Greco et al. EURASIP Journal on Advances in Signal
Processing (2016) 2016:17
DOI 10.1186/513634-016-0308-4

® EURASIP Journal on
Advances in Signal Processing

a SpringerOpen Journal

RESEARCH Open Access

Rate-distortion-optimized multi-view

@ CrossMark

streaming in wireless environment using

network coding

Claudio Greco', Irina D. Nemoianu?, Marco Cagnazzo

3%

and Béatrice Pesquet-Popescu?

Abstract

Multi-view video streaming is an emerging video paradigm that enables new interactive services, such as 3D video,
free viewpoint television, and immersive teleconferencing. Because of the high bandwidth cost they come with,
multi-view streaming applications can greatly benefit from the use of network coding, in particular in transmission
scenarios such as wireless network, where the channels have limited capacity and are affected by losses. In this paper,
we address the topic of cooperative streaming of multi-view video content, wherein users who recently acquired the
content can contribute parts of it to their neighbors by providing linear combinations of the video packets. We
propose a novel method for selection and network encoding of the transmitted frames based on the usersX
preferences for the different views and the rate-distortion properties of the stream. Using network coding enables the
users to retrieve the content in a faster and more reliable manner and without the need for coordination among the
senders. Our experimental results prove that our preference-based approach provides a high-quality decoding even
when the uplink capacity of each node is only a small fraction of the rate of the stream.
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1 Introduction

In recent years, the advances in video acquisition, com-
pression, transmission, and rendering have made possi-
ble the development of technologies that can enhance
the viewers’ experience by including the third dimen-
sion. While traditional 2D video offers the viewer only
a passive view of the scene, a more realistic experience
can be obtained through applications such as 3D video
or free viewpoint selection. 3D cinema productions have
already generated big revenues, but other applications
such as 3DTV and Free Viewpoint TV (FTV) [1, 2] are
also becoming more desirable due to the increased afford-
ability of 3D displays for home use.

Multi-view video (MVV) is one of the key elements of
these applications; it consists in the simultaneous repre-
sentation of a scene captured by N cameras placed in
different spatial positions, called points of view.
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By using more than two cameras during video acquisi-
tion, adjacent views act like local stereo pairs to guarantee
stereoscopy to the viewer. This can be used to synthe-
size virtual views different from the acquired ones. This
functionality is used in FTV where the user interactively
controls the viewpoint in the scene. On the other hand,
since 3D video could not be deployed if the quality per-
ceived by the user does not exceed the existing 2D quality
standards, the bandwidth for storage and transmission of
the multiple views is accordingly increased.

A first solution for multi-view video transmission,
known as simulcast [3], is to compress and send each view
independently [4]. While simple to implement and back-
ward compatible with the existing infrastructures, this
technique does not take into account the redundancy due
to the similarities among the views that can be used to fur-
ther compress the data. On the other hand, it allows for
easier switching between views, as the lack of inter-view
prediction makes the views independently decodable.

The multi-view video coding (MVC) extension of the
H.264/MPEG-4 AVC standard [5] exploits inter-view
dependency in a simple, yet effective ways; images from
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other views (but at the same time instant) can be used
as references for the current frame prediction (inter-view
prediction). This is the only major change introduced
in the MVC extension of H.264. The MVC extension of
HEVC, referred to as MV-HEVC, is based on very simi-
lar principles [6]. With MVC, two main coding schemes
are particularly worth mentioning: view progressive and
fully hierarchical. In the view progressive architecture,
the first view, called the base view, is encoded inde-
pendently from the others. In any other view, for each
GOP, there is one frame, the V-frame, that is predicted
using only inter-view prediction from the corresponding
I-frame in the base view. For all other frames, only tem-
poral prediction is used. In the second architecture, both
hierarchical temporal prediction and inter-view predic-
tion are performed for all P/B-frames of all views except
for the the base view. These tools allow a rate reduc-
tion, for the same subjective quality, estimated around
50 % with respect to the case of independent view coding
(simulcast) [5].

Even though recently a relevant part of the attention
of the research in 3D has been attracted by depth-based
formats [7] (which allow virtual viewpoint synthesis), the
interest in MVV coding is still very high, as witnessed by
the activity of the ad hoc group on free viewpoint TV
and super-multi-view video (i.e., video with more than
30 views, and holoscopic video) [8—10]. The quality of
synthesized view generated with depth data is still ques-
tionable, at such a point that it is still not completely clear
whether depth-based format has a clear advantage over
MVV or super-MVYV, above all when subjective quality
is considered [11]. In summary, super-MVV seems still
being a serious candidate for FTV and 3D video services
[12].

Multi-view streaming becomes an even more challeng-
ing task in the context of mobile networking, where the
high bitrate issue of multi-view adds on top of the existing
problems of mobile networking. Even though streaming
applications are nowadays commonplace, and the tech-
nology involved has greatly advanced in the past few years
[13, 14], in a wireless network, it is difficult to meet the
inherent requirement of continuous delivery necessary for
an uninterrupted presentation of the content, as the nodes
move freely and independently in all directions—thus, the
channel conditions of the links and the link themselves are
unreliable and erratic—and individual nodes may connect
and disconnect asynchronously [15].

Also, in the context of a streaming application, it
would be desirable to have the quality of the received
media degrade gracefully as the network environment and
resources change and to tolerate losses to some extent.
Even though techniques to provide graceful degradation
and loss immunity exist, these usually require an increase
in the bitrate of the stream, a condition that could be

Page 2 of 20

difficult to satisfy in a wireless network, where the nodes’
uplink capacity is typically quite limited.

One positive aspect of wireless networks w.r.t. video
streaming is the inherently broadcast nature of the
medium. This makes more straightforward for a sender
the task of multicasting the content to several receiver but
also allows a single receiver to collect video packet from
several servers.

Recently, good results have been achieved, in the context
of mobile video streaming, by exploiting the broadcast
nature of the medium through the construction of video
packet delivery overlays [16, 17]. These logical networks,
built on top of the actual wireless network through the
cooperation of nodes, allow to provide a streaming service
with good video quality and graceful degradation.

However, these techniques were designed for single-
view streams and relied on the use of multiple description
coding (MDC) [18], a joint source-channel coding tech-
nique that does not lend itself well to be conjugated with
multi-view, due to its additional bitrate cost, a cost already
considerable for multi-view streams.

In this article, we propose to use network coding for the
robust delivery of MVV and super-MVV over an unreli-
able network such as a wireless network. In order to do so,
we design a rate-distortion-optimized (RDO) scheduling
algorithm that, at each sending opportunity, selects which
video packet has to be added to the coding window, in
such a way as to minimize the expected video distortion
measured at the receiver. This optimization will be per-
formed by taking into account the preferences of the users
in terms of required views, an approach already success-
fully exploited for video caching of single-view streams
in mobile environment [19]. Being the wireless medium
inherently broadcast, we exploit the fact that each receiver
could be exposed to multiple senders. We thus ensure
that senders transmit innovative packets (i.e., packets with
novel information with respect to those already sent) even
though they do not coordinate their actions.

The particularity of the coding structures of the multi-
view representation reflects in a non-trivial impact of
each coded frame on the overall quality of the recon-
structed multi-view content. If this impact is properly
captured, it can be used to design an intelligent transmis-
sion scheme that allocates the limited channel capacities
in a rate-distortion-optimized order (scheduling). In order
to effectively disseminate the content to the end users, an
analogous scheme can be devised to schedule the frames
for transmission [20].

Network coding (NC) [21] has been proposed as an ele-
gant and effective solution for multi-view transmission.
In NC, instead of merely relaying packets, the intermedi-
ate nodes of a network send linear combinations of the
packets they have previously received, with random coef-
ficients taken from a finite field. The coding coefficients,
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needed to reconstruct the original packets, are typically
sent along the combinations as headers [22-25], unless
more advanced reconstruction schemes are implemented
at the receiver side [26, 27]. Used as an alternative to tra-
ditional routing, NC has proved beneficial to real-time
streaming applications, both in terms of maximization of
the throughput and in terms of reduction of the effects of
losses [28—33].

In a NC-based transmission system, rather than send-
ing the data packets, the users send mixed packets. The
advantage of this technique is that even though the users
act independently from each other, with high probability,
each of them will contribute innovative information to the
transmission [20, 34]. In the most common implementa-
tion of network coding, referred to as practical network
coding (PNC) [25], the content is divided into groups of
packets known as generations, and only packets belonging
to the same generation can be mixed together. In our sys-
tem, each packet contains only one encoded frame, and
we only mix frames belonging to the same GOP. The set
of packets actually used to generate a mixture is referred
to as coding window.

One technique based on the network coding princi-
ples has been proposed by Wang et al. [35] for peer-to-
peer video-on-demand applications. More recently, Kao
et al. [36] proposed a general framework able to pro-
vide an interactive streaming service, i.e., allowing random
access operations to the users. However, neither of these
techniques addresses the multi-view case, nor takes into
account the rate-distortion properties of the stream, nor
the users’ preferences.

Other existing works have tackled the subject of dis-
tributed video services, achieving similar properties, by
proposing to use rateless codes—conceptually similar
to network coding—for video delivery [37, 38]. How-
ever, even though these techniques have been proposed
for video delivery, only the delay requirements of video
streaming have been exploited, while our method is tai-
lored for multi-view video content and in particular it
uses the prediction structure of the encoded sequence in
its optimization algorithm. It should be noted that in our
method, a proper RDO-based scheduling is performed in
order to provide the users with the best possible video
quality given the limited channel capacity allocated to
each node.

The rest of this article is organized as follows. In
Section 2, we review some recent works closely related
to our problem. Then, in Section 3, we present the sys-
tem model, detailing and motivating our assumptions.
In Section 4, we describe the selection method used to
decide which frames will be included in the coding win-
dow of the transmitting nodes. In Section 5, we present
the experimental validation of the proposed technique
and analyze the results. Finally, in Section 6, we draw
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our conclusions and point out some directions for future
work.

2 Related work

Unlike previous works on multi-view streaming rather
than focusing on the source encoding of the content, and
rather than considering each client as an independent
agent, we study how the distribution of the stream can
take advantage of an a priori knowledge about the dif-
ferent clients and, in particular, the fact that they share
common preferences—in this case, in terms of preferred
view.

Examples of work in the context of multi-view stream-
ing that take user preferences into account include
the source rate allocation technique proposed in [39]
and the joint source-channel coding scheme introduced
in [40].

While these works consider similar applications as ours,
we address here a substantially different problem, in which
the multi-view video has been already encoded, and we
must decide, at each sending opportunity, about which
parts of the content have to be included in the cod-
ing window for transmission. We also consider the case
when the preference estimation used to decide the packet
scheduling does not perfectly correspond to the actual
user preferences.

In our work, we also rely on a network coding scheme
that allows for the prioritization of certain packets with
respect to others. Several works exist that make use of
similar schemes, in which the video stream is divided into
layers of priority and unequal error protection is given to
the different layers using PNC.

For instance, in [29], a receiver-driven network coding
strategy is proposed, where the receiving peers request
packets from classes with varying importance. Packet
classes are constructed based on the unequal contribu-
tion of the various video packets to the overall quality of
the presentation or in scalable video streams. Prioritized
transmission is achieved by varying the number of packets
from each class that are used in network coding opera-
tions. The coding operations are driven by the children
nodes that determine the optimal amount of coding allo-
cated to each importance class of the data to which they
subscribe.

The work in [29] has later been extended to the case
of multi-view video in [41]. Cameras’ streams are orga-
nized into layered subsets, with subsets organized based
on their priority levels. These prioritized layers are trans-
mitted in an UEP fashion, sending in a more reliable
way more important subsets. Inter-view dependencies are
built based on the subset organization; views from a given
subset can depend from views of the same subset or lower
ones. In this way, since lower subsets are more likely to
be received than higher ones, every time a view has to
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be decoded, most likely the reference view from which it
depends has been already received.

This work is related to ours both for its use of network
coding and its application to multi-view content. How-
ever, there are notable differences both in the model of the
service provided to the user and, as a consequence, to the
utility function that is maximized.

In the scenario envisioned in this work, users request
viewpoints that are, in general, synthesized from cam-
era views either by coinciding with one them or by using
depth-image-based rendering on a couple of camera views
bracketing the synthetic viewpoint. The distortion to
minimize depends on the spatial distance between the
synthetic view and each of the camera views used to
reconstruct it. Priority, in the sense of a higher redun-
dancy to insure reception in the face of losses, is defined
based on the utility of camera view subsets in reconstruct-
ing the synthetic views requested by the users.

In our work, on the other hand, the users are only inter-
ested in camera views, i.e., no view synthesis is used. This
implies that, while in the abovementioned work, there are
different combinations of received camera views that can
satisfy the view request of a user, with different levels of
distortion depending on their distance; in our scheme,
only the exact camera view the user is interested in can
increase its quality of experience.

Furthermore, in our scheme, priority is not intended in
the sense of loss protection but rather the arrival order.
In our scheme, the different treatment of layers is not
intended to differentiate the likelihood of their reception
but rather the delay experienced by the user before they
can start displaying it. For this reason, while the network
coding scheme used in [41] varies the number of pack-
ets from each layer in the coding window, in our scheme,
all packets from lower layers are introduced in the coding
window before any packet of a higher layer is introduced.

Notice that this work only considers the case of aligned
and equally spaced cameras, so that correlation between
views decreases with their distance. In a more recent
work [42], the same authors extend this model to opti-
mize other settings, but this work does not address the
communication aspects.

Another relevant approach to video transmission from
multiple senders is proposed in [43], wherein the authors
jointly tackled the problem of defining an optimal sched-
ule and an optimal network coding strategy using a priori-
tizing network coding scheme. Unlike ours, this work only
considers the case of single-view content, therefore there
are no preferences to be taken into account, and the opti-
mal schedule is unique. Furthermore, in order to find an
optimal solution, this technique requires some degree of
coordination among the senders, whereas, we assume that
coordination is not feasible and relies on randomization in
order to circumvent this limitation.
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3 System model

In order to optimize the rate-distortion performance
of the transmitted content, we select the frames to be
included in the coding window based on their popularity
among the users. Before explaining in detail our proposed
technique, in this section, we list and justify some assump-
tions about the system that will be used in the design of
the technique.

e From the point of view of the network, we assume
that the users are connected in a (generally partial)
mesh network in which each node can potentially
receive from multiple servers. This reflects the case of
wireless networks and in particular ad hoc networks.
Furthermore, we assume that the connectivity among
the users can be modeled with a set of independent
channels, each of them having a given capacity C,
expressed as a fraction of the encoded video bitrate.
When C = 100 %, each node is able to transmit all
the packets of a GOP in the time allocated to a GOP.
Still, these packets may be lost on the channels. We
consider two models for these channels: a simple
packet erasure channel (PEC) with loss rate ¢, and a
Gilbert-Elliot erasure channel (GE), characterized by
loss rates in good and bad state (¢g and ¢g) and by
transition probabilities ( pgp and ppg). Notice that
each channel does not necessarily provide sufficient
capacity for transferring the whole multi-view stream.
Our study will focus on the video quality achieved by
a generic receiver R exposed to M senders or sources
S1,...,Spm. This scenario is represented in Fig. 1.

e From the point of view of the content, we assume
that the stream is encoded using H.264/MVC [5] or a
similar inter-view prediction scheme, such as
MV-HEVC [6]. In our experiments, the stream is
encoded using the prediction structure depicted in
Fig. 2, with M = 5views and N = 8 pictures per view
in a GOP. This structure is a compromise between
view progressive and fully hierarchical MVC that uses
inter-view prediction in order to achieve a better
coding efficiency but is not fully hierarchical in order
to reduce the dependencies among the frames, thus
reducing the propagation of the effects of losses.
However, it should be noted that our study can easily
be extended to other coding techniques and
prediction structures of multi-view content.

e For the user’s preferences, we assume that the choice
of the preferred view for each user follows the same,
known distribution. Notice that, even though the
proposed method could be applied to any preference
model, how the learning and keeping track of the
preference distribution is performed is outside the
scope of this article and shall not be addressed in the
following. However, these preferences may be easily
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I(v, k)

Fig. 1 Simulated scenario for each receiver. I(v, k) and7(v, k) are, respectively, the original and reconstructed version of frame k of view v.
Smom=1,..., M are the senders (or sources), NCp, the network coding modules, Cp, the capacity of the channels, RX is the receiver RR buffer

learned and spread over the network with approaches
similar to those shown in [17].

e e assume that the preference distribution does not
change too fast over time, that is, we assume that it
can be considered valid for at least the duration of a
GOP, defined as an independently decodable set of
N x W frames, as depicted in Fig. 2. This implies that
our system is able to work even when users’
preferences change as frequently as once per GOP,
which typically lasts less than 1 s. Any change in
preferences during a GOP will be taken into account
at the next GOP.

An example of the complete system is shown in Fig. 3.
The video server S sends the encoded video packets
together with side information about RD characteristics
of the sequence. Nodes 1 to 9 relay the video using the
proposed system.

We focus on a given node receiving the video sequence
from M sources (or senders), performing network coding
and relaying the video to downlink nodes. For example,
node 6 sees M = 4 sources, i.e., nodes 1 to 4. Node 8
sees M = 2 sources, i.e., nodes 5 and 6. We propose an
algorithm to decide the order of inclusion of frames in the
coding window. We assume (for simplicity) that nodes do

@

:

©

Fig. 2 Prediction structure used to encode the multi-view stream with temporal and inter-view prediction. Labels indicate prediction level. This
structure provides a good trade-off between coding efficiency and loss propagation. Each row represents the timeline of a different view
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Fig. 3 Example of network for the proposed method. Node s is the encoder. Node 6 sees M = 4 sources (or senders). Node 8 sees M = 2 sources

not compete for capacity but the available capacity may be
less than the video coding bitrate. We model each chan-
nel’s capacity as a percentage of the encoded video bitrate,
and that each node has view preferences according to a
given probability distribution.

4 Proposed method

In this section, we describe our proposed method of net-
work encoding for a wireless streaming of multi-view
video content based on the users’ preferences.

As we mentioned in Section 1, most practical imple-
mentations of NC are achieved by segmenting the
data flow into generations and combining only packets
belonging to the same generation. Packets are made
of the same length by padding. All packets in a gen-
eration are jointly decoded as soon as enough linearly
independent combinations have been received, by
means of linear system solving. Since the coefficients
are taken from a finite field, perfect reconstruction is
assured.

It has been proposed [29] to apply NC to video content
delivery, dividing the video stream into layers of priority
and providing unequal error protection for the different
layers via PNC. Layered coding requires that all users
receive at least the base layer, hence all received packets
must be stored in a buffer until a sufficient number of
independent combinations are received, which introduces
a decoding delay that may be undesirable in real-time
streaming applications.

There exist several techniques aimed to reduce the
decoding delay, proposed by both the NC and the video
coding communities. In our technique, we use an imple-
mentation of random linear network coding referred to
as expanding window network coding (EWNC) [28, 32].
The key idea of EWNC is to increase the size of the
coding window (i.e., the set of packets in the genera-
tion that may appear in combination vectors) for each
new packet. Using Gaussian elimination at the receiver
side, this method provides instant decodability of packets.

Thanks to this property, EWNC is preferable over PNC in
streaming applications. Even though PNC could achieve
almost instant decodability using a small generation size,
this would be ineffective in a wireless network, where
a receiver could be surrounded by a large number of
senders, and if the size of the generation is smaller than the
number of senders, some combinations will necessarily
be linearly dependent. On the other hand, EWNC auto-
matically adapts the coding window size allowing early
decodability, and innovation (i.e., linear independence)
can be achieved if the senders include the packets in
the coding window in a different order. However, these
orders should take into account the RD properties of the
video stream. In our previous work, we already success-
fully applied EWNC principles to multi-view streaming in
the context of wireless networking [44], but we did not
take into account the preferences of the users in terms of
displayed view.

As mentioned in Section 1, in other works, user pref-
erences were used to optimize the rate allocation in the
encoding process. Here, we show how they can be used
to decide which parts of the content have to be included
in the coding window in order to optimize the rate-
distortion properties of the transmitted stream.

We model the distribution of users’ preferences with a
probability vector p, such that p, is the probability that a
member of the group chooses to watch view v € {1,...N}
for the current GOP.

In our case, the transmitted packets will contain lin-
ear combinations of frames belonging to the same GOP.
In order to select the order in which the frames will be
included in the coding window, which we denote by W,
we proceed as follows. For each GOP, all the frames of the
current GOP are stored in a bi-dimensional frame buffer
B, with N rows, and W columns, where N is the number
of views and W is the per-view time length of the GOP.
For clarity, a summary of the notation used in this arti-
cle is given in Table 1. The maximum possible size of the
coding window, i.e., the generation size, will be the size of
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Table 1 Summary of the notation used in this article

N eN Number of views
w eN Number of frames per view in a GOP
B (set) Bi-dimensional frame buffer
p e o1V Userspreferences distribution
M eN Number of senders
c. (0,1] Capacity of channel m
as a fraction of the stream rate
Em [0, 1] Packet loss rate of channel m
w (set) Coding window
r eN Current size of the coding window
D eR Expected total distortion
Dy, eR Distortion of view v

the GOP NW, while the current size of the coding window
will be denoted r<NW.

The organization of the bi-dimensional buffer cor-
responding to the prediction structure described in
Section 3 and depicted in Fig. 2 is shown in Fig. 4. Notice
that the views are re-arranged to reflect the coding order,
so the central view in Fig. 2 corresponds to view 1 in Fig. 4,
as the other views are predicted upon it.

The scheduling Algorithm 1 aims to minimize the
expected total distortion given a number r<NW of frames
to be included in the coding window W. It works in an
iterative fashion, starting with an empty coding window
(W <« ) and adding at each iteration the most suit-
able frame to WV, given the frames already included at the
previous iteration. More precisely, let D, (V) be a func-
tion that computed the distortion of the view v when the
frames selected in W are available. Note that, due to the
inter-view prediction, the functions D,(-) depend on all

Fig. 4 Buffer B for N = 5 views and W = 8 frames for the structure in
Fig. 2. In each view, frames are ordered by prediction level, then by
descending impact on the total distortion of the view

Page 7 of 20

the selected frames. For a generic user, the expected total
distortion D is expressed as:

N
DOW) = p,Dy(W) =p DOV), (1)

v=1

Algorithm 1 Algorithm used by the nodes to include the
frames in the coding window

1: procedure SCHEDULEFRAMES

2 G« NxW; > Size of the generation.

3 for all MV-GOPs do
4: W <« @;
5
6
7

> Coding window.
for r < 1to G do

F < {f eB|ReE(f) SWASL g W)

J* < min =DV D +AROVU( D

f* < arandom frame in {f|J = J*};

W« Wu {f*},
10: end for
11: end for

12: end procedure

where vector 13(W) is such that its vth component is
D,(W). The optimization problem can therefore be stated
as:

WH(r) = argmin {;aTi)(W)} st:IWl<r (2

Algorithm 1 provides a heuristic way to compute WW*(r)
for all r € {1,2,...,NW} with the additional con-
straint that for all r, W*(r — 1) is a subset of W*(r),
that is, W*(r) is built by adding a frame to W*(r —
1). In general, the optimal solution to this problem is
unique. This means that all the senders would always
compute exactly the same scheduling order. As a conse-
quence, the “randomness” of NC would be lost; all the
senders always transmit dependent combinations. Even
if a node receives packets from M > 1 senders, they
will be identical, defeating the purpose of using NC. In
order to take advantage of the benefits of NC in terms
of loss resiliency, we need to generate a variety of sched-
ules, possibly slightly sub-optimal, but with acceptable
performances.

In order to solve this problem, we propose a clustering
of the video frames; the clustering is a classification of the
frames based on their RD properties that take place at the
video source, after the video encoding and before schedul-
ing for transmission. Frames with similar RD points are
assigned to the same cluster; each frame is labeled with
the average rate and distortion of its cluster, possibly
quantized. Notice that clustering is performed using the
definition of distortion given in Eq. (1), i.e., by taking the
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preferences into account. An illustration of the cluster-
ing is given in Fig. 5. We observe that frame or packet
classification based on RD properties has been used in the
literature, for example, by Chakareski and Frossard [45].
However, beside the differences in computing or estimat-
ing rate and distortion, we use classification in a totally
different way, i.e., for achieving a scheduling diversity to
be used in network coding. This concept is original in
scientific literature.

The labels are decided only once at the encoder side,
where rate and distortion are known with negligible com-
putational overhead and where a best estimation of the
receiver’s preferences is more likely to be available. Since
the encoder knows the rate and distortion characteristics
of the frames, it can send them to the users with a very
little overhead, since this information amounts to a few
bytes per frame.

Let us now describe in detail how Algorithm 1 works in
an intermediate node. For all MV-GOPs, the node com-
putes the coding window, starting with an empty set and
adding at each sending opportunity a new frame. For a
new value of r, first, we compute the set of eligible frames
F. It is made up of those whose references for predic-
tion, if any, are already in the coding window. For example,
when W = 0, only the intra-frame of the GOP is eligible.
Therefore for all the nodes, when r = 1, WV only con-
tains the intra-frame. In general however, F contains all
the frames that are decodable using only the frame in W
and that are not in W (Algorithm 1, line 6), that is, for
the second iteration, all the frames of level L; with respect
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to Fig. 4. For each frame in F, the algorithm computes
the coding cost function J; obtained by adding f to W.
Without clustering, generally speaking, a unique frame
Jf would minimize Jr, making it impossible to produce
different scheduling at different nodes. However, with
clustering, several frames are labeled with the same, fictive
values of rate and distortion, even though they do not cor-
respond to the actual rate and distortion, see Fig. 5. These
frames will produce the same value of Jr (Algorithm 1, line
7). Therefore, the set of frames that achieve the minimal
value of Jy will in general be composed of several frames.
As a consequence, each node can pick a random frame
in this set (line 8) to be added into W (line 9). This step
introduces the scheduling diversity needed by NC.

As far as the choice of the value for A (step 7) is
concerned, as in classical RD optimization problems, it
depends on the target coding rate [46]. In principle, each
node could adjust this value according to its knowledge
about the downlink channel capacities. However, in our
simulation, we assume for simplicity that each node uses
the same Lagrangian parameter used by the encoder (this
value is deduced from the QP and does not need to be
transmitted).

The size of the coding window is reset to zero with the
new MV-GOP. A summary of the operations performed
by the nodes is reported in Algorithm 1.

As far as the computational complexity of the schedul-
ing Algorithm 1 is concerned, we observe that, for a given
MV-GOP, steps 4 to 10 are executed. The complexity of
this part is dominated by the minimization of the cost

Distortion
T

Frames in cluster 1
Label of cluster 1
Frames in cluster 2
Label point of cluster 2
Frames in cluster 3
Label point of cluster 3
Frames in cluster 4
Label point of cluster 4

Frames in cluster 5

OXO X OXPY XSO

Label point of cluster 5

)g((%

Fig. 5 Clustering of video frames for RDO scheduling. Frames with similar operating points are assigned to the same cluster. The RDO scheduling
will consider each frame as having the average operating point of its cluster

Rate
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function J (step 7), which is executed G = NW times.
This minimization is performed by exhaustion; for any
candidate frame f € F, we compute the cost Jr =D+ AR.
As mentioned before, the rate-distortion characteristics
of the sequence are computed once at the encoder as
side product of the compression process and may be sent
as side information to nodes with negligible overhead.
Therefore, the complexity of step 7 is dominated by one
multiplication per candidate frame. Since at any iteration
over r, the number of candidate frames cannot be larger
than NW, the minimization complexity is at most NW per
value of r and per MV-GOP. Since NW values of r are
considered, the complexity of the scheduling algorithm
is dominated by at most N>W? multiplications per MV-
GOP. With the configuration used in our simulation setup,
this amounts to 5000 multiplications per second, which
is assumed to be negligible with respect to other tasks of
each node (e.g., video decoding for display).

A key point in this algorithm is the labeling of frames
with fictive rate and distortion values. If we cluster many
frames with the same label, we increase the chance of
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different nodes selecting different schedules, thus reduc-
ing the case of linear-dependent packets in NC. On the
other hand, large clusters also increase the chances of
having RD labels that differ significantly from the actual
RD values. This implies an RD-sub-optimal scheduling.
In conclusion, the clustering must be carefully performed,
taking into account the expected similarity of RD values
among different frames.

A simple clustering scheme is to assign all the frames
on the same prediction level to the same cluster. This
scheme is independent from the actual RD properties of
the sequence and can be easily implemented; nevertheless,
it can be quite efficient if the views have frame-by-frame
similar RD properties and is the approach that we have fol-
lowed in our experiments. If the corresponding frames of
different views have unbalanced properties, then a more
sophisticated scheme can be employed.

4.1 Arunning example
An example of two different scheduling orders is pre-
sented in Fig. 6. For the sake of simplicity, only the

3

o9 9

Fig. 6 Two possible schedules (first 20 rounds). The numbers indicate the round in which the frame is included in the coding window. The dashed
border identifies which frames have not been selected yet for inclusion in the coding window at the 20th round

©
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scheduling for the first 20 packets is presented. We
observe that since clustering has been performed at pre-
diction level, when Algorithm 1 is run, at step 8, any frame
of a given prediction level can be selected.

In this example, we show how the algorithm could run
within nodes 5 and 6 in Fig. 3. Their coding windows
are depicted, respectively, in the top and bottom parts of
Fig. 6. In this case, a receiver such as node 8 would see
M = 2 sources (or senders).

Let f(v, k) be the kth frame in display order of view v,
with the views denoted top to bottom as 1,2, .. .,5 so that
v = 3 is the central view.

In the first round, senders 5 and 6 each consider predic-
tion level Ly only. As a result, they have an identical coding
window containing only the I-frame of the central view—
which is the only frame in the cluster of prediction level
Lo: Wis = Wie = {f(3,0)}, where W, is the coding
window of sender k at round r.

In the second round, senders 5 and 6 each randomly
select a frame from prediction level L;, likely a dif-
ferent one. Let us, for example, assume that W5 =
[£(3,0),£(4,0)} and Wh = {£(3,0),£(3,4)}.

In the following rounds, both senders keep adding a ran-
dom frame from the cluster of prediction level L; to their
coding windows, until no frame is left to be selected:

W5 =Whs U {f(5,0)}
Was = Wss U {f(1,0)}
Wss = Was U {f(2,0)}

Wi =Whe U {f(2,0)}
Wae = Wi U {f(1,0)}
Wse = Wags U {f(5,0)}

Eventually, both senders will have included the whole
cluster of frames of prediction level L; in their coding win-
dows, which would therefore be again identical: Wes5 =
W(),G = {f(l: 0)’f(2r 0)’f(3r O)?f(3¢ 4)’f(4'7 0),f(5, 0)}

On the receiver side (node 8), let us consider the set U,
of the decodable frames received by the end of round r.

In the first round, since the coding windows of the
two senders are identical, the receiver only obtains one
decodable frame, U1 = {f(3,0)}.

Then, since the schedules of 5 and 6 diverge, the receiver
starts obtaining on average more than one new decodable
frame per round:

Uy =U U{f(4,0),/(3,4)}
Us =Uy U{f(5,0),/(2,0)}
Uy =U3 U {f(l,())}

Eventually, the receiver is able to decode the whole
prediction level L; (and prediction level Ly, which is com-
posed of f(3,0) alone). As a consequence, the following
packets received from 5 and 6 will not be innovative,
meaning that they are linear combinations of the packets
in U, and do not increase its rank: Ug = Us = Uy. How-
ever, this redundancy is effective against packet losses.
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The same algorithm is applied for subsequent prediction
levels until the whole GOP is transmitted.

More in general, once the order of inclusion has been
selected, each node generates a set of NW mixed pack-
ets by applying EWNC, while the original stream will be
discarded. When a node receives a request from one of
its neighbors to stream the content, it will answer with
as many combination packets as its capacity allows. The
receiver will then collect all the packets it receives from
its neighbors and try to decode as many video frames
as possible. It will then select a view of the content and
display the relative decoded frames, achieving a video
quality depending on the frames it received and the view
it selected. The node will also in turn generate new com-
binations to contribute to future requests.

In this description of the scheduling algorithm, we
assumed for the sake of simplicity that each view frame
fits in one packet. However, the algorithm is immedi-
ately generalized to the case when any other data struc-
ture is used, provided that it is possible to determine
its rate, distortion, and coding dependencies. For exam-
ple, slices could be used; or more than one frame can be
included in the same packet. Given these three pieces of
information, Algorithm 1 can be run on any coded data
structure.

5 Experimental results

In this section, we present the results of the proposed
technique and compare them with three different ref-
erence techniques. The simulation scenario is the one
depicted in Fig. 1 of Section 3.

The receiver R is trying to obtain the multi-view con-
tent from its neighbors S, m € {1,..., M}, referred to as
senders or sources, each connected to the receiver with
a channel having capacity C,. The channel may be a
PEC with packet loss rate ¢, or a GE characterized by
{eG, B, PGB, PBG}. The receiver, at each GOP, randomly
selects a view according to the probability distribution of
p. In the first experiment, we will consider a PEC chan-
nel with a perfect knowledge of user preferences. Later, we
will show the results when a GE model is employed and
when preference estimation is not perfect.

We have selected three reference techniques to be com-
pared with our proposed technique.

e The first reference uses EWNC and an RD-optimized
scheduling to select the order of inclusion in the
coding window. However, unlike our proposed
technique, the preferences of the receiver are not
taken into account and the expected distortion is
measured simply as the mean of the distortion on the
views. This is equivalent to assume a uniform
distribution for p independently from the actual
distribution. This technique is practically equivalent
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to the one previously proposed by the authors in [44]
and is labeled EWNC in the figures.

e The second reference uses practical network coding
[25] to transmit the stream. Since the senders are
uncoordinated, they are not aware of the number of
other senders or the capacities of their channels.
Therefore, they use a coding window of the same size
of the generation (i.e., the same size as the GOP).
This technique is labeled PNC in the figures. In our
scenario, each of the senders generates as many
packets as it is the rank of the input generation, i.e.,
no redundancy is added by the senders. However,
from the receiver side, the redundancy is inherent in
having M > 1 uncoordinated senders transmitting
linear combinations of the same sender generation.
So, in each of our scenarios, the redundancy is
r=@M-1)/M.

e The last reference does not use network coding, nor
it is aware of the user preferences. This technique is
inspired by classical replication schemes, such as the
one proposed in [47], and is labeled NO NC in the
figures.

We used four common multi-view video sequences:
“Ballet,” “Bookarrival,” “Breakdancers,” and “Doorflowers”
They have 1024 x 768 pixels and 25 frames per sec-
ond. We used 100 frames per view and the first 5 views
per sequence, for a total of 2000 frames. They have
been encoded in H.264/MVC using the GOP structure
described in Section 3 and depicted in Fig. 2, with QPs
31, 34, 37, and 40. The corresponding coding rates range
from 280 to 1570 kbps per view. The results presented are
obtained averaging over at least 100 runs and over all the
sequences.

We tested the system using four models of view pref-
erences. In the first one, called “peaky” distribution, the
central view has a given probability p. and the other views
share uniformly the residual probability. In a second one,
called “triangular,” probabilities increase linearly from the
left-most view to the central, then they decrease sym-
metrical up to the right-most view. A third model uses

a discrete Gaussian-like distribution, where probability of
(k=)
view k is proportional to e 202 , where c is the index of

central view. Finally, we consider a “bimodal” distribu-
tion where two views, symmetrical with respect to the
central one, have the same probability, and the remain-
ing share the residual probability. We consider at least two
cases for each of the models, ending up with the probabil-
ity distributions shown in Table 2. All these distributions
are characterized by a single parameter, the probability of
the preferred view. We refer to this parameter as p. even
though in the bimodal case, this is not the probability of
the central view.
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Table 2 View preference distributions used in the experiments

View 1 2 3 4 5

Peaky 0.1250 0.1250 0.5000 0.1250 0.1250
Peaky 0.0625 0.0625 0.7500 0.0625 0.0625
Gaussian 0.0216 0.2284 0.5000 0.2284 0.0216
Gaussian 0.0006 0.1244 0.7500 0.1244 0.0006
Triangular 0.0000 0.2500 0.5000 0.2500 0.0000
Triangular 0.1000 0.2250 0.3500 0.2250 0.1000
Bimodal 0.0000 0.5000 0.0000 0.5000 0.0000
Bimodal 0.1000 0.3500 0.1000 0.3500 0.1000

For each GOP, each user randomly selects a view
according to the distribution of p, decodes the corre-
sponding frames, and measures the PSNR as

2552
PSNR,, = 10log,, S Dy (3)
y vy

that is, the distortion is the weighted MSE described in
Section 4. This PSNR is reported as a function of the chan-
nel capacity, which in turn is expressed as a percentage of
the video stream rate.

The interesting use case is when the channel capac-
ity is intermediate between a very low value (where the
only possible strategy is to send the I-frame of the GOP)
and high values, where any solution would work quite
well. The results of these experiments are reported in the
following.

We start by considering the peaky distribution. In Fig. 7,
we report a comparison with the reference techniques for
a two senders’ scenario, PEC channel with packet loss rate
of 10 and 30 %. The probability of the receiver displaying
the central view is p. = 50 %, while the other views are
equally probable.

First of all, we observe that our proposed technique out-
performs all of the reference techniques for the majority
of the values of channel capacity and has very similar
performances in the remaining cases.

We also observe that, if no network coding is used, each
received packet increases the PSNR. However, the trans-
mission cannot recover from losses, thus the maximum
quality is not achieved. The EWNC technique follows the
same trend as the NO NC technique, but with slightly bet-
ter performance, due to the effects of NC that partially
compensates for the losses.

Conversely, PNC eventually achieves the maximum
quality and can provide, for low loss rates, slightly bet-
ter video quality than the proposed technique within a
range of channel capacities (about 70 to 80 % of the stream
rate for up to a 10 % loss rate ) but the receiver cannot
decode almost any frame if the capacity of the senders
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is below a threshold of about 50 % of the stream rate.
For higher loss probabilities, the PNC approach is even
more impaired and is practically useless unless the chan-
nel capacity approaches the stream rate. The necessity
of a high minimum capacity to achieve any acceptable
quality is a very undesirable property in a wireless envi-
ronment; as in a mobile scenario, the channel conditions
could rapidly become very harsh, leaving then the node
with no useful data. Also, it is worth noticing that, as
mentioned in Section 1, the rate of a multi-view stream
can be several times larger than that of the traditional,
single-view, stream. The mobile nodes are therefore likely
to have an uplink capacity that is only a small fraction of
the multi-view stream rate.
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Table 3 PSNR gain of the proposed technique with respect to
the references, averaged over the channel capacity. M = 2
sources, peaky distribution, P- = 50 %

e=5% e=10% e=20% e=30%
NO NC 0.86 1.10 4.95 6.08
PNC 7.16 7.76 993 12.29
EWNC 0.50 047 0.63 043

In Table 3, we reported the PSNR gain of the proposed
technique with respect to the three reference techniques
averaged along the channel capacity and for different
values of packet loss probability. We observed that the
proposed technique outperforms in average all the refer-
ences, even though in this configuration, EWNC achieves
a close performance. In the following tables from 4,
5, and 6, we show the result for similar experiments
where we just change the preference probabilities. Gains
are even larger for distribution other than the peaky
one.

In Fig. 8, we present the results for the same number of
senders and the same packet loss rates, when the prob-
ability of the receiver of displaying the central view is
Pc = 75 %, while the other views are equally probable.
We also reported in Table 7 the average PSNR gains of the
proposed technique with respect to the references. Tables
from 8, 9 and 10 report results for the other distributions,
again in the case where the preferred view has a large
probability. The proposed techniques report consistent
gains in all these configurations.

As we can see both from the table and the figure,
while the performance of the proposed technique and
of PNC stays almost unaltered, the performance of the
EWNC and of the NO NC techniques drops visibly. This
can be explained by the following observations: the pro-
posed technique adapts its coding window inclusion order
to the distribution of the preferences, thus producing a
scheduling quasi-optimal with respect to the preferences
no matter what these are. On the other hand, the PNC
technique imposes joint decoding of the whole generation,
so the order of inclusion is irrelevant. Finally, both NO NC
and EWNC do use an RD-optimized scheduler to decide
their order of transmission and inclusion (respectively),

Table 4 PSNR gain of the proposed technique with respect to
the references, averaged on the channel capacity. Triangular
preference distribution, P = 35%. M = 2

e=5% e=10% e=20% e=30%
NO NC 0.75 1.15 5.10 6.05
PNC 7.02 7.78 9.71 12.06
EWNC 0.30 0.39 0.33 0.07
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Table 5 PSNR gain of the proposed technique with respect to
the references, averaged on the channel capacity. Gaussian
preference distribution, P = 50 %. M = 2

e=5% e=10% e=20% e=30%
NO NC 1.61 1.91 5.65 533
PNC 7.77 842 10.48 11.59
EWNC 147 1.44 1.63 1.08

but since they do not take into account the receiver’s
preferences, their estimation of the expected distortion
is incorrect, resulting in a sub-optimal order. In fact, by
averaging the PSNR over the views, these two models
implicitly assume a uniform distribution of preferences.
We can therefore expect that their performance will be the
less effective the less the preference distribution resem-
bles a uniform distribution, which is what we observed
experimentally.

This is confirmed by using the other preference distri-
butions, as also shown in Fig. 9a, b .

In conclusion, with M = 2 sources, the proposed tech-
nique performs largely better than PNC and NO NC,
especially when the channel conditions are harsh (high
loss rate, small capacity) and the preferences are skewed.
It keeps a smaller gain over EWNC, around 0.5 dB when
Pc = 50 % and 1.5 dB when p, = 75 % for the peaky
distribution, and higher for others.

In Figs. 10 and 11, we present analogous results for M =
4 sources and for p, = 50 % and p. = 75 %, respectively.
Likewise, Tables 11 and 12 present the averaged PSNR
over channel capacity at several loss rates. Similar results
are obtained for the other distributions. We do not report
them for the sake of brevity. However, as for the previous
case, the peaky distribution is the least favorable to our
technique.

We observe that increasing the number of sources
improves the performance of all techniques. However, the
greatest effect is visible in the PNC technique as, hav-
ing the largest coding window for any value of capacity,
it is the one that benefits most from the diversity of the
received packets. This translates in a reduction of the min-
imum capacity needed to achieve an acceptable quality
and the minimum capacity needed to achieve the same
quality as the proposed technique (and eventually surpass

Table 6 PSNR gain of the proposed technique with respect to
the references, averaged on the channel capacity. Bimodal
preference distribution, P = 35 %. M = 2
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it). These minimum capacities of course are affected neg-
atively by the packet loss rates, and the range of capacities
in which PNC can outperform the proposed technique
narrows further when the distribution of the receiver’s
preferences is less uniform (Fig. 11). Similar results are

Table 7 PSNR gain [dB] of the proposed technique with respect
to the references, averaged on the channel capacity. Peaky
preference distribution, Pc = 75 %, M = 2

e=5% e=10% e=20% e=30% e=5% e=10% e=20% e=30%
NO NC 1.07 147 587 6.63 NO NC 1.48 1.72 4.85 6.27
PNC 7.29 8.07 10.08 1239 PNC 778 8.36 1048 12.91
EWNC 038 0.46 0.50 019  EWNC 145 147 1.60 1.53
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Table 8 PSNR gain of the proposed technique with respect to
the references, averaged on the channel capacity. Triangular
preference distribution, P = 50%. M = 2
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Table 10 PSNR gain of the proposed technique with respect to
the references, averaged on the channel capacity. Bimodal
preference distribution, P = 50 %. M = 2

e=5% e=10% e=20% e=30% e=5% e=10% e=20% e=30%
NO NC 251 287 5.09 292 NO NC 3.05 249 529 458
PNC 8.14 8.98 9.56 9.02 PNC 8.57 8.63 9.04 10.38
EWNC 248 2.52 145 0.86 EWNC 249 1.69 049 0.20

obtained for the other distribution, as shown in Fig. 12.
Moreover, the proposed technique still provides globally
better performance than the reference ones, as shown in
Tables 11 and 12. As expected, the gains are larger for less
uniform preference distributions and the gain with respect
to PNC increases with the packet loss ratio ¢.

If the number of available sources increases, the PNC
approach will finally provide the best performance. In our
experiments, we found that the threshold is M = 6 for
a packet loss ratio ¢ = 10 %. However, we underline
that all the parameters of these simulations (sender uplink
capacities, packet loss rate, user preferences, and in par-
ticular number of senders per receiver) are in general not
under control of the service provider. Thus, even though
there exist specific scenarios in which PNC could provide
a better service than the proposed technique, the latter has
a more stable and predictable behavior, much less influ-
enced by these factors, and in particular by the network-
dependent factors, which—in a wireless network—could
change frequently and abruptly.

In Fig. 13, we show the distribution of the PSNR’s per
view in the case of Gaussian preference distribution, p, =
50 %, loss rate = 10 %, and M = 2 sources. We observe
that when the channel capacity is small, our technique
allocates the resources to the central view, in such a way
that the PSNR distribution has a behavior similar to the
view preference distribution. On the contrary, the other
strategies have a quite uniform per-view PSNR. Of course,
when the capacity is high, all the strategies achieve very
high PSNR over all the views. Lower PSNR for PNC and
NO NC is explained as before, i.e., these techniques are
less robust to losses.

Even though, as we stated in Section 3, the estima-
tion of the preference distribution is outside the scope
of this article, it is worth mentioning the effects of an

Table 9 PSNR gain of the proposed technique with respect to
the references, averaged on the channel capacity. Gaussian
preference distribution, P = 75 %. M = 2

e=5% e=10% e=20% e=30%
NO NC 2.76 2.73 4.94 4.22
PNC 848 8.87 10.05 10.67

EWNC 294 2.66 2.1 0.23
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Fig. 9 Comparison of the average PSNR of the decoded sequences
(2 sources, packet loss rate 10 %). View preference distributions are
Gaussian and bimodal, with maximum probability p equal to 50 %
(top) and 35 % (bottom). The capacity of the channels is expressed as
a ratio of the rate of the stream. For each sequence, the PSNR is
computed as the average over the views weighted by the preference
probabilities as shown in the panel




Greco et al. EURASIP Journal on Advances in Signal Processing (2016) 2016:17

Page 15 of 20

401

View preference distribution
.75

o
2

35

Probability
S
I
B

)

2 3 45
View index

= = =NoNC
15 § —¥—PNC
—O— EWNC
= Proposed

0 5 10 1520 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100
Capacity [%)]

(a) M=4 e=10% po=50%

401

View preference distribution
0.75.

o
2

o
Y]
2]

w
o
T
Probability

o

2 3 4 5
View index

30
E)
225’
20
= = =NoNC
151 f —3— PNC
—O— EWNC
—E— Proposed
0 S S S
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100

Capacity [%]
(b) M=4 e=30% p.=50%

Fig. 10 Comparison of the average PSNR of the decoded sequences
(4 sources, 50 % probability of the receiver displaying the central
view). Packet loss rates are 10 % (top) and 30 % (bottom). The capacity
of the channels is expressed as a ratio of the rate of the stream. For
each sequence, the PSNR is computed as the average over the views
weighted by the preference probabilities as shown in the panel

401

View preference distribution
0.75

o
@

351

o
N
&

Probability

1.2 3 45
View index

w
o
T

PSNR [dB]
N
(S
T

= = =NoNC
—— PNC
—O— EWNC
—H— Proposed

DO v S S S S
0 5 10 1520 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100
Capacity [%]

(@) m=4 c=10% pe=75%

401
View preference distribution
075
%o.s """""
35 Soas
N FEEEE
123 45
View index
30+
g
§25*
S
20
= = =NoNC
15+ —— PNC
—O— EWNC
—f— Proposed
s S S S S
0 5 10 1520 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100

Capacity [%]
(b) M=4 e¢=30% p.=75%

Fig. 11 Comparison of the average PSNR of the decoded sequences
(4 sources, 75 % probability of the receiver displaying the central
view). Packet loss rates are 10 % (top) and 30 % (bottom). The capacity
of the channels is expressed as a ratio of the rate of the stream. For
each sequence, the PSNR is computed as the average over the views
weighted by the preference probabilities as shown in the panel

incorrect preference model on the performances of the
technique. The effect on our technique is that the perfor-
mance is negatively affected and becomes closer to those
of the EWNC technique. Since the EWNC technique is
equivalent to ours when a uniform probability model is
assumed, our technique still outperforms this reference as
long as the model used is a better approximation of the
real distribution than the uniform model, e.g., in terms
of Kullback-Leibler divergence. In order to prove this, we
performed an experiment in which the proposed tech-
nique uses an estimation of the central view probability,
Pe € {10 %,20 %,30 %,50 %,60 %,75 %,90 %}, while
the true user preference is p, = 50 %. In order to keep

things simple, the probability on the views other than cen-
tral is always uniform. Then, we computed the PSNR as a
function of the channel capacity for the different prefer-
ence estimations. The results are reported in Fig. 14 for 2
sources and & = 10 %. The average APSNR with respect
to the perfect estimation is reported in Table 13, together
with the relative entropy of the estimated distribution with
respect to the real one. We observe that the PSNR losses
are larger when the estimated probability is further from
the real one. However, as we can see in Table 13 and in
Fig. 15 (that reports the same results graphically), it is bet-
ter to overestimate p. than to underestimate it. We also
observe that, unless we use a very bad estimation of p.
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Table 11 PSNR gain of the proposed technique with respect to
the references, averaged over the channel capacity. M = 4,

Pc=50%

e=5% e=10% e=20% e=30%
NO NC 1.22 1.32 1.20 263
PNC 0.95 1.78 246 3.60
EWNC 041 0.72 0.61 0.53

(i.e., pc = 10 %), the global performance is still better than
EWNC, which corresponds to the point p. = 20 %. In
conclusion, even when the preference probabilities are not
very precisely estimated, the proposed technique can pro-
vide better performance than the reference ones, provided
that the estimated preferences are not much worse than
the implicit estimation of EWNC.

In a further experiment, we considered two new clus-
tering structures, to assess how these impact on the rate-
distortion performance of the system. We used the same
conditions as in Figs. 7a and 10a, i.e., peaky distribution,
Pc = 50 %, error probability ¢ = 10 %, and M = 2 or
M = 4 sources.

1. In the first case, we use a larger number of clusters:
this means that the labels are better representative of
the clusters, but the “randomness” of the approach is
limited. For M = 2 sources, we found a practically
identical PSNR result with respect to the initial
clustering, while for M = 4, we registered a very
small loss (APSNR = —0.06 dB). This is reasonable;
having small clusters makes ineffective having
multiple sources, since the senders are obliged to
pick frames in the small sets.

2. In the second case, we used a smaller number of
clusters, i.e., we merged prediction levels two by two.
This means that we have large clusters, and the
hypothesis of similar rates and distortions within a
cluster is less reasonable. On the other hand, we
improve the “randomness” of the algorithm. We
observed slightly larger losses both for M = 2
(APSNR = —0.07 dB) and for M = 4
(APSNR = —0.12 dB); we are not able to take
advantage of the improved randomness, and we pay
the fact of less representative cluster labels.

Table 12 PSNR gain of the proposed technique with respect to
the references, averaged over the channel capacity. M = 4,
Pe=75%

e=5% e=10% e=20% e=30%
NO NC 1.85 1.76 1.77 3.02
PNC 1.59 2.14 2.98 4.07
EWNC 142 1.52 154 1.46
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Fig. 12 Comparison of the average PSNR of the decoded sequences
(4 sources, packet loss rate 10 %). View preference distributions are
triangular and bimodal, with maximum probability p. equal to 50 %.
The capacity of the channels is expressed as a ratio of the rate of the
stream. For each sequence, the PSNR is computed as the average
over the views weighted by the preference probabilities as shown in
the panel

As a conclusion from these new tests, we observe that
the structure of the cluster has some impact on the global
RD performance, related to the trade-off between rep-
resentation and randomness. However, in all cases, the
performance is better than the references.

In the last experiment, we changed the channel model
and used a more realistic Gilbert-Elliot model, whose
parameters are described in Table 14. This corresponds
to a global packet loss ratio of 14.0 %. We performed the
same experiment as the one in Fig. 7, using M = 2 sources

and p.

= 50 % and p. = 75 %, respectively. The PSNRs

as a function of the channel bandwidth for the proposed
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and reference techniques are shown in Fig. 16, while the
average PSNR gains are reported in Table 15. We observe
results similar to those obtained for the PEC same global
loss probability, for both values of p.. Moreover, the pro-
posed technique outperforms the others for practically all
the values of the channel capacity. In conclusion, chang-
ing the channel model does not modify a lot the rank-
ing among the tested techniques, and the proposed one
confirms being the best when the transmission conditions
are the most difficult.

Table 13 PSNR losses of the proposed technique and relative
entropy of the estimated preference distribution with respect to
the perfect estimation pc = 50%. M =2ande = 10%

be D(p!1p) A PSNR
10 % 0.74 —1.14
20% 032 —047
30% 0.13 —023
60 % 0.03 —0.03
75% 021 —0.08

90 % 0.74 —0.40
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To summarize, we can conclude that our approach,
thanks to the early decodability offered by EWNC and the
a priori on the users in terms of distribution of the pre-
ferred views, is able to provide both a more consistent
video quality, and—in the vast majority of scenarios—
better than PNC. Other approaches, such as using EWNC
without exploiting the preference distribution, or not
using NC at all, are always outperformed by the proposed
technique. Even when the estimation of preferences is
not perfect, the proposed technique is worth using, pro-
vided that this estimation is not too wrong. With respect
to PNC, we observe that the higher gains are achieved
when the number of senders is small, the capacities of
the channels are low, and the packet loss rate is high. In
other words, the benefits of the proposed technique are
more visible when the transmission conditions are harsher
(e.g., small capacity, high error probability), which is a
particularly interesting case for wireless services.

6 Conclusions

In this work, we presented a novel technique for dis-
tributed video streaming of multi-view content over a
wireless network. The challenge consists in transmitting
a multi-view stream, with the associated high bitrate, in

Table 14 Gilbert-Elliot model parameters used in the
experiments
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Fig. 16 Comparison of the average PSNR of the decoded sequences
(2 sources) using a Gilbert-Elliot channel model (see Table 14). The
probabilities of the receiver displaying the central view are 50 % (top)
and 75 % (bottom). The capacity of the channels is expressed as a ratio
of the rate of the stream. For each sequence, the PSNR is computed as
the average over the views weighted by the preference probabilities

a mobile network where the channel capacities are lim-
ited and the packet loss rates may be high. To address this
challenge, we propose to use network coding as a trans-
mission technique, which—thanks to its unique property
of allowing uncoordinated cooperation of the nodes—is

Table 15 PSNR gain of the proposed technique with respect to
the reference, M = 2. Gilbert-Elliot channel with parameters in
Table 14

e 10%
&B 30 %
PG 5%

PBG 20 %

pe =50% pe=75%
NO NC 336 394
PNC 842 902
EWNC 044 141
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able to fully exploit the available capacity. In particular, in
order to dynamically adapt to the network conditions, we
propose to use expanding window network coding, a net-
work coding scheme that allows instant decodability of the
combined packets.

In order to be able to adapt the transmission to the
channel capacity, the frames are included in the coding
window of each sender in an order determined by an
RD-optimized scheduler. The key idea is to use the users’
preferences to identify the parts of the content more
likely to be needed by the receiver in order to display its
selected view. This induces a definition of the expected
distortion of the stream as a weighted average of the
distortion of the views. Using this metric, in order to
reduce the probability of generating non-innovative
packets, the senders generate a simplified probabilistic
RD model that provides them with a degree of freedom
in the choice of the schedule. Thus, the senders are able
to generate a multitude of different, close to the opti-
mum, network-coded flows that, when decoded jointly
by the receiver, allow for a high and stable expected video
quality.

We compared the performance of our proposed method
with several techniques, in a wide range of scenarios, in
terms of number of senders, channel models and capacity,
user preferences, and quality of the preference estimation.
We observed that the introduction of the preferences,
jointly with the constraint imposed on the instant decod-
ability of the selection, significantly improves the perfor-
mance w.r.t. the reference techniques in the vast majority
of the scenarios, in terms of video quality (PSNR) for a
given capacity. Possible future work includes the develop-
ment of a large-scale interactive multi-view distribution
system, in particular in the direction of a joint design of
an overlay management protocol that could select which
nodes of the network should rely the stream. This opti-
mization could be performed using topological informa-
tion inferred from the packet exchanges of neighboring
nodes.
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