.
Compared with traditional PAPA, the MPAPA reduced

the complexity of GX, but the calculation of XTP′ still
requires M2L multiplications. Meanwhile, due to the
memory and the iterative RAP structure, only L multipli-
cations are needed to update p(n) instead.

What’s more important is that, both the PAPA and the
MPAPA algorithms require a M × M direct matrix inver-
sion, which is especially expensive for high projection
orders. The combination of the memory and the itera-
tive RAP structure, not only avoids the M × M direct
matrix inversion, but also reduces the computational
complexity required for the calculation of both GX and
XTGX.
The additional computational complexity for the SC-

RPAPA with MRAP algorithm arises from the compu-
tation of the sparseness measure ε̂. As in [31], given
that L/(L − √

L) can be computed offline, the remaining
l-norms require an additional 2L additions and L multi-
plications. Furthermore, this sparseness measure can be
reused in many other sparseness controlled algorithms
too, for example [31]. The calculation of the F in (22)
requires additional L divisions, L + 1 additions, one mul-
tiplication, and one comparison more than PAPA. The
complexity of division is much lower than the L expo-
nential or logarithmic operations required by either the
mu-law or the l0 PAPA. Meanwhile, (22) also offers the
robustness to dispersive system identification.

5 Simulation results
The performance of the proposed SC-RPAPA with MRAP
was evaluated via simulations. Throughout our simula-
tion, the length of the unknown system was L = 512, and
the adaptive filter was with the same length. The sampling
rate was 8 kHz. The parameters for each algorithm were
δ = 0.01/L, ρ = 0.01, q = 0.01. The step-size for all the
algorithms was set to μ = 0.2.
The algorithms were tested using both the white

Gaussian noise (WGN), and colored noise as inputs. The
colored input signals were generated by filtering theWGN
through a first order system with a pole at 0.8. Indepen-
dent WGN was added to the system background with a
signal-to-noise ratio (SNR) as 30 dB.
Two impulse responses were used to verify the per-

formance of the proposed SC-RPAPA MRAP algorithm,
as shown in Fig. 3. The first one in Fig. 3a is a sparse
impulse response of typical network echo with sparseness
0.92. Figure 3b is a dispersive channel with sparseness
0.44. In order to demonstrate the tracking ability, an echo
path change was incurred through switching the impulse

Table 2 Computational complexity of the algorithms’ coefficient updates

A M D C Sqrt DMI

PAPA (M2 + 2M + 1)L − M − 1 (M2 + 3M + 1)L + 2M2 + 2 L 2L 0 Yes,M × M

MPAPA (M2 + 2M + 1)L − M − 1 (M2 + 2M + 2)L + 2M2 + 2 L 2L 0 Yes,M × M

RPAPA (M2 + 2M + 2)L − M − 1 (M2 + 3M + 1)L + 2M2 + 2 2L 2L 0 Yes,M × M

SC-RPAPA (M2 + 2M + 4)L − M − 1 (M2 + 3M + 2)L + 2M2 + 5 2L + 1 2L + 1 1 Yes,M × M

SC-RPAPA MRAP (2M + 5)L + M − 2 (2M + 3)L + M + 5 2L + M + 1 2L + 1 1 No
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Fig. 3 Two impulse responses used in the simulation a the sparse network echo path, and b the dispersive echo path

response from the sparse system in Fig. 3a to the disper-
sive one in Fig. 3b.
The convergence state of adaptive filter is evaluated

with the normalized misalignment which is defined
as

20log10

(
‖h − ĥ‖2

‖h‖2

)
.

5.1 The performance of the proposed RPAPA
The proposed reweighted PAPA in (19) was firstly com-
pared to PAPA, mu-law PAPA, and l0 PAPA. The param-
eters for the algorithm were σμ = 1000, σl0 = 200, and
σr = 0.01. The affine projection order was selected as
M = 2.
In the first simulation shown in Fig. 4, the input sig-

nal was the WGN. According to the results, the proposed

Fig. 4 Comparison of RPAPA with PAPA, l0 PAPA and mu-law PAPA for WGN input, SNR = 30 dB,M = 2, μ = 0.2
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Fig. 5 Comparison of RPAPA with PAPA, l0 PAPA and mu-law PAPA for colored input, SNR = 30 dB,M = 2, μ = 0.2

RPAPA could outperform PAPA, and has similar perfor-
mance with respect to mu-law and l0 PAPA. However, the
reweighted PAPA has much lower computational com-
plexity. In the second simulation, the input signal was
colored, and a similar result could be obtained according
to Fig. 5.

5.2 The performance of the proposed SC-RPAPA
To demonstrate the benefit of sparseness control, the pro-
posed SC-RPAPA algorithm was simulated using an echo
path change from the sparse to the dispersive impulse
response in Fig. 3. The SC-RPAPA algorithm was com-
pared with APA, PAPA, and the above RPAPA algorithms.

Fig. 6 Comparison of SC-RPAPA with APA, PAPA, and RPAPA for WGN input, SNR = 30 dB,M = 2, μ = 0.2
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Fig. 7 Comparison of SC-RPAPA with APA, PAPA, and RPAPA for colored input, SNR = 30 dB,M = 2, μ = 0.2

The parameters for the algorithm were σr = 0.01, and
σmax = 0.02. The affine projection order was selected as
M = 2. In Fig. 6, the input signal was the WGN input.
Both the proposed RPAPA and SC-RPAPA algorithms
had similar performance for sparse system identification,
which outperformed APA and PAPA. Meanwhile, due to
the sparseness control, SC-RPAPA outperformed RPAPA

as expected for the dispersive system. The colored input
was used in Fig. 7, and similar results are observed.

5.3 The performance of the proposed SC-RPAPA with
MRAP

An efficient implementation of the SC-RPAPA algorithm
was proposed through combining the memory of the

Fig. 8 Comparison of SC-RPAPA MRAP with APA, PAPA and RPAPA for WGN input, SNR = 30 dB,M = 2, μ = 0.2
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Fig. 9 Comparison of SC-RPAPA MRAP with APA, PAPA and RPAPA for colored input, SNR = 30 dB,M = 2, μ = 0.2

filter’s coefficients with RAP. The new SC-RAPA with
MRAP algorithm significantly decreases computational
complexity. In this subsection, the performance of the effi-
cient implementation was compared with APA, PAPA and
SC-RPAPA through simulations.
In the first simulation, the WGN input was used. As

shown in Fig. 8, SC-RPAPA with MRAP worked as well

as SC-RPAPA for sparse system identification. However,
for dispersive system, the performance of SC-RPAPA
MRAP was worse than SC-RPAPA and the APA. This fact
becomes more apparent for the colored input as shown
in Fig. 9. This was caused by the relatively low projection
order (M = 2), and the implementation of the MRAP
was slower than the direct matrix inversion. However,

Fig. 10 Comparison of SC-RPAPA MRAP with APA, PAPA and RPAPA for WGN input, SNR = 30 dB,M = 32, μ = 0.2
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Fig. 11 Comparison of SC-RPAPA MRAP with APA, PAPA and RPAPA for colored input, SNR = 30 dB,M = 32, μ = 0.2

this drawback could be mitigated through increasing the
projection order. Furthermore, the memory of the fil-
ter’s coefficients will also improve the performance as the
projection order increases. We verify this point through
simulations with M = 32 for both the WGN (see Fig. 10)
and the colored input (see Fig. 11). It could be observed
that the SC-RPAPA with MRAP works better than APA,
PAPA, and SC-RPAPA for sparse system identification.
Meanwhile, the performance for dispersive system with
colored input has been significantly improved too.

6 Conclusion
A low complexity reweighted proportionate affine projec-
tion algorithm was proposed in this paper. The sparse-
ness of the channel was taken into account to improve
the performance for dispersive systems. In order to
reduce computational complexity, the direct matrix inver-
sion of PAPA was iteratively implemented with RAP.
Meanwhile, the memory of the filter’s coefficients were
exploited to improve the performance and further reduce
the complexity for high projection orders. Simulation
results demonstrate that the proposed sparseness con-
trolled reweighted proportionate affine projection algo-
rithm with memory and RAP outperforms traditional
PAPA, with much lower computational complexity com-
pared to mu-law and l0 PAPA.
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