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Abstract

An efficient computation of a composite length discrete Fourier transform (DFT), as well as a fast Fourier transform
(FFT) of both time and space data sequences in uncertain (non-sparse or sparse) computational scenarios, requires
specific processing algorithms. Traditional algorithms typically employ some pruning methods without any
commutations, which prevents them from attaining the potential computational efficiency. In this paper, we
propose an alternative unified approach with automatic commutations between three computational modalities
aimed at efficient computations of the pruned DFTs adapted for variable composite lengths of the non-sparse
input-output data. The first modality is an implementation of the direct computation of a composite length DFT,
the second one employs the second-order recursive filtering method, and the third one performs the new pruned
decomposed transform. The pruned decomposed transform algorithm performs the decimation in time or space
(DIT) data acquisition domain and, then, decimation in frequency (DIF). The unified combination of these three
algorithms is addressed as the DFTCOMM technique. Based on the treatment of the combinational-type hypotheses
testing optimization problem of preferable allocations between all feasible commuting-pruning modalities, we have
found the global optimal solution to the pruning problem that always requires a fewer or, at most, the same
number of arithmetic operations than other feasible modalities. The DFTCOMM method outperforms the existing
competing pruning techniques in the sense of attainable savings in the number of required arithmetic operations.
It requires fewer or at most the same number of arithmetic operations for its execution than any other of the
competing pruning methods reported in the literature. Finally, we provide the comparison of the DFTCOMM with
the recently developed sparse fast Fourier transform (SFFT) algorithmic family. We feature that, in the sensing
scenarios with sparse/non-sparse data Fourier spectrum, the DFTCOMM technique manifests robustness against such
model uncertainties in the sense of insensitivity for sparsity/non-sparsity restrictions and the variability of the
operating parameters.
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1 Introduction
1.1 Motivation
Many signal processing applications require computation
of the so-called pruned discrete Fourier transform (DFT),
i.e., an efficient alternative to compute the required DFT
when the input sequence and/or the required output se-
quences are smaller than the length of the full DFT (a full

DFT means that all the output components are to be
computed, and all the input elements are used to compute
the transform); in the literature those are referred to as
pruned fast Fourier transforms (FFTs) or pruned DFTs [1].
Common practical examples relate to, e.g., the least mean
squared (LMS) optimal DFT-based pruned signal filtering
[2], and the complexity-reduced computational imple-
mentation of the orthogonal frequency division multiplex-
ing systems [3]. Another practical example relates to
efficient implementation of the matched spatial filtering
(MSF) algorithm for performing the range and azimuth
data compression in unfocused of fractionally focused
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synthetic aperture radar (SAR) system that both employ
the pruned DFT-based MSF processing of the trajectory
data signals performed in a factorized fashion in the so-
called slow time and fast time data acquisition scales
[4–6]. Other examples relate to DFT-based analysis of
remote sensing (RS) data acquired with a variety of sen-
sor systems, ranging from seismology [7] to multispec-
tral radiometry [8]. Other authors as Zhu et al. in [9]
proposed an algorithm for performing SAR polar for-
mat re-gridding interpolation suited for the logic-in-
memory paradigm (hardware/architecture solution) and
to provide the necessary design automation tool chain
to implement their proposed algorithm (e.g., FFTs for
image formation) in advanced silicon technology. It is
important to note that a majority of real-world RS data
acquisition and processing problems can be qualified as
sensing in harsh environments [4–8, 10, 11] in the
sense of intrinsic problem model uncertainties peculiar
for such RS modalities. In a context of pruned DFTs,
realistic harsh sensing scenarios are characterized by
the uncertainties attributed to zero-padded input data
acquisition modes with variable composite length win-
dowing of the input and/or output Fourier transform
sequences, in general cases, with non-sparse Fourier
spectra [10–12]. Those specifics motivate the develop-
ment of efficient pruned DFT/FFT techniques particu-
larly adapted for computational implementation with
uncertain data acquired in harsh sensing scenarios.

1.2 Related work
Traditional DFT algorithms adapted for such uncertain
scenarios typically employ some pruning methods with-
out any commutations, which prevent them from attain-
ing the potential computational efficiency. Most of the
proposals reported in the literature are based on con-
struction of pruning modalities of specific FFT-related
algorithms. Some of them prune the input of a specific
FFT algorithm, others prune the output, and just a few
can prune the input and output (input-output) at the
same time. Markel in [1], and Skinner in [13], proposed
the input pruning methods based on a radix-2 FFTs,
while Yuan et al., in [14], proposed an input pruning of a
split-radix FFT. The approaches of Bouguezel et al. [15]
and Fan et al. [16] are applicable for output pruning a
radix-2 FFTs, while the Xu’s et al. [3] proposal suggests
pruning the output of a split-radix FFT. In addition,
Sreenivas et al., in [17], Roche, in [18], and Wang et al.,
in [19], developed the methods for pruning the input-
output at the same time. The first one is based on a
radix-2 FFT, the second one employs the split-radix FFT,
and the third one performs the mixed-radix FFT, re-
spectively. A majority of those methods are applicable
only for computing DFTs with the length of a power of

two that drastically restricts their applicability to general
uncertain sensing scenarios.
On the other hand, a family of novel so-called sparse

FFT (SFFT) algorithms adapted to computing the FFTs,
when only a few Fourier spectrum coefficients of the
input signal are different from zero (few largest coeffi-
cients of the Fourier transform spectrum), has been de-
veloped recently [20, 21]. The celebrated SFFT-related
algorithms, so-called SFFTv1 and SFFTv2, were reported
by Hassanieh et al., in [20]. Later, in [21], the improved
SFFT-related versions, addressed as SFFTv3 and SFFTv4,
were reported. Another algorithm that considers the
Fourier spectrum sparsity restrictions is the so-called
FADFT-2 reported and implemented in the AAFFT library
[22]. However, the SFFT-related algorithms significantly
outperform the AAFFT as it was corroborated in [20].
It is worthwhile to mention that the SFFT-related

techniques are applicable only for the sparse sensing sce-
narios; e.g., referring to [20, 21], the authors exemplified
the sparsity level by imposing the restriction that up to
89 % of the Fourier coefficients are zeroes or negligible,
thus can be discarded. Such a restriction could be valid
in a variety of data compressing applications, e.g., com-
pression and recovery of video data not degraded by
noise and/or imaging system instrumental function [20].
Nevertheless, the restriction on such sparsity is not valid
for many real-world operational scenarios, e.g., processing
of the RS data acquired in harsh sensing environments
[4–8, 10–12]. For example, in SAR imaging of non-
homogeneous scenes, e.g., urban areas, non-uniformly
textured zones, etc., a majority of the Fourier transform
coefficients should be considered for feature-enhanced
MSF-based imaging [5, 6]; thus, an 89 % of sparsity level
restriction is never a feasible model assumption.
In this paper, we are interested in developing the

pruned DFT (DFTs of highly composite length) algo-
rithms applicable for near-real-time signal processing
and analysis in uncertain sensing scenarios (i.e., with
non-guaranteed sparsity of the data Fourier spectra);
that is why the family of the SFFT-related techniques is
beyond our detailed study here. Nevertheless, for the
purpose of generality, in Section 4, we perform compara-
tive analysis of our developed methods with the SFFT
under the same conditions and constraints for different
combinations of the specified processing/operational
parameters.
In the related literature, in which the feasible non-sparse

scenarios are considered, two competing approaches for
pruning the composite (no prime) length DFTs were ad-
dressed. Sorensen et al., in [23], proposed two methods
to prune composite length DFTs, first one to prune the
input and another one to prune the output. Next, the
methodology of Medina-Melendrez et al., in [24],
merges the methods developed originally in [23] to
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obtain a composite structure that is capable to prune the
input and/or output of a general decomposed transform
at the same time. It was demonstrated, in [24], that such a
computational structure could be as efficient as the one
based on specific FFT algorithms [15–17]. In [24], a new
methodology for decomposition over a composite length
DFT has been proposed as a modification of the Soren-
sen’s approach [23]. Furthermore, the [24] suggests, first,
to perform decimation in frequency (DIF) and, second, a
decimation in time (DIT). For processing of spatial data,
the corresponding decimation in the space domain should
be performed similarly to the DIT operation for time data
processing. To avoid misunderstandings, in the rest of the
paper, we will use the same abbreviation (DIT) for both
processing models and consider the time data process-
ing as a principal model. Nevertheless, all developments
are directly transferable for the space data processing
scenario.
Hence, the three basic stages to compute the compos-

ite length DFTs of non-sparse data encompass the input,
the intermediate, and the output stages. The decom-
posed transform is then pruned by eliminating, from the
input and output stages, additions and multiplications
by zero, multiplications by one, and all other computa-
tions not needed to obtain the required Fourier transform
coefficients. In [24], such the multistage decomposed and
pruned transform is referred to as FFTDIF−DIT−TD (here,
that method is referred as DFTDIF−DIT−Pr). Nevertheless,
both methods addressed in [23, 24] do not achieve the
lowest attainable number of the required arithmetic oper-
ations. A possible alternative for computing few Fourier
coefficients from few input elements (all non-zero, thus
non-sparse) can be addressed based on the application of
the second-order Goertzel algorithm [23] modified to
accept the input elements in a reverse order.

1.3 Novel contributions
The main contribution of this paper consists in the de-
velopment of a new alternative method for efficient
computing of a composite length DFT, when the input
sequence and/or the required output sequence are
smaller than the length of the full transform. Our pro-
posal guarantees the same or smaller number of arith-
metic operations in comparison with the competing
methods in the literature. Moreover, it manifests robust-
ness against sparsity/non-sparsity restrictions and the
variability of the operating parameters as detailed in
Sections 3 and 4.
The innovative idea is to automatically commute

among three modalities to implement the DFT: the
direct method, the recursive method, and the pruned
decomposed transform. Thus, our new proposed com-
posite approach unifies the decomposition of the DFT
with its pruning. First, we develop an alternative

technique to compute the pruned decomposed trans-
form, in which the DIT is performed at the first stage
followed by the DIF. We address this method as
DFTDIT−DIF−Pr. An analysis of the two alternatives
(DFTDIT−DIF−Pr and DFTDIF−DIT−Pr) verifies that the
DFTDIT−DIF−Pr requires a smaller or as maximum equal
number of arithmetic operations compared with the
DFTDIF−DIT−Pr, so the use of the DFTDIT−DIF−Pr is
strongly recommended when the decomposed and
pruned transforms are required. Next, we demonstrate
that our proposal requires a lower number of arith-
metic operations than any of the pruning-based com-
peting methods [3, 14, 23, 24]. Further, we demonstrate
that both decomposed transforms (DFTDIF−DIT−Pr and
DFTDIT−DIF−Pr) can be obtained from a general decom-
position methodology. Also, it manifests the robustness
in sparse and non-sparse sensing scenarios (i.e., oper-
ability for an arbitrary number of consecutive input ele-
ments (Li), the number of consecutive outputs that
should be computed (Lo), and the length of the full
transform (N)) in contrast to the recently developed
most prominent SFFT family-related methods [20, 21]
operable in sparse scenarios only.
It is noteworthy to mention that in the majority of

practical computational scenarios, significant savings in
the number of arithmetic operations with the proposed
technique are achieved, e.g., in Section 4.1, the
DFTCOMM technique compared with split-radix FFT
(SRFFT) algorithm produces savings of 42 to 92 %.
The rest of the paper is organized as follows: in Sec-

tion 2, the general decomposition transform methodology
is described and explained. An analysis of all feasible
transform decomposition methods is presented next in
Section 3 followed by the combinational hypotheses test-
ing optimization-based selection of the best decompos-
ition transform permutation modality that yields the
unified commutation-pruning DFTCOMM technique. In
Section 4, comparisons among the developed unified
commutation-pruning technique and other competing al-
gorithms in the sense of savings in the number of required
arithmetic operations are presented and featured. Also,
the proposed DFTCOMM method is compared in detail
with the most prominent competing SFFT-related algo-
rithms in the context of computing the DFTs in both
sparse and non-sparse (harsh) sensing scenarios for differ-
ent values of the operational parameters (Li, Lo, and N).
Concluding remarks in Section 5 summarize the study.
The Appendix provides a pseudo-code for implementing
the proposed method.

2 DFT transform decomposition
The definition of the DFT of a sequence of length N
(DFTN) is given by
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X kð Þ ¼
XN−1

n¼0

x nð ÞWnk
N for k ¼ 0; 1; 2;…;N−1 ð1Þ

where Wnk
N ¼ e−j2πnk=N is the kernel of the transform.

Let us define Li as the number of consecutive input ele-
ments different from zero and Lo as the number of con-
secutive outputs that should be computed. If N is a
composite number formed by multiplications of many
integer factors, the DFTN can be decomposed into
smaller DFTs. In particular, the DFTN can be decom-
posed into three stages of DFTs (an input stage, an inter-
mediate stage, and an output stage) in order to avoid the
arithmetic operations involving zeros, multiplications by
one, and the operations not required to compute the
final outputs. Here beneath, we briefly describe such
feasible decompositions. Assuming that there are two in-
teger factors, Dip and Dop, of N such that N/DipDop ≡ P
is an integer, the indexes n and k can be re-expressed as

n ¼ n1 þ Dopn2 þ N
Dip

� �
n3

for

( n1 ¼ 0; 1; 2;…;Dop−1
n2 ¼ 0; 1; 2;…;N=DipDop−1

n3 ¼ 0; 1; 2;…;Dip−1

ð2Þ

k ¼ k1 þ Dipk2 þ N
Dop

� �
k3

for
( k1 ¼ 0; 1; 2;…;Dip−1
k2 ¼ 0; 1; 2;…; N=DipDop−1
k3 ¼ 0; 1; 2;…;Dop−1:

ð3Þ

Substituting n and k in (1) by (2), (3), the original
DFTN is decomposed into

X k1 þ Dipk2 þ N
Dop

k3

� �

¼
XDop−1

n1¼0

XP−1
n2¼0

XDip−1

n3¼0

x n1 þ Dopn2 þ N
Dip

n3

� �

�W
n1þDopn2þ N=Dipð Þn3ð Þ k1þDipk2þ N=Dopð Þk3ð Þ

N :

ð4Þ

Here, it is assumed that Dip and Dop are chosen in
such a way that N/Dip ≥ Li and N/Dop ≈ Lo. Thus, index
n3 is always equal to zero; k3 is near 0, hence (4) can be
next rewritten as follows

X k1 þ Dipk2 þ N
Dop

k3

� �

¼
XDop−1

n1¼0

XP−1
n2¼0

x n1 þ Dopn2
� �

W
n1þDopn2ð Þ k1þDipk2þ N=Dopð Þk3ð Þ

N

¼
XDop−1

n1¼0

XP−1
n2¼0

x n1 þ Dopn2
� �

W
n1k1þDopn2k1þDipn1k2þDipDopn2k2þn1k3N=Dopþn2k3Nð Þ

N
:

ð5Þ
The computation of (5) is more efficient than the direct

computation of the DFTN since the complex arithmetic
operations dependent on n3 have been pruned. The com-
plex exponential in (5) can next be grouped in different
ways, resulting in different structures for the pruned
decomposed transform. The methodology of [24] suggests
expressing the pruned decomposed transform as

X k1 þ Dipk2 þ N
Dop

k3

� �

¼
XDop−1

n1¼0

(XP−1
n2¼0

"
W

n1þDopn2ð Þk1ð Þ
N x n1 þ Dopn2

� �
�Wn2k2

N=DipDop
�gW n1 Dipk2þk3N=Dopð Þð Þ

N :

ð6Þ
The pruned decomposed transform of (6) can be inter-

preted as follows: first, apply DIF to the DFTN with Dip as
a decomposition factor, then, DIT to the resulting DFTs
with Dop as a decomposition factor and, finally, perform
the pruning. In [24], the pruned decomposed transform of
(6) was addressed as an FFTDIF−DIT−TD modality, that in
our notations, we refer to as DFTDIF−DIT−Pr. A computa-
tional diagram of such technique (6) is presented in Fig. 1.
An alternative grouping of the complex exponentials

in (5) yields

X k1 þ Dipk2 þ N
Dop

k3

� �

¼
XDop−1

n1¼0

XP−1
n2¼0

W
Dopn2k1ð Þ

N x n1 þ Dopn2
� �

Wn2k2
P

� �( )

�W
n1 k1þDipk2þk3N=Dopð Þð Þ

N

¼
XDop−1

n1¼0

XP−1
n2¼0

y n1; n2; k1ð ÞWn2k2
P

h i( )

�W
n1 k1þDipk2þk3N=Dopð Þð Þ

N :

ð7Þ
The computing of the pruned decomposed transform

(7) requires, first, application of DIT to the DFTN with
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Dop as a decomposition factor and, then, application of
DIF to the resulting DFTs with Dip as a decomposition
factor.
Hence, we refer to the pruned decomposed transform

of (7) as a DFTDIT−DIF−Pr modality. A computational dia-
gram of such the technique (7) is presented in Fig. 2.
The DFTDIT−DIF−Pr involves three processing stages: an

input stage (computation of y(n1, n2, k1)), an intermedi-
ate stage (computation of DipDop DFTs of length P), and
an output stage (computation of the complex multiplica-
tions and additions dependent on index n1).

3 Proposed method
Our method employs three different alternatives to com-
pute the DFTN: a direct method, a recursive method, and/
or a pruned decomposed transform. Admissible permuta-
tions/allocations of all feasible decomposition-pruning
modalities compose all possible hypotheses regarding the
feasible alternative schemes for computing the composite
DFTs.
All feasible commuting-pruning implementation struc-

tures are listed in Table 1. Those could be addressed as
possible search “hypotheses” to be tested. Thus, the

Fig. 1 General computational diagram of the DFTDIF−DIT−Pr (referred as FFTDIF−DIT−TD in [24, Fig. 1])
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problem of selection of an optimal computing-pruning
implementation structure can be recast as a hypotheses
testing task. All feasible hypotheses relate to formal im-
plementation structures specified in Table 1. Four of
them prescribe cascade computational implementation
involving cascade combinations of structures (hypoth-
eses H4,…, H7), while four others (hypotheses H9,…,
H12) prescribe combinational unions of the previous hy-
potheses. It is important to remark that (1), (6), and (7)
are the mathematical definitions of H8, H4, and H5, re-
spectively. Hence, the decision-making process that is a
selection from those feasible operational prescriptions
cannot be formalized as an optimization strategy for
minimization of some cost function subject to relevant re-
strictions/constraints specified in a closed analytical form.
Thus, due to the composite combinations (hypotheses

over hypotheses with cascade interlaces, as in the cases of
hypotheses H9,…, H12), the proper selection of the prefer-
able implementation structure cannot be cast as an analyt-
ically tractable closed-form optimization problem. Hence,
it should be treated as a test of combinations of hypoth-
eses (hypotheses over hypotheses, as in the case of H9,…,
H12), sometimes referred to as a combinational (or
combinatorial-type) hypothesis testing problem [23, 24].
The global optimal solution to such a kind of problems
presumes test of all feasible hypotheses in the list, making
the decision in favor of the best one (in the prescribed
quality measure), and rejection of all other competing hy-
potheses [23, 24]. In our particular case, only 12 hypoth-
eses are admissible/feasible; thus the (global) optimal
selection of the best possible implementation structure
can be found simply via employing the so-called brute

Fig. 2 General computational diagram of the DFTDIT-DIF-Pr
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force search over complete hypotheses list specified in
Table 1.
Sorensen et al. [23] sketched how to prune the input

and output of DFTs using independent allocations listed
in Table 1 as H1, H2, and H3 and featured in Fig. 3a.
However, the authors of [23] concluded that their prun-
ing method is less efficient than other pruning methods
in the cases when both the number of input and output
elements are bounded. They recommended turning to
the method proposed by Sreenivas et al., in [17], i.e., to
prune the input and output of a power of two length
FFTs. Furthermore, an efficient input-output pruning
method for a power of two length FFTs was proposed by
Roche in [18].
Later, a more efficient input-output pruning method

for composite length DFTs was developed in [24]. Such
commuting between H4 ∪H6 leads to hypothesis H9 as
featured in Fig. 3a. In [24], such a technique was con-
structed as a modification of the transform decompos-
ition proposed originally by Sorensen et al., in [23], but
with extra capability to perform the input-output prun-
ing at the same time. Additionally, the computation of
each final output employs a commutation between a
direct method and the 2BF filtering algorithm, i.e., the
2BF-filtering algorithm is an efficient method for com-
puting a subset of final outputs from their decompos-
ition transform [23, 24].
In our study, two additional feasible hypotheses are

devised to perform unified commutation-pruning tech-
niques for efficient computations of composite length
DFTs (hypotheses H11 and H12) as reported in Fig. 3b.
Therefore, our proposal relates to an adaptive commut-
ing between feasible implementation structures specified
by the union of hypotheses H10 ∪H3 ∪H8 that is in-
cluded in Table 1 as an alternative composite hypothesis

H12. A comparison of computational complexities related
to implementation of the competing computational struc-
tures formalized by hypotheses H9 and H10 (in the num-
ber of required arithmetical operations) is reported in
Table 2. Also, the relevant comparisons between two other
feasible structures specified by hypotheses H11 and H12

(referred here as DFTCOMM−DIF−DIT−Pr and DFTCOMM−DIT−

DIF−Pr, respectively), are reported in Tables 2 and 3 and
Figs. 5a–f (in the sense of the number of required arith-
metic operations).
The selection of proper permutation/allocation struc-

ture directly relates to the considered above problem of
selection of an optimal commutation-pruning implemen-
tation structure casted and treated as a combinational

hypotheses testing task. All feasible hypotheses fHhg12h¼1

relate to formal implementation structures specified in
Table 1. Now, we are ready to find the best permutation/
allocation structure in the sense of the imposed quality
measure (in our case in the sense of the lowest possible
number of required arithmetical operations).

3.1 Analysis of the hypotheses
Let us analyze, first, the pruned decomposed transform
and deduce whether the direct or recursive method
would be preferable. The total number of arithmetic op-
erations (OPERtot) required by the DFTDIF−DIT−Pr and
the DFTDIT−DIF−Pr depends on the number of operations
needed to be performed to implement the input stage
(OPERinput), the output stage (OPERoutput), and the
intermediate stage (DipDopOPERDFTP), correspondingly.
Thus, one could express OPERtot of both pruned
decomposed transforms as

OPERtot ¼ OPERinput þ DipDopOPERDFTP þOPERoutput:

ð8Þ
According to (8), OPERtot depends on Li, Lo, N, Dip,

Dop, and the algorithm employed to implement the Dip-

Dop DFTP blocks (OPERDFTP).
At the input and output stages, there are multiplica-

tions by one, so those multiplications are avoided at all
in our approach. Also, the multiplications by one at the
input stage are also avoided depending on whether
DFTDIF−DIT−Pr or DFTDIT−DIF−Pr was executed in the
particular employed pruned decomposed transform
modality.
If the DFTDIF−DIT−Pr modality is employed (see the

general diagram in Fig. 1), then:

� At the input stage, the multiplications by one are
excluded when n1 = n2 = 0 and k1 = 0.

� Furthermore, the multiplications by one at the
output stage are also avoided when n1 = 0 or k2 = 0.

Table 1 Complete list of hypotheses fHhg12h¼1 regarding feasible
commuting-pruning implementation structures

Hypotheses Specifications

H1 : y = Ax x = input

H2 : y = Bx y = output

H3 : y = Fx A = DIF

H4 : y = ABx B = DIT

H5 : y = BAx F = 2BF filtering

H6 : y = ABFx D = DFTN

H7 : y = BAFx

H8 : y = Dx

H9 : H4 ∪ H6

H10 : H5 ∪ H7

H11 : H9 ∪ H3 ∪ H8

H12 : H10 ∪ H3 ∪ H8
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Fig. 3 Possible feasible alternative schemes for efficient computation of composite DFTs when the input and/or output sequences are smaller
than the length of the full transform. a State of the art. b New feasible implementation structures. Specifications of the blocks labeled as A, B, F,
and D are listed in Table 1
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Therefore, the DFTDIF−DIT−Pr modality always requires
fewer complex multiplications to compute the output
stage than the DFTDIT-DIF-Pr modality (this is reported in
Tables 2 and 3).
On the other hand, if the DFTDIT-DIF-Pr modality is

used (see Fig. 2), then:

� At the input stage, the multiplications by one are
excluded when n2 = 0 or k1 = 0.

� Also, at the output stage, the multiplications by one
are avoided when k1 = k2 = 0 or n1 = 0.

Therefore, the DFTDIT-DIF-Pr modality always requires
fewer complex multiplications at the input stage than
the DFTDIF−DIT−Pr modality (as it is corroborated in the
analysis reported in Tables 2 and 3).
The output stage of both pruned decomposed trans-

form modalities can be computed by the direct addition
of complex multiplications or a kind of recursive algo-
rithm as those proposed in [23] (referred to as the 2BF
filtering method), which reduces the number of required
multiplications by about half. The number of arithmetic
multiplications required by the output stage of the
DFTDIF−DIT−Pr algorithm is equal to 4 (Lo −Dip) (Dop − 1)
when (Lo >Dip) and (Dop < 4). Next, the number of arith-
metic multiplications is equal to (Lo −Dip) (2Dop + 2)
when (Lo >Dip) and (Dop ≥ 4). Thus, the 2BF filtering al-
gorithm can be effectively used to compute the output
stage.
On the other hand, the number of arithmetic multi-

plications required to compute the output stage of the
DFTDIT-DIF-Pr algorithm is equal to 4(Lo − 1) (Dop − 1)
when (Dop < 4); and the number of arithmetic

multiplications is equal to (Lo − 1) (2Dop + 2) when
(Dop ≥ 4). Thus, the 2BF filtering algorithm can also be
effectively employed to compute the output stage.
In [23], it was proven that the 2BF filtering method is

more efficient than the direct addition of complex multi-
plications when the number of input elements is larger
than 4 (when the number of input elements is equal to
4, both methods manifest the same operational complex-
ity performances). The output stages of both pruned
decomposed transforms have the same structures, so
same sort of commutations is required to efficiently
compute the output stage of the DFTDIT−DIF−Pr. The ex-
pressions for OPERinput and OPERouput for the DFTDIF−

DIT−Pr and the DFTDIT−DIF−Pr are listed in Table 2, where
it is implicitly assumed that each complex multiplication
requires six arithmetic operations (four real multipli-
cations and two real additions), and each complex
addition requires two arithmetic operations (two real
additions).
The performances of the pruned decomposed trans-

forms depend on the decomposition factors, Dip and
Dop. A simple analysis can be carried out to deduce
which decomposition factors are preferable to be used.
Our unified commutation-pruning method performs the
decomposition of the DFTN into three stages of smaller
dimension DFTs and pruning part of those inputs that
are equal to zero and/or part of those outputs that are
not needed to compute the final Fourier coefficients.
Thus, the decomposed transform algorithm always se-

lects a pair (Dip, Dop) for which the largest DFTs could
be successfully pruned, or equivalently, a pair (Dip, Dop)
for which the intermediate stage results in the smallest
dimension DFTs.

Table 2 Total number of arithmetic operations required to compute the input and output stages of DFTDIF−DIT−Pr and DFTDIT−DIF−Pr
Pruned decomposed transform Corresponding term in (8) Number of required real arithmetic operations Limiting constraints

DFTDIF−DIT−Pr OPERinput 6 (Li − 1) (Dip − 1) –

OPERoutput 2Lo (Dop − 1) (Lo ≤ Dip)

2Lo (Dop − 1) + 6 (Lo − Dip) (Dop − 1) (Lo > Dip) & (Dop < 4)

(Lo − Dip) (2Dop + 2) + 2Dip (Dop − 1) + (Lo − Dip) (4Dop − 2)a (Lo > Dip) & (Dop ≥ 4)

DFTDIT−DIF−Pr OPERinput 0 (Li ≤ Dop)

6 (Li − Dop) (Dip − 1) (Li > Dop)

OPERoutput 6 (Lo − 1) (Dop − 1) + 2Lo (Dop − 1) (Dop < 4)

(Lo − 1) (2Dop + 2) + 2 (Dop − 1) + (Lo − 1) (4Dop − 2)a (Dop≥ 4)
aNumber of required operations when the 2BF filtering method is employed [23, 24]

Table 3 Total number of arithmetic operations required to compute the input and output stages of DFTCOMM−DIF−DIT−Pr and
DFTCOMM−DIT−DIF−Pr modalities

Method to compute the DFTN Number of arithmetic operations Limiting conditions

Direct method 6 (Lo − 1) (Li − 1) + 2Lo (Li − 1) ((Li ≤ Dop )|(Lo≤ Dip )) & (Li < 4)

2BF filtering method (Lo − 1) (2Li + 2) + 2 (Li − 1) + (Lo − 1) (4Li − 2) ((Li ≤ Dop )|(Lo≤ Dip )) & (Li ≥ 4)

Pruned decomposed transform OPERtot of (8) using Table 2 (Li > Dop ) & (Lo > Dip )
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The DFTs of the intermediate stage have a size of N/
DipDop ≡ P, so Dip and Dop should be chosen as large as
possible. Furthermore, the values for the decomposition
factors should satisfy the bound N/Dip ≥ Li (where, N/Dip

must be close to but higher than Li) and N/Dop ≈ Lo, as it
was considered in the derivation of (5). Hence, the pair
of decomposition factors (Dip, Dop) closest to (N/Li, N/
Lo) that satisfy Dip ≤N/Li are used by the decomposed
transform algorithm, according to the proximity evalu-
ated by its Euclidean distance.
Let us now consider the cases when the number of in-

put elements (Li) or the number of the required Fourier
coefficients (Lo) is too small. In these cases, for the both
modalities, the general diagrams presented in Figs. 2 and
1 clarify the following features of the DFTDIT−DIF−Pr and
the DFTDIF−DIT−Pr algorithms, respectively.

� If Li ≤Dop, at most one input of each DFTP (i.e., the
first one) in the intermediate stage would be applied;
therefore, their P outputs would be replicas of that
single input.

� For Lo ≤Dip, only the first output of each DFTP (this
corresponds to a simple addition of the input
elements) is required to compute the final Fourier
coefficients.

Thus, inefficient implementations of the DFTPs yield
the inequality-type constraints Li ≤Dop or Lo ≤Dip. In
these cases, our method commutes to efficiently perform
the direct computation of the DFTN or an efficient re-
cursive alternative (via performing the 2BF filtering
technique).
Sorensen et al., in [23], proposed a method to compute

a subset of the output components of their proposed
specific DFT decomposition; this algorithm was referred
to as a 2BF filtering method. The 2BF filtering method
[23] was derived as a modification of the previously ad-
dressed Goertzel algorithm [25]. The 2BF filtering
method takes advantages of the periodicity and the
shifted cyclic convolution shape between the input se-
quence and the Wnk

N ¼ e−j 2π=Nð Þkn factor.
The transfer function H(z) of a system that performs

the 2BF filtering method is given by the equation

H zð Þ ¼ z−1 1−z−1W −k
N

� �
1−2 cos 2πk

N

� �
z−1 þ z−2

ð9Þ

The corresponding algorithmic diagram of the second-
order 2BF method is presented in Fig. 4. Thus, (9) is the
mathematical definition of H3.
The poles of the system transfer function (the roots of

the polynomial in the denominator of H(z)) have to be
evaluated L times (n = 0, 1, 2,…, L − 1), while the zeros
of the system transfer function (the roots of the

numerator of H(z)) only once. Here, L represents the
number of consecutive non-zero input elements of the
2BF filter; i.e., in the opposite case, it represents the
number of consecutive non-zero output components of
the employed pruned decomposed transform modality
(DFTDIF−DIT−Pr or DFTDIT−DIF−Pr).
The computation of each pole of (9) requires two

arithmetic multiplications (two real multiplications) and
two arithmetic additions (two real additions). Further-
more, the computation of the zeros of (9) requires four
arithmetic multiplications and four arithmetic additions
only.
The Q1 node in Fig. 4 is initialized with f(L − 1); there-

fore, the computation starts from n = L − 2. When n = 0,
the complex addition of the input is only required; then,
the zero is computed after such a delay. Such computa-
tional organization saves two arithmetic multiplications
and six arithmetic additions for finding of each required
output component.
The 2BF filtering method employed to compute the

output components required by the pruned decomposed
transform performed by the DFTCOMM−DIF−DIT−Pr or the
DFTCOMM−DIT−DIF−Pr algorithm can be featured as the
following multistage procedure:

� The structure of the DFTDIF−DIT−Pr contains Dip sets
of Dop DFTPs from which the final outputs are
computed (see the general diagram in Fig. 1).

� The DFTCOMM−DIF−DIT−Pr algorithm employs the 2BF
filtering method to implement the output stage of
DFTDIF−DIT−Pr with L = Lo, if ( (Li >Dop) & (Lo >Dip) )
& ( (Lo >Dip)&(Dop ≥ 4) ) (as featured in Tables 2 and
3). Here, the required arithmetic operations are
specified as follows: the number of arithmetic
multiplications are equal to NumArithMult2BF =
(Lo −Dip)(2Dop + 2) and the number of arithmetic
additions are equal to NumArithAdd2BF = 2 Dip

(Dop − 1) + (Lo −Dip)(4Dop − 2).
� Furthermore, the DFTCOMM−DIF−DIT−Pr algorithm

employs the 2BF filtering method exclusively with

Fig. 4 Algorithmic diagram of the second order 2BF filtering method
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L = Li, if ( (Li ≤Dop) | (Lo ≤Dip) ) & (Li ≥ 4) (as
featured in Table 3) to compute the required Fourier
coefficients. Here, the required arithmetic operations
are specified as follows: NumArithMult2BF = (Lo −
1)(2Li + 2) and NumArithAdd2BF = 2(Li − 1) + (Lo −
1)(4Li − 2).

In contrast, the DFTCOMM-DIT-DIF-Pr algorithm differs
from the abovementioned in the following features:

� The structure of the DFTDIT-DIF-Pr contains Dop sets
of Dip DFTPs from which the final outputs are
computed (as featured in Fig. 2).

� The DFTCOMM-DIT-DIF-Pr algorithm employs the 2BF
filtering method to implement the output stage of
DFTDIT-DIF-Pr with L = Lo, if ( (Li >Dop) & (Lo >Dip) )
& (Dop ≥ 4), (as featured in Tables 2 and 3). Here,
the required arithmetic operations are specified as
follows: NumArithMult2BF = (Lo − 1)(2Dop + 2), and
NumArithAdd2BF = 2 (Dop − 1) + (Lo − 1)(4Dop − 2).

� On the other hand, the DFTCOMM-DIT-DIF-Pr

algorithm employs the 2BF filtering method
exclusively with L = Li, if ( (Li ≤Dop) | (Lo ≤Dip) ) &
(Li ≥ 4) (as reported in Table 3) to compute the
required Fourier coefficients. Here, the required
arithmetic operations are specified as follows:
NumArithMult2BF = (Lo − 1)(2Li + 2) and
NumArithAdd2BF = 2(Li − 1) + (Lo − 1)(4Li − 2).

The computation of each input and/or output element
in both cases detailed above is executed according to the
diagram presented in Fig. 4. In closing, we note that the
pseudo-code presented in the Appendix (see Fig. 9) con-
tains all scripts needed to compute each Fourier coeffi-
cient employing the 2BF filtering method.
Note once again that the 2BF filtering method has to

be employed if Li is larger or equal to 4, in which case, it
manifests a higher efficiency than the direct method for
computing the DFTN in (1). The total number of arith-
metic operations required by our proposed method is re-
ported in Table 3.

3.2 Selection of the permutation/allocation structure
In Fig. 5, the total number of required arithmetic opera-
tions to compute the DFTDIF−DIT−Pr from [24] (H9),
DFTCOMM−DIF−DIT−Pr (H11), and DFTCOMM−DIT−DIF−Pr

(H12) modalities are plotted for different values of Li and
Lo for the test examples with N = 8192 and N = 6561 (It
is assumed that the DFTPs are implemented employing
the split-radix algorithm from [26] for N = 8192 and
employing the radix-3 algorithm from [27] for N =
6561.) All the competing alternatives corresponding to
three feasible arrangements (H9, H11, and H12) in the
considered permutation/allocation structure are featured

in Fig. 5. The DFTDIF−DIT−Pr or the DFTDIT−DIF−Pr could
be used to implement the pruned decomposed trans-
form in the DFTCOMM−DIF−DIT−Pr and DFTCOMM−DIT−

DIF−Pr techniques. Here, the Dip and Dop values are the
pair specified by the rough selection method (the prox-
imity evaluated by its Euclidean distance is referred as
roughDP) and those obtained by an exhaustive search
method (the total numbers of operations required to im-
plement the DFTDIF−DIT−Pr and the DFTDIT−DIF−Pr were
evaluated for each possible pair of (Dip, Dop), and, then,
the pair (Dip, Dop) with the best performance metric is
selected; this selection method is referred as exhDP).
Fig. 5a–f demonstrate that two commutation-pruning
techniques (related to hypotheses H11 and H12) require
the same or smaller number of arithmetic operations
than that specified by hypothesis H9. Next, it is neces-
sary to make a choice between H11 and H12.
Graphs in Fig. 5 indicate that the number of opera-

tions required to perform our commutation-pruning
technique (DFTCOMM−DIF−DIT−Pr and DFTCOMM−DIT−

DIF−Pr) with the selected decomposition factors using
the roughDP method are equal to or slighty greater
than those, in which the decomposition factors are
specified employing exhDP. The differences corres-
pond to the regions where the commutation condi-
tions prescribe performing the pruned decomposed
transform instead of the 2BF filtering method.
The DFTDIT−DIF−Pr modality requires the same or a

smaller number of arithmetic operations than the com-
peting DFTDIF−DIT−Pr for all the cases where the pruned
decomposed transform is performed (as it follows from
the data reported in Fig. 5). Since the same decompos-
ition factors (Dip, Dop) are used in both pruned decom-
posed transforms, it is sufficient to compare the number
of required operations by their input and output stages
(OPERinput + OPERoutput) reported in Table 2 to distin-
guish which one is the most efficient. The comparison
for the cases Li ≤Dop and Lo ≤Dip is not needed since in
such scenarios, a direct or recursive method is employed
instead of a pruned decomposed transform. For scenar-
ios with Dop < 4, both pruned decomposed transforms
require the same number of arithmetic operations for
their execution. Otherwise, for Dop ≥ 4, the execution of
DFTDIF−DIT−Pr requires 2DipDop − 8Dip − 2Dop + 8 more
arithmetic operations than DFTDIT−DIF−Pr demonstrating
that the latter manifests always the same or a better per-
formance. Thus, from the combinational permutation
analysis, it follows that it is always desirable to perform
the DFTDIT−DIF−Pr when a pruned decomposed trans-
form would be required. In the following section, an
efficient implementation of that proposed unified
commutation-pruning technique is detailed considering
that the pruned decomposed transform is implemented
using the DFTDIT−DIF−Pr. In summary, we now resume
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Fig. 5 Number of arithmetic operations required to compute the DFTDIF-DIT_Pr, the DFTCOMM−DIF−DIT−Pr, and the DFTCOMM−DIT−DIF−Pr: a for a constant
value of Li and different tested values of Lo = {1, 2,…, N} when N = 8192; b for a constant value of Lo and different tested values of Li = {1, 2,…, N} when
N = 6561; c for a constant value of Lo and different tested values of Li = {1, 2,…, N} when N = 8192; d for a constant value of Li and different tested
values of Lo = {1, 2,…, N} when N = 6561; e zoom of Fig. 5a; and f zoom of Fig. 5c
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that the performed combinational hypothesis testing-
based optimal selection of the preferable computational
structure of the decomposed DFTs made the decision in
favor of hypothesis H12; this yields the proposed
DFTCOMM−DIT−DIF−Pr method (referred further on for
simplicity as DFTCOMM) with the highest possible com-
putational efficiency. Being the optimal decision of the
performed “brute force search” based testing of all feas-
ible hypotheses, this method is guaranteed to be globally
optimal one and thus is strongly recommended for per-
forming the required commuting between three tech-
niques to implement the overall composite DFT in the
following arrangement mode: the direct method, the re-
cursive method, and the pruned decomposed transform
implemented via DFTDIT−DIF−Pr.

4 Comparison with other competing algorithms
A variety of competing methods for pruning the DFTs in
arbitrary (non-sparse) computational scenarios have
been addressed in the literature (see [1, 3, 13–19, 23,
24]). In [24], the FFTDIF−DIT−TD modality (that we here
refer to as DFTDIF−DIT−Pr) was proposed as an alterna-
tive technique for pruning the input and/or the output
of DFTs. That method [24] was compared with other
pruning techniques reported in the literature until 2009.
Comparisons of the methods proposed by Bouguezel
et al. [15], Fan et al. [16], Sreenivas et al. [17], Roche
[18], and the DFTDIF−DIT−Pr reported in [24] demon-
strated that the DFTDIF−DIT−Pr modality requires fewer
arithmetic operations than those of [15–17], while
attaining the operational performances similar to that of
[18]. Additionally, in Section 3, it was corroborated that
our proposed DFTCOMM technique requires equal or less

arithmetic operations than [24]. Here beneath, we com-
pare our approach with the recently reported most
prominent competing pruning methods.

4.1 Comparisons with pruning-based algorithms
The first competing algorithm for pruning the output of
a SRFFT was reported in [3]. That so-called SRFFTprun-

ing algorithm was developed for an implicit restriction
that only a few consecutive output components (a num-
ber L equal to a power of two) are required. Fig. 6 re-
ports the number of arithmetic operations required to
perform SRFFTpruning in comparison with our unified
DFTCOMM method for multiple output pruning exam-
ples using the decomposition factors (Dip, Dop) evaluated
via the roughDP method and those specified by the
exhDP method, respectively.
In both cases, it is considered that the DFTs of length

P required by the intermediate stage of the pruned
decomposed transform have been implemented by ap-
plying the split-radix FFT, e.g., [26]. Therefore, the total
number of arithmetic operations required by our pro-
posed DFTCOMM method in comparison with the com-
peting pruning-based algorithms can be found in
Table 4. The savings in the number of arithmetic opera-
tions attained with the new developed DFTCOMM tech-
nique are reported in Tables 5 and 6.
From Fig. 6, one can deduce that our proposed

DFTCOMM method requires fewer arithmetic operations
than the competing SRFFTpruning method in almost all
the test cases (with the only one exception for the case
Lo =N/2 and Lo =N/4). Next, Tables 5 and 6 report the
savings in the number of arithmetic operations attained
with our DFTCOMM in comparison with the competing

Fig. 6 Number of arithmetic operations required to perform the DFTCOMM, SRFFT(noprun), and the SRFFTpruning algorithms; parameters Dip and
Dop are selected using roughDP and exhDP methods for a constant value of Li, and different tested values of Lo = {21, 22,…, N}: a for N = 262,144
and Li = {33, 1027, 262,144}; b for N = 1024 and Li = {13, 90, 1024}
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SRFFT and the SRFFTpruning techniques. In the scenarios
with Lo =N and Li = {21, 22,…, N}, the DFTCOMM algo-
rithm manifests 2.96 and 2.73 % savings in the number
of arithmetic operations in comparison with the
SRFFTpruning for N = {262,144, 1024}, respectively.
In other cases, from Table 5, it follows that in the

scenarios with Li = 1027, Li = 33, and Lo = {21, 22,…, N},
the SRFFTpruning method fails to deliver a result at all.
Thus, from Table 5, it follows that in the cases when
Li =N = 262,144, Li = 1027, Li = 33, and Lo = {21, 22,…,
N}, the DFTCOMM algorithm produces savings of
42.76, 75.02, and 91.35 %, respectively, in the number
of arithmetic operations required to compute the
composite length DFT in comparison with the com-
peting SRFFT algorithm. Furthermore, from Table 6,
it follows that in the scenarios with Li = 90, Li = 13,
and Lo = {21, 22,…, N}, the SRFFTpruning method fails
to deliver a result at all. Thus, from Table 6, it follows
that in the cases when Li =N = 1024, Li = 90, Li = 13, and
Lo = {21, 22,…, N}, the DFTCOMM algorithm produces sav-
ings of 36.48, 59.30, and 81.65 %, respectively, in the

number of arithmetic operations required to compute
the composite length DFT in comparison with the com-
peting SRFFT algorithm.
Yuan et al., in [14], proposed another competing, the

so-called SRFFTpruning−time−shift method via modifying
the SRFFTpruning employing a time shifting approach
that yields the input pruning algorithm based on the
SRFFT methodology for L consecutive non-zero input
elements. It is noteworthy to stress that the SRFFTpruning−

time−shift approach implicitly assumes that lengths L and N
may take values equal to the power of two only.
Figure 7 reports the number of required arithmetic op-

erations to execute our proposed unified DFTCOMM

method and those required by the competing pruned
DFTs of [14]. These results verify that our approach re-
quires fewer arithmetic operations than those required
to perform the SRFFTpruning−time−shift algorithm in all the
reported tests. Again, it is implicitly assumed that the
DFTs of length P involved in the DFTDIT−DIF−Pr used by
our DFTCOMM have been computed using the split-radix
FFT [26], as reported in Table 4.

Table 4 Total number of arithmetic operations required to compute the SRFFTpruning, SRFFTpruning-time-shift, and DFTCOMM algorithms

Algorithm Number of required real arithmetic operations Conditions

SRFFTpruning
6

Xd
k¼1

NB kð ÞNW kð Þ
� 	þ 1

2 NB dþ1ð ÞNW dþ1ð Þ
� �( )

þ 2 N⋅d þ
Xr− dþ1ð Þ

k¼0

L2k
� 	( )

–

SRFFTpruning-time-shift

6
Xr−d
k¼1

NB kð Þ2L
� 	þ Xr−1

k¼r−dþ1

NB kð Þ NW kð Þ þ 2
� 	
 �( )

þ 2 N d−1ð Þ þ Nf g –

DFTCOMM

6(Lo − 1)(Li − 1) + 2Lo(Li − 1)
{(Li ≤ Dop)|(Lo ≤ Dip)} & (Li < 4)

(Lo − 1)(2Li + 2) + 2(Li − 1) + (Lo − 1)(4Li − 2) {(Li ≤ Dop)|(Lo ≤ Dip)} & (Li ≥ 4)

6(Li − Dop)(Dip − 1) + DipDop(4P log2(P) − 6P + 8) + 6(Lo − 1)(Dop − 1) + 2Lo(Dop − 1) {(Li > Dop) & (Lo > Dip)} & (Dop < 4)

6(Li − Dop)(Dip − 1) + DipDop(4P log2(P) − 6P + 8) + (Lo − 1)(2Dop + 2) + 2(Dop − 1) + {(Li > Dop) & (Lo > Dip)} & (Dop ≥ 4)

Where:
• N→ Length of the full transform
• r = log2(N)→ Number of stages
• L = 2d→ Number of consecutive outputs that should be computed for SRFFTpruning algorithm or number of consecutive non-zero inputs for
SRFFTpruning-time-shift algorithm
• k→ Stage k
• NB kð Þ ¼ 2k−1þ −1ð Þk

3 →k ¼ 1; 2;…; r→ Number of twiddle factor blocks
• NW(k) = 2(2r − k − 1)→ k = 1, 2,…, r→ Number of twiddle factors for each block
• Li→ Number of consecutive input elements different from zero
• Lo→ Number of consecutive output that should be computed
• Dip and Dop→ Integer decomposition factors
• N/DipDop ≡ P

Table 5 Savings in the number of arithmetic operations attained with the DFTCOMM algorithm in comparison with the competing
SRFFT (noprun) and SRFFTpruning methods for N = 262,144

DFTCOMM in comparison with: Lo Li Savings

SRFFT(noprun) {21,22,…, N} N = 218 DFTCOMM, 42.76 % with output pruning

SRFFTpruning DFTCOMM, 2.96 % with output pruning

SRFFT(noprun) 1027 DFTCOMM, 75.02 % with input-output pruning at the same time

SRFFTpruning SRFFTpruning fails to deliver a result

SRFFT(noprun) 33 DFTCOMM, 91.35 % with input-output pruning at the same time

SRFFTpruning SRFFTpruning fails to deliver a result
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Next, Tables 7 and 8 report the savings in the
number of arithmetic operations attained with our
DFTCOMM in comparison with the competing SRFFT
and the SRFFTpruning−time−shift techniques. In the scenarios
with Lo =N and Li = {21, 22,…, N}, the DFTCOMM algo-
rithm manifests 5.11 and 8.71 % savings in the num-
ber of arithmetic operations in comparison with the
SRFFTpruning−time−shift for N = {262,144, 1024}, respectively.
In other test cases, from Tables 7 and 8, it follows that

for Lo = {1027, 90}, Lo = {33, 13}, and Li = {21, 22,…, N},
the SRFFTpruning−time−shift algorithm fails to deliver a re-
sult at all. Furthermore, from Table 7, it follows that in
the scenarios with Lo = {N, 1027, 33} and Li = {21, 22,…,
N}, our DFTCOMM attains 43.26, 76.24, and 92.11 %
savings for N = 262,144, respectively, in the number of
arithmetic operations required to compute the compos-
ite length DFT. In addition, from Table 8, it follows that
in the scenarios with Lo = {N, 90, 13} and Li = {21, 22,…,
N}, our DFTCOMM attains 38.22, 59.22, and 82.45 % sav-
ings for N = 1024, respectively, in the number of arith-
metic operations required to compute the composite
length DFT.

Note that our DFTCOMM always requires fewer arith-
metic operations than the competing SRFFTpruning and
SRFFTpruning−time−shift algorithms due to the different
butterfly schemes employed to implement the split-radix
FFT algorithms [26] and the unified commutation-
pruning technique employed (see Section 3). The
SRFFTpruning and SRFFTpruning−time−shift algorithms
perform the two-butterfly scheme [26], while our
DFTDIT−DIF−Pr algorithm employs the three-butterfly
scheme to achieve a reduction in the number of
arithmetic operations required to implement the
DFTP blocks. Furthermore, graphs of Fig. 6 report
that the SRFFTpruning algorithm fail to deliver a re-
sult at all in the scenarios with L equal to N due to
their algorithmic construction as reported by the au-
thors of [3]. For this reason, this algorithm cannot
present a valid value for the last test of Lo (it is sim-
ply unable to stop to prune at all). In addition, Fig. 6
reports minimal differences between the numbers of
arithmetic operations attained by the DFTCOMM

evaluated using the roughDP- or exhDP-based selec-
tion for specifying Dip and Dop. In summary, the

Table 6 Savings in the number of arithmetic operations attained with the DFTCOMM algorithm in comparison with the competing
SRFFT (noprun) and SRFFTpruning methods for N = 1024

DFTCOMM in comparison with: Lo Li Savings

SRFFT(noprun) {21,22,…, N} N = 210 DFTCOMM, 36.48 % with output pruning

SRFFTpruning DFTCOMM, 2.73 % with output pruning

SRFFT(noprun) 90 DFTCOMM, 59.30 % with input-output pruning at the same time

SRFFTpruning SRFFTpruning fails to deliver a result

SRFFT(noprun) 13 DFTCOMM, 81.65 % with input-output pruning at the same time

SRFFTpruning SRFFTpruning fails to deliver a result

Fig. 7 Number of arithmetic operations required to perform the DFTCOMM, SRFFT(noprun), and the SRFFTpruning algorithms; parameters Dip and
Dop are selected using roughDP and exhDP methods for a constant value of Lo, and different tested values of Li = {21, 22, …, N}: a for N = 262,144
and Lo = {33, 1027, 262,144}; b for N = 1024 and Lo = {13, 90, 1024}
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number of arithmetic operations required to compute the
SRFFTpruning, SRFFTpruning-time-shift, and DFTCOMM algo-
rithms can be found in Table 4.

4.2 Comparison with the SFFT-related algorithms
In a context of pruned DFTs, real-world sensing scenar-
ios are characterized by the uncertainties attributed to
zero-padded input data acquisition modes with variable
composite length windowing of the input and/or output
Fourier transform sequences, in general cases, with non-
sparse Fourier spectrum [10–12]. In contrast, the
celebrated SFFT method developed and featured in [20]
presumes “sparsity” of the Fourier spectrum that re-
quires that majority of the Fourier coefficients are zeros
or negligible; e.g., the authors of [20] exemplified such
sparsity level at approximately 89 %, i.e., up to 89 % of
the Fourier transform coefficients are to be zeroes or negli-
gible for operability of their SFFT. Otherwise, the DFT
should be specified and treated as a non-sparse transform.
Currently, a family of novel efficient algorithms for

computing the FFTs applicable for sparse sensing sce-
narios when only a few Fourier transform coefficients
(ks largest coefficients of the N-length Fourier trans-
form) of the input signal x are different from zero have
been developed [20, 21], which compose a family of the
so-called SFFT methods. To compute a reliable SFFT
for typical high N > 210, the sparsity level constraint re-
quires that majority of the Fourier coefficients are zeros
[20] (or negligible to be discarded). Such model as-
sumptions are valid, for example, in video compressing
applications [20]. Therefore, if majority of the Fourier
transform coefficients are supposed to be zeros or can

be discarded, then efficient computing techniques from
the SFFT family can be employed. The celebrated algo-
rithms from such a family are the SFFTv1 and the
SFFTv2 developed and featured in [20] where the spars-
ity level was exemplified at 89 % of zero (negligible)
Fourier coefficients. In [21], the SFFTv3 and SFFTv4 al-
gorithms were proposed, where some computational
improvements were introduced. SFFTv3 was imple-
mented in [28] while the program code for implemen-
tation of the SFFTv4 algorithm is not available at this
time. Another competing technique for computing of
the FFT of sparse (in the frequency domain) signals was
addressed in [22] as the so-called FADFT-2 algorithm
from the AAFFT library [22]. However, in [20, 21], it was
corroborated that the SFFT-related algorithms manifest
better operational performances than FADFT-2 of [22].
To perform valid test comparisons between the

SFFTv1, SFFTv2, SFFTv3, and the DFTCOMM algo-
rithms, those should be tested under the same condi-
tions and constrains. Here, we use the following feasible
constraints: the values of N vary as follows: N = {26,
27,…, 220} and ks = Lo, where Lo represents the number
of consecutive output coefficients to be calculated. In
different test scenarios, the SFFTv1, SFFTv2, and
SFFTv3 algorithms deliver successful results: the first of
them for N = {213, 214,…, 220} and ks = Lo = 50, the sec-
ond of them for N = {213, 214,…, 220} and ks = Lo = 50,
and finally, the third of them for N = {210, 211,…, 220}
and ks = Lo = 50, respectively. Furthermore, it was ex-
perimentally corroborated that the DFTCOMM algorithm
was able to deliver efficient results in all such tested
sparse scenarios, as reported in Table 9.

Table 7 Savings in the number of arithmetic operations attained with the DFTCOMM algorithm in comparison with the competing
SRFFT (noprun) and SRFFTpruning-time-shift methods for N = 262,144

DFTCOMM in comparison with: Li Lo Saving

SRFFT(noprun) {21,22,…, N} N = 218 DFTCOMM, 43.26 % with input pruning

SRFFTpruning-time-shift DFTCOMM, 5.11 % with input pruning

SRFFT(noprun) 1027 DFTCOMM, 76.24 % with input-output pruning at the same time

SRFFTpruning-time-shift SRFFTpruning-time-shift fails to deliver a result

SRFFT(noprun) 33 DFTCOMM, 92.11 % with input-output pruning at the same time

SRFFTpruning-time-shift SRFFTpruning-time-shift fails to deliver a result

Table 8 Savings in the number of arithmetic operations attained with the DFTCOMM algorithm in comparison with the competing
SRFFT (noprun) and SRFFTpruning-time-shift methods for N = 1024

DFTCOMM in comparison with: Li Lo Saving

SRFFT(noprun) {21,22,…, N} N = 210 DFTCOMM, 38.22 % with input pruning

SRFFTpruning-time-shift DFTCOMM, 8.71 % with input pruning

SRFFT(noprun) 90 DFTCOMM, 59.22 % with input-output pruning at the same time

SRFFTpruning-time-shift SRFFTpruning-time-shift fails to deliver a result

SRFFT(noprun) 13 DFTCOMM, 82.45 % with input-output pruning at the same time

SRFFTpruning-time-shift SRFFTpruning-time-shift fails to deliver a result
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In addition, DFT computations for other sparse test
scenarios with different values of N and ks were run, in
particular, for N = Li = {213, 214,…, 217} and ks = Lo = {1, 2,
…, ksmax} with ksmax = 11 % of N. The test scenarios for
the SFFT algorithms delivered successful results only for
a few tested values of ks. For example, the SFFTv1
algorithm is executed successfully for N = {213, 215}
and ks = {1, 2,…, 50}, for N = 214 and ks = {1, 2,
…, 50} ∪ {56, 57,…, 63}, for N = 216 and ks = {1, 2,
…, 50} ∪ {64, 65,…, 97}, and for N = 217 and ks = {1,
2,…, 74}.
The SFFTv2 algorithm is executed successfully for

N = {213, 214,…, 217} and ks = {1, 2,…, 50}, while, the
SFFTv3 algorithm performed successfully for N = 213

and ks = {4, 5,…, 673}, for N = 214 and ks = {4, 5,…,
1346}, for N = 215 and ks = {4, 5,…, 2692}, for N = 216

and ks = {4, 5,…, 5385}, and for N = 217 and ks = {4,
5,…, 10,771}. Furthermore, the DFTCOMM algorithm
is executed successfully for all test cases (for N = {213,
214,…, 217} in combination with all ks = {1, 5,…, ksmax}, as
follows from the data reported in Table 10.
Table 11 reports the absolute average errors attained

with the SFFTv1, SFFTv2, SFFTv3, and DFTCOMM algo-
rithms, for N = {213, 214,…, 218} and ks = Lo = 50. In all
test cases, the FFTW algorithm from [29] was used as a
reference for computing the absolute error measures.
From the data reported in Table 11, it follows that for

N = 8192 and ks = Lo = 50, the SFFTv1 and SFFTv2 algo-
rithms manifest very close absolute error values; in

particular, the attained average absolute error values were
5.6162 × 10−5 and 5.0689 × 10−5, respectively. However,
the SFFTv3 attains a lower absolute average error values
than other SFFT versions. It is noteworthy to mention that
the lowest absolute average error was attained with the
DFTCOMM algorithm at a value of 2.7642 × 10−10.
In addition, Fig. 8 reports the absolute values of errors

of the compared tested SFFTv3 and the DFTCOMM algo-
rithms for N = 8192 and ks = Lo = 50 under the same
sparse computing scenarios.
On the other hand, the SFFT-related algorithms demon-

strate reliable operation for specific input parameter com-
binations, i.e., they are dependent on the combination of
the dimension N of the input signal x, and the sparsity fac-
tor ks. In contrast, the DFTCOMM algorithm manifests the
operational robustness in the sense that it does not subject
to any of such dimensional limitation and demonstrated
perfect operational performances in all tested harsh
(non-sparse) computational scenarios. Furthermore, all
SFFT-related algorithms are probabilistic-type techniques
[20, 21], in which the desired ks largest coefficients of the

Table 9 Comparisons of the SFFTv1, SFFTv2, SFFTv3, and
DFTCOMM algorithms for different sizes (N) of the signal x, with
N = Li = {26, 27,…, 220} and ks = Lo = 50

Li = N ks = Lo SFFTv1 SFFTv2 SFFTv3 DFTCOMM

26 = 64 50 * * * ✓

27 = 128 50 * * * ✓

28 = 256 50 * * * ✓

29 = 512 50 * * * ✓

210 = 1024 50 * * ✓ ✓

211 = 2048 50 * * ✓ ✓

212 = 4096 50 * * ✓ ✓

213 = 8192 50 ✓ ✓ ✓ ✓

214 = 16,384 50 ✓ ✓ ✓ ✓

215 = 32,768 50 ✓ ✓ ✓ ✓

216 = 65,536 50 ✓ ✓ ✓ ✓

217 = 131,072 50 ✓ ✓ ✓ ✓

218 = 262,144 50 ✓ ✓ ✓ ✓

219 = 524,288 50 ✓ ✓ ✓ ✓

220 = 1,048,576 50 ✓ ✓ ✓ ✓

(*) The program execution is aborted
(✓) The program execution is successful

Table 10 Comparisons of the SFFTv1, SFFTv2, SFFTv3, and
DFTCOMM algorithms for different sizes (N) of the signal x, with
N = Li = {213, 214,…, 217} and ks = Lo = {1, 2,…, ksmax} in the tested
sparse scenarios with ksmax ~ 11 % of N

Li = N 1≤ ks≤ ksmax SFFTv1

213 1≤ ks≤ 901 ks = {1, 2,…, 50}

214 1≤ ks≤ 1802 ks = {1, 2,…, 50} ∪ {56, 57,…, 63}

215 1≤ ks≤ 3604 ks = {1, 2,…, 50}

216 1≤ ks≤ 7208 ks = {1, 2,…, 50} ∪ {64, 65,…, 97}

217 1≤ ks≤ 14,417 ks = {1, 2,…, 74}

Li = N 1 ≤ ks ≤ ksmax SFFTv2

213 1≤ ks≤ 901 ks = {1, 2,…, 50}

214 1≤ ks≤ 1802 ks = {1, 2,…, 50}

215 1≤ ks≤ 3604 ks = {1, 2,…, 50}

216 1≤ ks≤ 7208 ks = {1, 2,…, 50}

217 1≤ ks≤ 14,417 ks = {1, 2,…, 50}

Li = N 1 ≤ ks ≤ ksmax SFFTv3

213 1≤ ks≤ 901 ks = {4, 5,…, 673}

214 1≤ ks≤ 1802 ks = {4, 5,…, 1346}

215 1≤ ks≤ 3604 ks = {4, 5,…, 2692}

216 1≤ ks≤ 7208 ks = {4, 5,…, 5385}

217 1≤ ks≤ 14,417 ks = {4, 5,…, 10,771}

Li = N 1 ≤ ks≤ ksmax DFTCOMM

213 1≤ ks≤ 901 ks = {1, 2,…, ksmax}

214 1≤ ks≤ 1802 ks = {1, 2,…, ksmax}

215 1≤ ks≤ 3604 ks = {1, 2,…, ksmax}

216 1≤ ks≤ 7208 ks = {1, 2,…, ksmax}

217 1≤ ks≤ 14,417 ks = {1, 2,…, ksmax}
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Fourier spectrum of the input sequence are reconstructed
(approximated) with a high probability (not mandatory
with probability one). In contrast, the DFTCOMM algo-
rithm is a deterministic technique, and it produces more
reliable and accurate results than the family of the SFFT-
related algorithms (as demonstrated in Fig. 8 and Tables 10
and 11).
It is also worthwhile to note that presently (in the

sparsity-guaranteed computational scenarios only), the
SFFT-related algorithms outperform the DFTCOMM in
the computational speed due to their specially devised
execution parallelism [20, 21, 28]. From the family of the
SFFT-related algorithms, the SFFTv3 [28] manifests the
most speed-up computational performances for any
input sequence dimension N and any feasible value ks in
the sparsity-guaranteed scenarios only; in particular,
when approximately only 8.2 % (or lower number) of the
Fourier coefficients of the input signal are signifi-
cant, thus not discarded (as shown in Table 10). In
contrast, in all comparable (sparse or non-sparse)
computational scenarios, the DFTCOMM algorithm
manifested superior accuracy performances (lower
absolute error values) than those attained with the
SFFT-related algorithms.

In closing, it is noteworthy to mention that in a major-
ity of practical computational scenarios, the savings in
the number of arithmetic operations achievable with the
optimized unified DFTCOMM technique are significant.
As a concluding example, refer to the test scenario with
N = 8192 and Li = Lo =307 in which case the savings in
the total number of required arithmetic operations at-
tainable with the DFTCOMM algorithm in comparison
with the most prominent competing split-radix FFT
algorithm [3, 14, 23, 24] constitute 45 %.

5 Conclusions
We have developed a new technique that carries out an
efficient computation of the DFTs of composite lengths
of the input and/or output data sequences smaller than
the dimension N of the full DFT/FFT. The addressed
methodology unifies the commuting, filtering, and pruning
paradigms yielding the new DFTCOMM method that out-
performs the existing competing pruning-decomposition-
based techniques in the sense of attainable savings in the
number of required arithmetic operations.
Furthermore, our DFTCOMM method admits computing

the DFTP blocks at the intermediate stage of the pruned
decomposed transform using any existing FFT algorithm.

Fig. 8 Measures of absolute error values attained with the SFFTv3 and DFTCOMM algorithms in sparse scenarios for N = 8192 and ks = Lo = 50: a SFFTv3
and DFTCOMM; b DFTCOMM

Table 11 Average absolute errors attained in sparse scenarios with the SFFTv1, SFFTv2, SFFTv3, and DFTCOMM algorithms for N = {213,
214,…, 218} and ks = Lo = 50

Li = N ks = Lo SFFTv1 SFFTv2 SFFTv3 DFTCOMM

AbsError AbsError AbsError AbsError

213 50 5.6162 × 10−5 5.0689 × 10−5 2.4973 × 10−5 2.7642 × 10−10

214 50 7.0000 × 10−4 6.3012 × 10−4 4.9943 × 10−5 1.8228 × 10−9

215 50 2.8526 × 10−4 2.5407 × 10−4 9.9883 × 10−5 1.6704 × 10−8

216 50 3.7305 × 10−4 3.6885 × 10−4 1.9976 × 10−4 1.5567 × 10−7

217 50 4.9801 × 10−7 4.8631 × 10−7 1.5437 × 10−7 2.6652 × 10−10

218 50 0.0023 0.0023 7.9905 × 10−4 8.2515 × 10−6
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Based on the performed treatment of the combinational
hypotheses testing-type problem regarding all feasible
allocation-pruning modalities, the decision in favor of the
preferable hypothesis was made that yields the proposed
DFTCOMM method. Being the globally optimal decision
making result of testing the complete list of all feasible hy-
potheses, the DFTCOMM method guarantees to require a
fewer or at most the same number of arithmetic opera-
tions for its execution than any other of the competing
pruning-decomposition-based methods reported in the
literature.
In addition, we have corroborated that, in the scenarios

with non-guaranteed sparsity of the data Fourier spectra,
the DFTCOMM method manifests better reliability and ac-
curacy than the family of the celebrated competing SFFT-
related algorithms; while in scenarios with severe Fourier
spectrum non-sparsity (i.e., when the majority of the data
Fourier spectrum coefficients take non-zero values, thus
cannot be discarded), the DFTCOMM technique always
outperforms the celebrated SFFT-related algorithms be-
cause all those simply fail to execute the program code in
such uncertain computational scenarios.

6 Appendix
6.1 Main function
Fig 9 presents the pseudo-code of the main function that
commute among the different alternatives to compute
the DFTN (DFTCOMM). When the pruned decomposed
transform is not required (Li ≤Dop or Lo ≤Dip), the direct
method or the 2BF filtering method could be employed.
In both cases, the Fourier coefficient X(0) is computed
as a simple addition of the elements in the input se-
quence x(n).
The directFourier function is used in the scenarios

with Li < 4 to compute the remaining Fourier coefficients
(k = 1:1:Lo − 1). The 2BF filtering method is implemented
when Li ≥ 4. The directFourier function carries out the
addition of complex multiplications of elements in x(n)
by the complex exponential WN

nk defined in (1). The fil-
terFourier function computes each Fourier coefficient by
implementing a recursive algorithm similar to the
second-order Goertzel algorithm of [25]. In the filter-
Fourier function, the feedback signal is multiplied by the
real part of the complex exponentials WN

k and, next, by
the conjugate of WN

m. In our modification, the array of
complex exponentials WN

m is pre-computed for m =
0:1:N − 1 and stored by duplicating in the vector W of
length 2N (W = [WN

m, WN
m]), in such a way that WN

nk

and WN
k could be read from it using nk and k as in-

dexes, respectively. Accessing an element out of the vec-
tor W is impossible for these cases, as verified next. Li is
inferior than 4 (or equivalently Li ≤ 3) when the direct
method is used, thus n ≤ Li − 1 ≤ 2 and k ≤ Lo − 1 ≤N − 1,

and consequently nk ≤ 2(N − 1) < 2N. This assures that
each element of WN

nk can be extracted from W just via
accessing the element indexed by nk. Similarly, for k ≤
Lo − 1 ≤N − 1, each element of WN

k is directly extracted
from W accessing the element indexed by k. In order to

Fig. 9 General computational layout of DFTCOMM
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avoid multiplications in the generation of the index, nk,
the latter is computed by adding k to nk in each iteration
of the loop n (inside the function directFourier).
In the scenarios with Li >Dop and Lo >Dip, the

DFTDIT−DIF−Pr is performed to compute the DFTN. As
it was explained previously, the DFTDIT−DIF−Pr is per-
formed in three commuting stages: the input stage, the
intermediate stage, and the output stage. These stages are
executed in a sequential order by calling the InputStage

Fig. 10 Pseudo-code of the InputStage function

Fig. 11 Pseudo-code of the OuputStage function
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function, next the IntermediateStage function, and, finally,
the OutputStage function.

6.2 InputStage function
The InputStage function generates the inputs to the
intermediate DipDop DFTs of length P (DFTPs), resulting
in an array of three dimensions y(n1, n2, k1). The
pseudo-code for implementing the InputStage function
is listed in Fig. 10. The indexes, n1, n2, and k1 are varied
using three nested loops (“for” instructions), in such an
order that the number of accesses to each element in
x(n) is reduced. This is achieved by specifying k1 for the
inner loop, n1 for the intermediate loop, and n2 for the
outer loop. With this order, once an element in x(n1 +
Dopn2) is loaded, all the inputs of the DFTPs that depend
on it are generated. To minimize the required computa-
tions, the nested loops have been broken down to avoid
multiplications by one and the application of if-clauses.
In order to avoid overhead in the generation of the in-

dexes, those are generated by additions only. After the
InputStage function has been executed, the intermediate
stage should be called.

6.3 Intermediate stage function
The intermediate stage consists in computing Dip-

DopDFTs of length P =N/DipDop. This stage could be im-
plemented with any algorithm for computing a DFT. For
instance, the split-radix could be used if P is a power of
two [26] or the radix-3 could be used if P is a power of
three [27]. For a general case, we recommend using the
FFTW (the fastest Fourier transform in the west) re-
ported in [29] to compute the DipDopDFTPs since this is
the most efficient algorithm for an arbitrary length DFT.
The selected algorithm should be applied over each vec-
tor obtained from y(n1, 0 : 1 : P − 1, k1) for each value of
n1 and k1, resulting in a vector with output index k2 that
is stored in the array z(n1, k2, k1). This array is then
processed by the OuputStage function.

6.4 OutputStage function
The OutputStage is performed to compute the final
Fourier coefficients from the outputs of the Dip-

DopDFTPs stored in z(n1, k2, k1). This function is listed
in Fig. 11. In fact, the OutputStage function performs
the computation of another stage of DFTs, although
with a few outputs. As previously mentioned, there are
two alternatives to compute each Fourier coefficient
from z(n1, k2, k1), using a direct computation or using
the 2BF filtering method. Thus, the OutputStage func-
tion could employ the direct-Fourier or the filterFourier
functions listed in the pseudo-code of Fig. 9 to compute
the final Fourier coefficients.
Each Fourier coefficient depends on Dop inputs (ob-

tained from z(n1, k2, k1) by varying n1), so for Dop < 4, the

direct method is desirable; otherwise, the 2BF filtering
method is to be executed.
These nested loops should be implemented in the in-

dicated order to specify the indexes of the final Fourier
coefficients. Those indexes are obtained by increasing
index k by a unit in each iteration of the loop indexed
by k1. The directFourier function utilizes the complex
exponential WN

nk, while the filterFourier function in-
volves the complex exponential WN

k. All elements WN
k

and WN
nk are extracted from W using k and nk as in-

dexes, respectively. In order to reduce multiple copies of
data and thus to achieve an enhanced efficiency of the
algorithm, it is strongly desirable to implement inline
functions and passing the arrays elements by reference
instead of by value.
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