
RESEARCH Open Access

An efficient interpolation filter VLSI
architecture for HEVC standard
Wei Zhou1*, Xin Zhou2, Xiaocong Lian1, Zhenyu Liu3 and Xiaoxiang Liu4

Abstract

The next-generation video coding standard of High-Efficiency Video Coding (HEVC) is especially efficient for coding
high-resolution video such as 8K-ultra-high-definition (UHD) video. Fractional motion estimation in HEVC presents a
significant challenge in clock latency and area cost as it consumes more than 40 % of the total encoding time and
thus results in high computational complexity. With aims at supporting 8K-UHD video applications, an efficient
interpolation filter VLSI architecture for HEVC is proposed in this paper. Firstly, a new interpolation filter algorithm
based on the 8-pixel interpolation unit is proposed in this paper. It can save 19.7 % processing time on average
with acceptable coding quality degradation. Based on the proposed algorithm, an efficient interpolation filter
VLSI architecture, composed of a reused data path of interpolation, an efficient memory organization, and a
reconfigurable pipeline interpolation filter engine, is presented to reduce the implement hardware area and achieve
high throughput. The final VLSI implementation only requires 37.2k gates in a standard 90-nm CMOS technology at an
operating frequency of 240 MHz. The proposed architecture can be reused for either half-pixel interpolation or
quarter-pixel interpolation, which can reduce the area cost for about 131,040 bits RAM. The processing latency of our
proposed VLSI architecture can support the real-time processing of 4:2:0 format 7680 × 4320@78fps video sequences.

Keywords: HEVC, Interpolation filter, VLSI

1 Introduction
Now, the Joint Collaborative Team on Video Coding
(JCT-VC) is developing the next-generation video
coding standard, called High-Efficiency Video Coding
(HEVC) [1, 2]. It provides a significant rate-distortion
improvement over its predecessor H.264/AVC and
can save 40–50 % bit rates compared to H.264/AVC,
especially for 4K (3840 × 2160)/8K (7680 × 4320)-ultra-
high-definition (UHD) video applications [3]. A num-
ber of new algorithmic tools have been proposed,
covering many aspects of video compression technol-
ogy, such as larger coding units, new tools, and more
complex prediction schemes.
Motion compensation (MC) is the key factor for efficient

video compression. Compensation for motion with
fractional-pel accuracy requires interpolation of reference
pixels. Therefore, in order to increase the performance of
integer pixel motion estimation, the sub-pixel (i.e., half and

quarter) accurate variable block size motion estimation is
applied in both H.264/AVC and HEVC. The H.264/AVC
standard uses a six-tap finite impulse response (FIR) luma
filtering at half-pixel positions followed by a linear
interpolation at quarter-pixel positions. Chroma samples
are computed by the weighed interpolation of four closest
integer pixel samples. In HEVC standard, three different
eight-tap or seven-tap FIR filters are used for the luma
interpolation of half-pixel and quarter-pixel positions,
respectively. Chroma samples are computed using four-tap
filters. Sub-pixel interpolation is one of the most computa-
tionally intensive parts of HEVC video encoder and de-
coder. In the high-efficiency and low-complexity
configurations of HEVC decoder, 37 and 50 % of the
HEVC decoder complexity is caused by sub-pixel
interpolation on average, respectively [4]. On the other
hand, compared with the six-tap filters used in H.264/AVC
standard, the seven-tap and eight-tap filters cost more area
in hardware implementation and occupy 37~50 % of the
total complexity for its DRAM access and filtering. There-
fore, it is necessary to design a dedicated hardware

* Correspondence: zhouwei@nwpu.edu.cn
1School of Electronics and Information, Northwestern Polytechnical
University, Xi’an 710072Shaanxi, China
Full list of author information is available at the end of the article

© 2015 Zhou et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made.

Zhou et al. EURASIP Journal on Advances in Signal Processing (2015) 2015:95
DOI 10.1186/s13634-015-0284-0

http://crossmark.crossref.org/dialog/?doi=10.1186/s13634-015-0284-0&domain=pdf
mailto:zhouwei@nwpu.edu.cn
http://creativecommons.org/licenses/by/4.0/

architecture for MC interpolation filter to realize the real-
time processing for high-resolution videos.
Some high-throughput interpolators have been pro-

posed for H.264/AVC in literatures [5–10]. Usually, they
are embedded in the fractional motion estimation pipe-
line stage that follows the integer-pel motion estimation.
Their scheduling assumes two successive steps for half
and quarter interpolations. A two-step approach is
natural in terms of the specification of quarter-pel com-
putations which refer to the results of half-pel computa-
tions. This data flow cannot be applied directly in HEVC
since the quarter-pel samples are computed using separ-
ate filters. In particular, more filters are needed in the
second step. Furthermore, the hardware cost increases
due to a larger number of filter taps, and thus, much
higher throughputs are required (i.e., more partitioning
modes).
There have been many previous works focusing on de-

signing efficient architecture for HEVC MC interpola-
tions [11–18]. Huang proposed a high-throughput
interpolation filter architecture with a prediction unit
(PU)-adaptive filtering flow and a unified filter combin-
ing the eight-tap luma and four-tap chroma filters [11].
But its hardware area is larger than the hardware cost
proposed in this paper. In [12], a dedicated hardware ac-
celerator for interpolation was presented. Although it
could read 8 input samples and produce 64 output sam-
ples at each clock cycle, its area cost was huge. An effi-
cient VLSI design which is composed of a reconfigurable
filter, an optimized pipeline engine organization, and a
filter reuse scheme for HEVC interpolation was pro-
posed in [13]. This hardware is slower than the architec-
ture proposed in this paper because it has restricted
reconfigurability for filter data paths. In [14], a simplified
fractional motion estimation (FME) architecture for
field-programmable gate arrays (FPGAs) is presented
that processes only 8 × 8-sized blocks at the cost of a bit
rate increase of 13 %. In [15], reconfigurable acceleration
engines were developed in the interpolation filter hard-
ware architecture to adapt to different filter types. In
[16], a low-energy HEVC sub-pixel interpolation hard-
ware for all PU sizes was proposed and Hcub multiplier-
less constant multiplication algorithm was used. But the
focus of [14–16] is on developing FPGA-based reconfig-
urable hardware architecture, and block random access
memories (BRAMs) are usually embedded in the FPGA
platform.
To overcome the obstacles of the previous work,

we proposed a fast interpolation filter algorithm and
the corresponding hardware architecture in [18],
which can save the encoding time and reduce the
computational complexity of fractional motion estima-
tion in HEVC. In the aspect of algorithm, we speed
up the encoding process by skipping all the 4 × 8, 4 ×

16, and 12 × 16 prediction units in the queue. Based
on the algorithm, we designed the interpolation filter
VLSI architecture with the reconfigurable configur-
ation and the cell block reuse to reduce the imple-
ment hardware area.
In this paper, we extend our earlier work [18] in three

ways. First, on the basic of our original algorithm, we
skip the 4 × 8, 4 × 16, 8 × 4, 16 × 4, 16 × 12, and 12 × 16
sub-PU blocks in the interpolation process instead of
only skipping the 4 × 8, 4 × 16, and 12 × 16 PU, to fur-
ther save the encoding time and save a large area in
hardware implementation by skipping 4× size with ac-
ceptable coding quality degradation. Second, an efficient
memory organization method is proposed in this paper
to reduce the data access of SRAM and save the power
of VLSI architecture. Third, a five-step pipeline
interpolation filter engine is proposed in this paper to
shorten the critical path of the filter and improve the
working speed.
Another obvious limitation of our earlier work [18]

and the above progress is that they only target at the
video applications with the resolutions up to HD or
4K. For higher throughput of 8K-UHD 7680 × 4320,
more efficient hardware architecture is desirable. Al-
though the power-efficient FME VLSI architecture
proposed in [17] can realize 8K-UHD video real-time
encoding, the focus of it is on the search pattern and
hardware architecture of fractional search module.
With aims at supporting 8K-UHD video applications,
an efficient interpolation filter VLSI architecture is
proposed in this paper.
The main contributions of this paper are summarized

as follows:

(1)A fast and implementation-friendly interpolation al-
gorithm is proposed, which skips the interpolation
process of 4 × 8, 4 × 16, 8 × 4, 16 × 4, 16 × 12, and
12 × 16 sub-PU blocks to reduce the encoding time
and hardware complexity.

(2)A reused three-level interpolation filter architecture
is adopted for the half-pixel and quarter-pixel inter-
polations to store the intermediate result and thus
can reduce the hardware cost.

(3)An efficient memory organization method is
proposed in the paper to reduce the data access of
SRAM and save the power of VLSI architecture.

(4)A five-step pipeline interpolation filter engine is pro-
posed in the paper. It can shorten the critical path
of the filter and improve the working speed.

(5)A reconfigurable interpolation unit is developed in
the paper, and the two types of the filters can be
carried out with the same hardware architecture
by only reversing the order of input reference
pixels. As a result, the proposed reconfigurable

Zhou et al. EURASIP Journal on Advances in Signal Processing (2015) 2015:95 Page 2 of 12

filter can reduce the area of the whole
architecture.

The rest of this paper is organized as follows. Sec-
tion 2 presents the overview of the interpolation filter
algorithm in the HEVC test model (HM). Section 3
describes the improved fast interpolation filter algo-
rithm. The proposed efficient interpolation filter VLSI
architecture is presented in Section 4 in details. The
implementation results are analyzed in Section 5.
Finally, Section 6 concludes this paper.

2 Overview of interpolation algorithm
In HEVC standard, three different eight-tap and
seven-tap interpolation FIR filters are used for both
half-pixel and quarter-pixel interpolations. These three
FIR filters, i.e., type A, type B, and type C, are shown
in (1), (2), and (3), respectively.

a0;0 ¼ ð−A−3;0 þ 4� A−2;0−10� A−1;0 þ 58� A0;0

þ17� A1;0−5� A2;0 þ A3;0 þ 32Þ >> 6

ð1Þ

b0;0 ¼ ð−A−3;0 þ 4� A−2;0−11� A−1;0 þ 40� A0;0

þ40� A1;0−11� A2;0 þ 4� A3;0−A4;0 þ 32Þ >> 6

ð2Þ

c0;0 ¼ ðA−2;0−5� A−1;0 þ 17� A0;0 þ 58� A1;0−10� A2;0

þ4� A3;0−A4;0 þ 32Þ >> 6

ð3Þ

Integer pixels (Ax,y), half pixels (bx,y, hx,y, jx,y), and
quarter pixels (ax,y, cx,y, dx,y, ex,y, fx,y, gx,y, ix,y, kx,y, px,y,
qx,y, rx,y, nx,y) in a PU are shown in Fig. 1. The half pixels
are interpolated from the nearest integer pixels in either
horizontal direction or vertical direction. The quarter
pixels are interpolated from the nearest half pixels in the
horizontal direction and in the vertical direction, re-
spectively, using type A, type B, or type C filter. Accord-
ing to which fractional pixel should be computed, one
interpolation filter is chosen. As the position of a quarter
pixel point is close to the integer pixel, we can choose a
seven-tap interpolation filter. But for the farther half-
pixel point, an eight-tap filter is required.

Fig. 1 Integer, half, and quarter pixels. The positions of integer pixels, half pixels, and quarter pixels in a PU. Variable (Ax,y) represents integer pixels. Variables
(bx,y, hx,y, jx,y) represent half pixels. Variables (ax,y, cx,y, dx,y, ex,y, fx,y, gx,y, ix,y, kx,y, px,y, qx,y, rx,y, nx,y) represent quarter pixels

Zhou et al. EURASIP Journal on Advances in Signal Processing (2015) 2015:95 Page 3 of 12

For the half-pixel point interpolation, b0,0 can be
calculated by applying (2) from A0,0 in the horizontal
direction. Then, h0,0 and j0,0 can be calculated from A0,0

and b0,0, respectively, in the vertical direction.
After that, the motion vector (MV) can be obtained by

using the SATD algorithm [1] to calculate the values of
the half-pixel points. For the quarter-pixel point
interpolation, a0,0 and c0,0 can be calculated by applying
(1) and (3) from A0,0 in the horizontal direction. Then,
e0,0, p0,0, g0,0, and r0,0 can be calculated from a0,0 and
c0,0, respectively, in the vertical direction, while the other
points should be filtered according to the MV.
If the horizontal component of MV is equal to zero,

d0,0 and n0,0 can be calculated by applying (1) and (3)
from A0,0; otherwise, f0,0 and q0,0 will be calculated by
applying (1) and (3) from b0,0. If the vertical component
of MV is equal to zero, a0,0 and c0,0 can be calculated
from themselves; otherwise, i0,0 and k0,0 will be calcu-
lated by applying (2) from a0,0 and c0,0.
For 8 × 8 sub-block predictions, the reference pixel

values of a 16 × 16 prediction block are required in the
worst-case scenario. Compared to the six-tap
interpolation filter in H.264/AVC, the interpolation filter
in HEVC will cost a larger area. Therefore, it is very im-
portant to design an efficient luma interpolation VLSI
architecture to realize the implementation of real-time
video coding and to reduce the implementation area.

3 The fast interpolation filter algorithm
3.1 Fast interpolation filter algorithm
Like H.264/AVC, mode decisions with motion estima-
tion (ME) remain to be among the most time-
consuming computations in HEVC. In the initial HEVC
design, there are four different possible partition modes
for inter predictions: two square partition modes (2N ×
2N and N ×N) and two symmetric motion partition
(SMP) modes (2N ×N and N × 2N). As a complement to
the square-shaped or non-square symmetrically parti-
tioned prediction blocks, the asymmetric motion parti-
tion (AMP) is proposed in HEVC. AMP includes four
partition modes: 2N × nU, 2N × nD, nR × 2N, and nL ×
2N, which divide a coding block into two asymmetric
prediction blocks along the horizontal or vertical direc-
tion. In HEVC, the size of the largest PU is 64 × 64. So,
it can be split into a total of 21 different sizes of sub-

PUs, as shown in Table 1 (there is no 4 × 4 mode in the
interpolation filtering operation). All possible prediction
modes are traversed. And the one having the minimum
RD cost will be used.
In an inter-prediction mode decision, a full-search al-

gorithm searches for every possible block size and re-
fines the results from the integer-pel to quarter-pel
resolution. Thus, a full-search algorithm guarantees the
highest level of compression performance. However, the
considerable computational complexity for a mode deci-
sion is critical for the encoding speed. Moreover, the
main target resolution of HEVC is full HD (1920 × 1080)
and beyond. For hardware implementation of an HEVC
encoder, the area cost will be very high if the hardware
structure executes interpolation filter for all possible
prediction modes. In the VLSI architecture design,
therefore, it is required to achieve the interpolation fil-
tering operation of larger blocks by reusing the smallest
unit.
According to eight different possible splittings of PUs,

a 4-pixel interpolation unit and an 8-pixel interpolation
unit are used in the proposed architecture. The splitting
modules for the 4-pixel interpolation unit include 4 × 8,
4 × 16, 8 × 4, and 16 × 4 modes. Both 4-pixel
interpolation unit and 8-pixel interpolation unit will be
used for 12 × 16 and 16 × 12 modes. So the 4-pixel
interpolation unit mentioned in this paper also includes
12 × 16 and 16 × 12 modes. The 4-pixel interpolation
unit is capable of processing every sub-block in a coding
unit (CU), but it will cost more hardware areas and
clock cycles. So it is very difficult for a 4-pixel
interpolation unit to achieve the real-time processing of
interpolation filter with reasonable computing powers.
The statistics of possible splittings of PUs in HM 13.0
with low delay configuration is shown in Table 2. The
size ranges from 64× to 4×. The 64× size includes 64 × 32
and 64 × 64 modes. The 32× size includes 32 × 8, 32 × 16,
32 × 24, 24 × 32, and 32 × 32 modes. The 16× size includes
16 × 8, 16 × 16, and 16 × 32 modes. The 8× size includes

Table 1 The inter-prediction splitting modes

Number The size of sub-PU

4 8 × 4, 4 × 8, 4 × 4

8 16 × 8, 8 × 16, 8 × 8, 16 × 4, 16 × 12, 4 × 16, 12 × 16

16 32 × 16, 16 × 32, 16 × 16, 32 × 8, 32 × 24, 8 × 32, 24 × 32

32 64 × 64, 64 × 32, 32 × 64, 32 × 32

A total of 21 inter-prediction splitting modes of sub-PUs

Table 2 The statistics of possible splitting of PUs

Class A Class B Class C Class D Class E

Size Traffic Cactus BasketballDrill Keiba Johnny

64× 5361 2663 454 88 1703

32× 9945 5751 937 255 1229

16× 19,654 8994 2307 876 2193

8× 28,408 9261 4232 1409 2098

4× 2582 502 426 150 97

Total 65,950 27,171 8356 2778 7320

The statistics of possible splitting of PUs in HM 13.0 with low delay configuration.
64×, 32×, 16×, 8×, and 4× represent the size of PUs. In terms of resolutions, the
video sequences are classified into five classes, including class A (2560 × 1600), class
B (1920 × 1080), class C (832 × 480), class D (416 × 240), and class E (1280 × 720).
Traffic, Cactus, BasketballDrill, Keiba, and Johnny represent five video sequences

Zhou et al. EURASIP Journal on Advances in Signal Processing (2015) 2015:95 Page 4 of 12

8 × 8, 8 × 16, and 8 × 32 modes. The 4× size includes 4 × 8,
4 × 16, 8 × 4, 16 × 4, 12 × 16, and 16 × 12 modes.
It can be observed from Table 2 that, the splitting

modules for a 4-pixel interpolation unit (4× size) are
only about 3.52 % of all possible splitting of PUs, so it
will only cause a small decrease in image quality to skip
them. In addition, it needs 4 + 8 = 12 pixels data width to
process the 4-pixel interpolation unit, and the valid data
percentage is only 33 %. If we can skip the 4× size, using
8-pixel interpolation unit as the basic unit, the valid data
can account for 50 %. Therefore, it can save a large area
and clock cycles in hardware implementation by skip-
ping the 4× size.
Therefore, we propose a fast and implementation-

friendly interpolation algorithm in which the
interpolation processing with a 4-pixel interpolation unit
will be skipped. If we use the 8-pixel interpolation unit,
we will skip the 4× basic blocks’ (i.e., 4 × 8, 4 × 16, 8 × 4,
16 × 4, 16 × 12, and 12 × 16) interpolation operation in
HEVC. Figure 2 illustrates the top-level block diagram
of our proposed fast interpolation algorithm. Compared
to the original algorithm, the interpolation process of
4 × 8, 4 × 16, 8 × 4, 16 × 4, 16 × 12, and 12 × 16 sub-PU
blocks is skipped in the interpolation.
Based on the proposed fast interpolation algorithm, we

re-arrange the classification of PU splitting modules, as
shown in Table 3. According to the new splitting mod-
ules and the proposed fast algorithm, we can put the
minimum 8× PU modes together to realize the
interpolation of larger blocks in the VLSI design.

3.2 Experiment results
In order to evaluate the performance of the proposed
fast interpolation algorithm, we implement the algorithm
using the recent HEVC reference software (HM 13.0). A
PC with Inter Core™i5-2400K CPU @ 3.1GHz and 4-G
RAM is used in the experiments. We compare the pro-
posed algorithm and our previous work [18] in a low
complexity configuration with the original algorithm in
HM 13.0 encoder. The performance of the proposed al-
gorithm is shown in Table 4.
A set of experiments are carried out for IPPP frame

sequences in which CABAC is used as the entropy

coder. The proposed algorithm is evaluated with QPs 22,
27, 32, and 37 using 13 typical sequences recommended
by the JCT-VC in five resolutions [19]. In terms of reso-
lutions, the video sequences are classified into five clas-
ses, including class A (2560 × 1600), class B (1920 ×
1080), class C (832 × 480), class D (416 × 240), and class
E (1280 × 720). Coding efficiency is measured in terms
of peak signal-to-noise ratio (PSNR) and bit rate. Com-
putational complexity is measured by the consumed
coding time. Bjøntegaard delta PSNR (BDPSNR) (dB)
and Bjøntegaard delta bit rate (BDBR) (%) are used to
represent the average PSNR and bit rate difference [20].
“Time save (%)” is used to represent the coding time
change of motion estimation in percentage. The positive
and negative values represent increments and decre-
ments, respectively.
Table 4 shows the comparison of our previous work

[18] and the proposed new interpolation algorithm as
compared to the original algorithm in HM 13.0 encoder.
For the five classes (A, B, C, D, and E) of test sequences,
the proposed new algorithm can greatly reduce the cod-
ing time of motion estimation. The proposed algorithm
can achieve about 19.7 % motion estimation time reduc-
tion with a maximum of 21.9 % in “PeopleOnStreet
(2560 × 1600)” and a minimum of 17.1 % in “Flowervase
(832 × 480)”. Our previous algorithm in [18] can only
achieve about 10.0 % total coding time reduction with a
maximum of 11.1 % in “Racehorses (832 × 480)” and a
minimum of 9.0 % in “Traffic (2560 × 1600)”. Compared
with our previous algorithm in [18] which only the
interpolation process of 4 × 8, 4 × 16, and 12 × 16 blocks
are skipped, it can achieve a higher time saving. About
8.1–11.5 % encoding time can be further reduced, while

Table 3 The new splitting module in interpolation filter

PU module The size of sub-PU

8× 8 × 8, 8 × 16, 8 × 32

16× 16 × 8, 16 × 16, 16 × 32

24× 24 × 32

32× 32 × 8, 32 × 16, 32 × 24, 32 × 32, 32 × 64

64× 64 × 32, 64 × 64

Based on the proposed fast interpolation algorithm

Fig. 2 The improved luma interpolation algorithm. The top-level block diagram of our proposed fast interpolation algorithm. If the size of input
PU is 4 × 8, 4 × 16, 8 × 4, 16 × 4, 16 × 12, or 12 × 16, the interpolation process of this PU will be skipped. The interpolation process includes half-pixel
interpolation, MV cost calculation, best half MV determination, and quarter-pixel interpolation

Zhou et al. EURASIP Journal on Advances in Signal Processing (2015) 2015:95 Page 5 of 12

the average coding efficiency loss is small, less than
0.26 % BDBR increase. For those sequences with higher
resolutions (such as 1920 × 1080 and 2560 × 1600), the
proposed algorithm shows impressive improvement
with more than 19.9 % of coding time saved. There-
fore, it is especially efficient for coding higher-
resolution video. In [21], a simplified HEVC FME
interpolation unit targeting a low-cost and high-
throughput hardware design was proposed and it
causes a bit rate loss of about 13.18 % and a quality
loss of about 0.45 dB. Compared to the works in
[21], our algorithm provides significant improvement
in terms of PSNR and bit rate.
The gain of our algorithm is high because unnecessary

small PU size decision has been skipped. For sequences
with large smooth texture areas like “PeopleOnStreet”,
the algorithm saves more than 20 % coding time. On the
other hand, coding efficiency loss is acceptable in Table 4,
where the average BDBR increase is 1.38 % with the
minimum of 0.3 % in “BasketballDrive” and the average
BDPSNR decrease is 0.0594 dB with the minimum of
0.0132 dB in “BQTerrace”. The above experimental re-
sults indicate that the proposed new algorithm is effi-
cient for all types of video sequences and outperforms
our previous algorithm [18] for HEVC encoders. There-
fore, the proposed algorithm can efficiently reduce the
coding time while keeping nearly the same RD perform-
ance as the original HM encoder. What is more, it can

also reduce the implementation area cost in the VLSI
design.

4 The efficient interpolation filter VLSI
architecture
4.1 The reused data path of interpolation
Fractional motion estimation performs a half-pixel re-
finement about the integer search positions, and then a
quarter-pixel one is performed around the best half-
pixel position. In the interpolation algorithm described
in Section 2, it is known that the quarter-pixel
interpolation processor needs to filter the results of the
half-pixel horizontal interpolation in a vertical direction.
If carrying out the interpolation process of a 64 × 64 CU,
2 × (64 + 1) × (64 + 8) × (8 + 6) = 131,040 bits RAM is re-
quired in total. The area cost will be huge for hardware
implementation. In our design, a reused three-level
architecture is proposed for half-pixel and quarter-pixel
interpolations. With this structure, we would not need
to store the intermediate results and thus can reduce the
area cost for about 131,040 bits RAM.
Figure 3 shows the data path of the interpolation pro-

cessor. There are three horizontal filters (H_F1/4, H_F2/
4, H_F3/4 in level 1) and eight vertical filters (V_F1/4,
V_F2/4, V_F3/4 in level 2 and level 3) in the proposed
three-level reused architecture.
There are three horizontal filters in the first level (level

1). For the half-pixel interpolation as shown in Fig. 3a,
the horizontal filter H_F2/4 is open and the other two
are close in the first round. The half-pixel b0,0 (as seen
in Fig. 1) is calculated by H_F2/4 from the integer pixel
A0,0 in the horizontal direction.
For the quarter-pixel interpolation in the second

round as shown in Fig. 3b, the filtered results of pixels
a0,0, b0,0, and c0,0 are calculated by the three horizontal
filters in level 1 from the integer position A0,0.
The second level (level 2) contains four vertical filters.

They work just at the second round of the quarter-pixel
interpolation process. The quarter pixels e0,0 and p0,0 are
interpolated by the filters V_F1/4 and V_F3/4, respect-
ively, from the pixel a0,0 in the vertical direction. Simi-
larly, the quarter pixels g0,0 and r0,0 are interpolated,
respectively, by the filters V_F1/4 and V_F3/4 from the
pixel c0,0 in the vertical direction.
The last level (level 3) also contains four vertical fil-

ters. The difference between the four vertical filters in
level 2 and level 3 is that the data inputs of the verti-
cal filters in level 3 are not fixed. The filtered results
of the half pixels h0,0 and j0,0 are calculated by the
two vertical filters V_F2/4 from the pixels A0,0 and
b0,0 at the first round of the half-pixel interpolation
process. During the second round, the quarter pixels
i0,0 and k0,0 are interpolated by the same two vertical
filters from the pixels a0,0 and c0,0 when the vertical

Table 4 Comparisons of our previous works [18] and proposed
new algorithm compared to HEVC

Class Sequence BDPSNR (dB) BDBR (%) Time save (%)

[18] New [18] New [18] New

A PeopleOnStreet −0.0458 −0.0492 1.14 1.26 10.4 21.9

Traffic −0.0165 −0.0211 0.58 0.62 9.0 19.4

B BasketballDrive −0.0046 −0.0136 0.16 0.30 10.2 19.9

BQTerrace −0.0035 −0.0132 0.21 0.53 9.6 18.9

Cactus −0.0156 −0.0299 0.69 1.35 10.0 19.6

C Racehorses −0.0866 −0.0936 2.36 2.43 11.1 21.3

Flowervase −0.0443 −0.0961 1.36 1.41 9.0 17.1

BasketballDrill −0.0275 −0.0326 0.77 0.91 10.6 18.9

D BasketballPass −0.1071 −0.1264 2.46 2.59 10.8 21.0

BlowingBubbles −0.0739 −0.1131 2.14 2.43 10.5 21.0

Keiba −0.0357 −0.1109 0.76 0.97 10.9 21.4

E Johnny −0.0272 −0.0314 1.08 1.22 9.1 17.4

KristenAndSara −0.0268 −0.0392 0.90 1.23 9.0 17.2

Average −0.0396 −0.0594 1.12 1.38 10.0 19.7

BDPSNR (dB) and BDBR (%) are used to represent the average PSNR and bit
rate difference. “Time save (%)” is used to represent the coding time change
of motion estimation in percentage. The positive and negative values represent
increments and decrements, respectively

Zhou et al. EURASIP Journal on Advances in Signal Processing (2015) 2015:95 Page 6 of 12

component of the best half MV is not equal to zero.
The interpolated results of quarter pixels d0,0 and n0,0
are calculated by the other two vertical filters V_F1/4
and V_F3/4 from the integer pixel A0,0 when the
horizontal component of MV is equal to zero; other-
wise, the quarter pixels f0,0 and q0,0 are interpolated

by the same vertical filters V_F1/4 and V_F3/4 from
the half pixel b0,0.
From the above data path of the proposed interpolation

filter architecture, it can be seen that all the horizontal
and vertical filters in the process of half-pixel interpolation
can be reused in the process of quarter-pixel interpolation.

Fig. 3 The reused data path of interpolation filter. a First round: half-pixel interpolation. b Second round: quarter-pixel interpolation. The reused
data path of the interpolation processor. a The data path of the first round of interpolation processor for half-pixel interpolation. b The data path
of the second round of interpolation processor for quarter-pixel interpolation. H_F1/4, H_F2/4, and H_F3/4 in level 1 represent three horizontal filters.
V_F1/4, V_F2/4, and V_F3/4 in level 2 and level 3 represent eight vertical filters. MUX represents multiplexor

Zhou et al. EURASIP Journal on Advances in Signal Processing (2015) 2015:95 Page 7 of 12

Moreover, some interpolation filter units can be reused
for different quarter-pixel positions. This reused architec-
ture will greatly reduce the area cost in hardware
implementation.

4.2 Memory organization
In the VLSI design, an 8-pixel interpolation unit is
applied to balance the processing time and the hard-
ware efficiency. Because every PU can be split into
multiple 8× blocks, the 8-pixel interpolation unit can
deal with every sub-block in the processing unit of
inter-prediction.
Extra four pixels around every 8 × 8 block will be used as

the input pixels for the 8-tap interpolation filter. So the
window of filter should be (4 + 8 + 4) × (4 + 8 + 4) = 16 × 16

and the width of the input data is 16 pixels. The scan order
is vertical, and the adjacent 8 × 8 blocks adopt similar oper-
ations to reuse the interpolation data and to reduce the
memory access.
The basic filter unit is 8× block which will be reused

many times for 8 × 8 blocks and larger PU blocks. The
reference data inputs should be reasonably stored before
the process of sub-pixel interpolation to reduce the
memory access. SRAM is used to store the input refer-
ence pixels. The maximum processing unit of LPU is
64 × 64 block, and there are also four extra reference
pixels around the processing unit. So the actual refer-
ence pixel matrix is 72 × 72. As the width of processing
unit is from 8 to 64, the 72 × 72 pixel matrix is stored in
terms of 9-pixel width separately as shown in Fig. 4. The

Fig. 4 Memory organization. Memory organization of the proposed architecture. The maximum processing unit of LPU is 64 × 64 block, and there
are also four extra reference pixels around the processing unit. SRAM0–SRAM7 represent eight SRAMs in order to realize the storage of a 72 × 72 pixel
matrix. The depth of every SRAM is 9 × 8 bit = 72 bits, and every bit is the data address of each line

Zhou et al. EURASIP Journal on Advances in Signal Processing (2015) 2015:95 Page 8 of 12

depth of every SRAM is 9 × 8 bit = 72 bits, and every bit
is the data address of each line. There are eight SRAMs
in order to realize the storage of a 72 × 72 pixel matrix.
Based on this organization, only SRAM0 and SRAM1
are open for 8× processing unit while the others are
close with no data access. Only when the width of pro-
cessing unit is 64, all the SRAMs will be used to store
and read the input reference pixels.

4.3 The reconfigurable interpolation filter architecture
4.3.1 The pipeline interpolation filter engine
According to the analysis in Section 3, the 8-pixel
interpolation unit is chosen as the basic unit in the pro-
posed interpolation processor. The proposed pipeline
interpolator architecture is shown in Fig. 5 where the 8×
block module is the basic reused block. This interpolator
can support 8-pixel interpolation, which can adapt to
most of the variable block sizes. One 16 × 16 block is
split into two 8 × 16 blocks, and a 16 × 8 block is split
into two 8 × 8 blocks. For the interpolation process of a
64 × 64 CU, 8× block module can be reused by eight
times.
As shown in Fig. 5, h_f is the 8-tap horizontal

interpolation filter and v_f is the 8-tap vertical interpolation
filter. The h_f can support 8-pixel interpolation. There are
nine 8-tap horizontal interpolation filters (h_f0~h_f8), and
only eight filtered results among them are selected as the
predicted outputs according to the distribution of half
pixels around the integer pixels. After a horizontal
interpolation filtering, the vertical interpolation filter reads
the horizontal outputs. There are eight shift registers in the
vertical interpolation filter, and the output data from the

horizontal filter are stored in these registers sequentially.
When the eight registers are filled with the predicted out-
puts from the horizontal interpolation filter, the vertical
interpolation filter starts to work.
There are five steps in the operation of the interpolation

filter pipeline.

Step 1: The interpolation filter reads the reference
integer pixels from the first line, and as a result,
there are 16 reference data inputs from 0~15.

Step 2: The horizontal interpolation filter h_f0 reads
the integer pixels 0~7 of line 1, and the filter
h_f1 reads the integer pixels 1~8, and so on.
These 16 pixels are interpolated by the
corresponding horizontal interpolation filters.

Step 3: The filtered data from the horizontal
interpolation filter of line 1 are written into the
registers of the vertical interpolation filter v_f.
By repeating the same operations as in step 1
and step 2, the filtered data of following lines
are written into the registers.

Step 4: When the registers of v_f are filled with eight
pixels, the 8-tap vertical interpolation starts to
work and the filtered results of line 1 will be
obtained.

Step 5: When v_f executes filtering from line 1 to line
8, the input reference pixels of line 9 are
interpolated by the horizontal interpolation
filter h_f simultaneously. After the filtered data
of line 9 are written into the register of v_f and
the filtered results of line 1 are released by the
register, the vertical interpolation filter starts to

Fig. 5 The pipeline 8-pixel interpolation filter engine. The proposed pipeline interpolator architecture. h_f represents the 8-tap horizontal interpolation
filter, and v_f represents the 8-tap vertical interpolation filter

Zhou et al. EURASIP Journal on Advances in Signal Processing (2015) 2015:95 Page 9 of 12

execute the filtering operation on the reference
pixels from line 2 to line 9.

According to the five steps above, the 8× block
interpolation engine performs the pipeline filtering oper-
ations and the ultimate interpolation filtered result will
be obtained after one clock cycle.

4.3.2 The reconfigurable interpolation unit
Table 5 shows the coefficients of an 8-tap filter. It can be
observed that the coefficients of A and C type are sym-
metry. Therefore, the interpolation of A and C type fil-
ters can be carried out with the same hardware
architecture by only reversing the order of input refer-
ence pixels.
The interpolation performed by the seven-tap or

eight-tap interpolation filter (h_f or v_f in Fig. 5) is im-
plemented by shifters and additions and subtraction op-
erations. Based on (1) and (2), the 8-tap filter needs 33
adders (12 adders for A type, 9 adders for B type, and 12
adders for C type) and 14 shifters (5 shifters for type A,
4 shifters for B type, and 5 shifters for C type) in the
hardware implementation.
The proposed optimal architecture of A and B fil-

ters are shown in Fig. 6 where A, B, C, D, E, F, G,
and H are eight input reference pixels. The structures
of horizontal and vertical filters are identical. Com-
pared to the above 33 adders and 14 shifters, the pro-
posed architecture of A and B type filters only needs
19 adders (10 adders for A type and 9 adders for B
type) and 8 shifters (4 shifters for A type and 4
shifters for B type) to realize the hardware implemen-
tation. Since only one type of the three filters is used
at one time, the interpolation of A and C type filters
can be carried out with the same hardware architec-
ture by only reversing the order of input reference
pixels. As a result, the proposed reconfigurable filter
can reduce the area of the whole architecture.

5 Implementation results
The proposed interpolation filter architecture is imple-
mented in Verilog HDL and synthesized using SMIC 90-
nm cell library. Table 6 shows the implementation com-
parison between the proposed and state-of-the-art de-
signs, as well as our previous work [18]. When

synthesized with 90-nm CMOS standard library, the
total gate count of this design is 37.2k for supporting
7680 × 4320@78fps (4:2:0 format) videos and real-time
processing with a working clock speed of 240 MHz.
In terms of hardware resources, the proposed archi-

tecture can reduce about 18 % area compared to the
works in [11]. Although the works in [12] has eight
times greater parallelism and can work at higher fre-
quencies than the design in this paper, the amount of
logic resources is also six times greater. The proposed
architecture also allows for the use of a reduced input
buffer so that the memory cost can be reduced by
131,040 bits. Compared with the works in [13, 16],
due to the different targeted video specification, our
design consumes more hardware cost. Although hard-
ware cost in [16] is only 28.5k, memories are not in-
cluded in the gates’ area. The reconfigurable hardware
accelerator engines in [14, 15] are synthesized for the FPGA
device and BRAMs are used, so it is difficult to make a fair
hardware cost comparison with the works in [14, 15].
In terms of performance, the throughput of the

proposed architecture is 13.4 pixels/cycle, which is al-
most 18 times larger than the works in [13] with
0.73 pixel/cycle, 6 times larger than the works in [11]
with 2.58 pixels/cycle, and 2 times larger than the
works in [15] with 8.5 pixels/cycle. So the hardware
implementation can better adapt to the HEVC stand-
ard with larger LCU size. Consequently, the hardware
implementation cost of our architecture is comparable
to H.264/AVC.
At 0.9 V power supply, the processing of the pro-

posed hardware for 7680 × 4320@78fps video process-
ing dissipates only 4.7 mW when running at
240 MHz. The power consumptions shown in [14, 15] are
measured by the FPGA-based evaluation system, and the
power consumption shown in [17] also includes the en-
ergy consumption of fractional search module. It is quite
unfair to make a power comparison with them. The power
consumptions of interpolation hardware in [11–13] are
not shown.
From Table 6, it also can be seen that only the pro-

posed architecture and the works in [17] can support
8K-UHD video real-time encoding. The hardware
costs of the works in [17] are 1183k gates, and frac-
tional search module is also included. Therefore, it is
difficult to make a fair comparison of hardware re-
sources. For the processing speed of the design, the
throughput of the proposed architecture is almost 2.5
times larger than the works in [17] with 5.26 pixels/
cycle. The design delivers a maximum throughput of
2588 Mpixels/s for 7680 × 4320 78 frames/s video ap-
plication, and the works in [17] can only achieve a
maximum throughput of 995 Mpixels/s for 7680 ×
4320 30 frames/s video coding. Compared to the

Table 5 Three types of 8-tap filters

Type Coefficient

A [−1, 4, −10, 58, 17, −5, 1]

B [−1, 4, −11, 40, 40, −11, 4, −1]

C [1, −5, 17, 58, −10, 4, −1]

Shows the coefficients of A type, B type, and C type 8-tap filter

Zhou et al. EURASIP Journal on Advances in Signal Processing (2015) 2015:95 Page 10 of 12

works in [17], our architecture provides significant
speed improvement.
Table 6 also shows the implementation comparison

between the proposed architecture and our previous
works in [18]. Our previous works in [18] can only
support 4K-UHD video real-time encoding with the
frame rate of 47, and the proposed architecture can
support 8K-UHD video real-time encoding with the
frame rate of 78. The proposed architecture can also
achieve about 42 % area reduction and 40 % power
reduction compared to our previous works in [18].
These speed and cost improvement come from both
the new fast interpolation filter algorithm and hard-
ware efficiency.

6 Conclusions
In this paper, high-performance VLSI architecture for
luma interpolation in HEVC is proposed and it is im-
plemented with 37.2k gates at an operating frequency
of 240 MHz. It can support 8K-UHD (7680 ×
4320)@78fps (4:2:0 format) real-time video processing.
Our proposed architecture can be reused for half-
pixel interpolation and quarter-pixel interpolation,
and it reduces the area cost about 131,040 bits RAM
with the reused interpolation architecture. Our pro-
posed architecture can achieve high throughput for
real-time encoding of ultra high-resolution videos
with reduced hardware resources and is especially
suitable for 8K-UHD video real-time encoding.

Table 6 Comparisons between the proposed architecture and state-of-the-art designs

[11] [12] [13] [14] [15] [16] [17] [18] Proposed
architecture

Standard HEVC HEVC HEVC HEVC HEVC HEVC HEVC HEVC HEVC

Technology (nm) 40 90 90 FPGA 65 FPGA 65 90 65 90 90

Parallelism 8× 64× 8× 8× 8× 8× 8× 8× 8×

Logic gate account 45.2k 211.693k 32.496k 5710 LUTs 5017 LUTs 28.5ka 1183kb 64.5k 37.2k

Power (mW) N/A N/A N/A 379 89 N/A 198.6 7.9 4.7

Interpolation execution time
(pixel/cycle)

2.58 N/A 0.73 N/A 8.5 N/A 5.26 0.84 13.4

Max operation frequency
(MHz)

200 400 171 403 200 200 188 193 240

Throughput QFHD
@30fps

1080p
@30fps

QFHD
@60fps

QFHD
@60fps

QFHD
@30fps

QFHD
@30fps

8K-UHD
@30fps

QFHD
@47fps

8K-UHD
@78fps

N/A not available
aExcluding on-chip memories
bFractional search module included

Fig. 6 The proposed architectures of A and B type filters. a A type. b B type. Shows the proposed optimal architecture of A and B type
filters. a The architecture of A type filters. b The architecture of B type filters. A, B, C, D, E, F, G, and H represent eight input reference pixels. “<<1” and
“<<2” represent shifters. “+” represents adder. “−1” represents “multiplied by minus one”

Zhou et al. EURASIP Journal on Advances in Signal Processing (2015) 2015:95 Page 11 of 12

Competing interests
The authors declare that they have no competing interests.

Acknowledgements
This work was supported in part by the National Natural Science Foundation
of China (60902101), New Century Excellent Talents in University of Ministry
of Education of China (NCET-11-0824), and Fundamental Research Funds for
the Central Universities (3102014JCQ01057).

Author details
1School of Electronics and Information, Northwestern Polytechnical
University, Xi’an 710072Shaanxi, China. 2School of Automation, Northwestern
Polytechnical University, Xi’an 710072, China. 3Research Institute of
Information Technology, Tsinghua University, Beijing 100084, China.
4Complex System Inc, Tsinghua University, Calgary, Alberta T2L2K7, Canada.

Received: 1 April 2015 Accepted: 10 November 2015

References
1. GJ Sullivan, JR Ohm, WJ Han et al., Overview of the high efficiency video

coding (HEVC) standard. IEEE Trans. Circuits Syst. Video Technol. 22(12),
1649–1668 (2012)

2. J Ohm, GJ Sullivan, High efficiency video coding: the next frontier in video
compression [standards in a nutshell]. Signal Process Magazine IEEE 30(1),
152–158 (2013)

3. J-R Ohm, GJ Sullivan, H Schwarz, TK Tan, T Wiegand, Comparison of the coding
efficiency of video coding standards—including high efficiency video coding
(HEVC). IEEE Trans. Circuits Syst. Video Technol. 22(12), 1669–1684 (2012)

4. Y. J. Ahn, W. J. Han, D. G. Sim, “Study of decoder complexity for HEVC and
AVC standards based on tool-by-tool comparison,” SPIE Appl. Digital Image
Process. XXXV, 8499, 84990X-1-84990X-10 (2012)

5. T-C Chen, S-Y Chien, Y-W Huang, C-H Tsai, C-Y Chen, TW Chen, L-G Chen,
Analysis and architecture design of an HDTV720p 30 frames/s H.264/AVC
encoder. IEEE Trans. Circuits Syst. Video Technol. 16(6), 673–688 (2006)

6. Z Liu, Y Song, M Shao, S Li, L Li, S Ishiwata, M Nakagawa, S Goto, T Ikenaga,
HDTV1080p H.264/AVC encoder chip design and performance analysis. IEEE
J. Solid-State Circuits 44(2), 594–608 (2009)

7. C Yang, S. Goto, T. Ikenaga, in Proc. IEEE International Symposium on Circuits
and Systems (ISCAS). High performance VLSI architecture of fractional
motion estimation in H.264 for HDTV (IEEE, Kos, Greece, 2006)

8. S. Oktem and I. Hamzaoglu, in Proc.10th Euromicro Conference on Digital
System Design. An efficient hardware architecture for quarter-pixel accurate
H.264 motion estimation (IEEE, Luebeck, Germany, 2007)

9. G Pastuszak, M Jakubowski, Adaptive computationally-scalable motion
estimation for the hardware H.264/AVC encoder. IEEE Trans. Circuits Syst.
Video Technol. 23(5), 802–812 (2013)

10. D. Zhou and P. Liu, in Proc. IEEE International Symposium on Circuits and Systems.
A hardware-efficient dual-standard VLSI architecture for MC interpolation in AVS
and H.264 (IEEE, New Orleans, Louisiana, 2007)

11. Chao-Tsung Huang, Chiraag Juvekar, Mehul Tikekar, Anantha P. Chandrakasan,
in Proc. IEEE Conference on Visual Communications and Image Processing (VCIP).
HEVC interpolation filter architecture for quad full HD decoding (IEEE, Kuching,
Sarawak, 2013)

12. G. Pastuszak, M. Trochimiuk, in Proc. 16th Euromicro Conference on Digital
System Design. Architecture design and efficiency evaluation for the high-
throughput interpolation in the HEVC encoder (IEEE, Santander, Spain, 2013)

13. Guo Z, Zhou D, Guto S, in Proc. IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). An optimized MC interpolation
architecture for HEVC (IEEE, Kyoto, Japan, 2012)

14. V. Afonso, H. Maich, L. Agostini, and D. Franco, in Proc. IEEE Lat. Amer.
Symp. Circuits Syst. (LASCAS). Low cost and high throughput FME
interpolation for the HEVC emerging video coding standard (IEEE,
Cusco, Peru, 2013)

15. CM Cláudio, M Shafique, S Bampi, J Henkel, A reconfigurable hardware
architecture for fractional pixel interpolation in high efficiency video coding.
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 34(2), 238–251 (2015)

16. E. Kalali, I. Hamzaoglu, in Proc. IEEE International Conference on Image
Processing (ICIP). A low energy HEVC sub-pixel interpolation hardware
(IEEE, Paris, French, 2014)

17. G. He, D. Zhou, Y. Li, Z. Chen, T. Zhang, and S. Goto, “High-throughput
power-efficient VLSI architecture of fractional motion estimation for ultra-
HD HEVC video encoding,” IEEE Trans. Very Large Scale Integr. VLSI Syst.
(2015) doi: 10.1109/TVLSI.2014.2386897.

18. X Lian, W Zhou, Z Duan, R Li, in Proc. 2nd IEEE China Summit and
International Conference on Signal and Information Processing (ChinaSIP). An
efficient interpolation filter VLSI architecture for HEVC standard (IEEE, Xi’an,
China, 2014)

19. F. Bossen, “Common test conditions and software reference configurations,”
document JCTVC-H1100, ITU-T/ISO/IEC Joint CollaborativeTeam on Video
Coding (JCT-VC) (ITU-T/ISO/IEC, San Jose, USA, 2012)

20. G. Bjontegaard, “Calculation of average PSNR difference between RD-curves,”
document VCEG-M33 (ITU-T, Austin, USA, 2001)

21. V Afonso, H Maich, L Agostini, D Franco, in Proc. 2013 Data Compression
Conference. Simplified HEVC FME interpolation unit targeting a low cost and
high throughput hardware design (Snowbird, Utah, 2013)

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

Zhou et al. EURASIP Journal on Advances in Signal Processing (2015) 2015:95 Page 12 of 12

	Abstract
	Introduction
	Overview of interpolation algorithm
	The fast interpolation filter algorithm
	Fast interpolation filter algorithm
	Experiment results

	The efficient interpolation filter VLSI architecture
	The reused data path of interpolation
	Memory organization
	The reconfigurable interpolation filter architecture
	The pipeline interpolation filter engine
	The reconfigurable interpolation unit

	Implementation results
	Conclusions
	Competing interests
	Acknowledgements
	Author details
	References

