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Abstract

Image with non-uniform blurring caused by camera shake can be modeled as a linear combination of the
homographically transformed versions of the latent sharp image during exposure. Although such a geometrically
motivated model can well approximate camera motion poses, deblurring methods in this line usually suffer from the
problems of heavy computational demanding or extensive memory cost. In this paper, we develop generalized
additive convolution (GAC) model to address these issues. In GAC model, a camera motion trajectory can be
decomposed into a set of camera poses, i.e., in-plane translations (slice) or roll rotations (fiber), which can both be
formulated as convolution operation. Moreover, we suggest a greedy algorithm to decompose a camera motion
trajectory into a more compact set of slices and fibers, and together with the efficient convolution computation via
fast Fourier transform (FFT), the proposed GAC models concurrently overcome the difficulties of computational cost
and memory burden, leading to efficient GAC-based deblurring methods. Besides, by incorporating group sparsity of
the pose weight matrix into slice GAC, the non-uniform deblurring method naturally approaches toward the uniform
blind deconvolution. Experimental results show that GAC-based deblurring methods can obtain satisfactory
deblurring results compared to both state-of-the-art uniform and non-uniform deblurring methods and are much
more efficient than non-uniform deblurring methods.
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1 Introduction
Image blur is generally inevitable due to various fac-
tors such as defocus and camera shake. Blind deblurring
from a real-world blurry image that needs to estimate the
blur procedure and latent sharp image is a very ill-posed
problem. Recently, several hardware-assisted approaches
had been developed [1–6], by which additional infor-
mation can be acquired to reduce the ill-posedness of
the blind deblurring. These hardware-assisted approaches
can provide much easier deviation of the blur or sharp
image, but require complex camera configurations [1, 2]
or dedicatedly designed hardware support [3–6], far from
taking the place of traditional imaging devices. At the
same time, in the era of ubiquitous acquisition of dig-
ital images using portable imaging devices, e.g., digital
camera, mobile phone, camera shake is often unavoid-
able during exposure procedure, a major cause that ruins
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a photograph. For effective and efficient deblurring, it is
crucial to develop appropriate forward blur model that
can well explain the image degradation process of camera
shake and then to design proper regularizers and efficient
optimization algorithms.
Earlier approaches on camera shake deblurring usually

assume that the blur is spatially invariant, due to which
the blurry observation can be simply modeled as con-
volution of sharp image and blur kernel, and deblurring
can thus be modeled as a blind deconvolution prob-
lem [7–12], where much attention had been devoted to
design effective optimization algorithms. Since the con-
volution operation can be computed efficiently via fast
Fourier transform (FFT), these blind deconvolution algo-
rithms are commonly efficient. On one hand, Fergus
et al. [7] adopted a mixture of Gaussians for representing
the distribution of gradients and introduced a variational
Bayesian (VB) approach [13] to estimate the blur kernel.
The theoretical and experimental analysis by Levin et al.
[8] demonstrated the advantages of VB over maximum
a posterior (MAP) and inspired a number of VB-based
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blind deconvolution algorithms [7, 8, 14, 15]. On the other
hand, by enforcing sparser priors [10, 16, 17] or exploiting
edge prediction step [9, 18–21] to select salient edges in
latent image, several carefully designed MAP algorithms
can also exhibit promising performance. Most recently,
discriminative learning approaches had been developed
to learn proper priors for better estimating blur kernel
[22–25].
However, camera shake blurring is often spatially vary-

ing and consequently cannot be simply modeled as a
single blur kernel. Thus, how to reasonably model camera
shake blurring plays a central role in non-uniform deblur-
ring problem that can be categorized from two aspects.
One direct strategy is to approximate the non-uniform
blur as multiple blur kernels, where the blurry image is
divided into several regions, and each region takes uni-
form blur. Themultiple blur kernels can then be estimated
from each region by performing uniform blind deconvolu-
tionmethod locally [26, 27]. Themethod proposed by Cao
et al. [27] incorporated natural and text-specific dictionar-
ies for the blind deblurring of natural scene text image. For
non-uniform deblurring, they simply adopted the strat-
egy of estimating the dedicated blur kernel for each text
field. However, this kind of approach does not consider
the global constraints on local blur kernels based on cam-
era motion trajectory. The other geometrical strategy is
based on the projective motion path blur model (PMPB)
[28], where a camera shake trajectory can be decomposed
into a sequence of camera poses lying in the 6D camera
pose space (x-, y-, z-axes rotation and x-, y-, z-axes transla-
tion), and consequently, the sharp image projected by each
pose is a homography, which is then weighted accord-
ing to its exposure time, resulting in the blurry image.
By far, there are mainly two simplified 3D geometrical
models to approximate the 6D subspace, i.e., Whyte et al.
[29] suggested to employ x-(pitch), y-(yaw), and z-(roll)
axes rotation, while Gupta et al. [30] proposed to adopt
x- and y-axes (in-plane) translation and z-axis rotation. By
combining the global camera motion constraint and the
efficient filter flow (EFF) framework [31], Hirsch et al. sug-
gested to construct local uniform blur models guided by
the geometrical constraint [32].
Even in the simplified 3D camera pose subspace [29, 30],

non-uniform deblurring methods still suffer the prob-
lem of high computational cost or extensive mem-
ory burden, placing prominent restriction on its wide
applications. To speed up the blur estimation step,
Gupta et al. [30] pre-computed a sparse matrix for
each homography transform, and thus, the forward non-
uniform blur operator can be equivalently defined as
the weighted sum of the homography transform matri-
ces, and Hu and Yang [33] further restricted the possible
camera pose in a low dimensional subspace. Although
the pre-computation techniques can relatively relax the

computational inefficiency, these accelerated methods
[30, 33] take increasing memory burden to store the
huge homography transformmatices. Even so, subsequent
computation of homography transform matrices is still
computationally costly, and thus, it is interesting to ask
that is it possible to design forward blur model to benefit
from FFT for efficient non-uniform deblurring?
In this paper, we propose generalized additive convolu-

tion (GAC) model, by which a camera motion trajectory
can be decomposed into in-plane translations (slice) or
roll rotations (fiber), resulting in slice GAC model or
fiber GAC model. In slice GAC model, a homography
is formulated as the rotation of the convolution image
of slice and sharp image, and in fiber GAC model, a
homography is the inverse polar transform of the con-
volution of a kernel with the transformed sharp image
(please refer to Section 3.2 for detailed proof), in which
the convolution operation can be efficiently computed
with the help of FFT. By this way, the GAC-based for-
ward blur models only require several FFTs and a number
of pixel-wise operations, significantly reducing computa-
tional complexity, and concurrently only the basis kernels
and a number of rotation matrices are required to be
stored so that the problem of memory burden is also
relaxed. Furthermore, a greedy algorithm is proposed to
generate a more compact set of slices and fibers from any
camera motion trajectory, resulting in hybrid GACmodel,
a more promising way to concurrently solve the problems
of computational inefficiency and memory burden. As for
the optimization algorithm, we adopt the MAP frame-
work to alternatively estimate non-uniform blur and latent
image, in which generalized accelerated proximal gradi-
ent (GAPG) algorithm [34], a much efficient optimization
algorithm for non-blind deconvolution, is employed for
GAC-based non-uniform deblurring.
Moreover, in slice GAC, we introduce group spar-

sity, i.e., l2,1-norm, on the pose weight matrix along the
rotation angle dimension, interestingly providing a way
to make non-uniform deblurring approach toward uni-
form blind deconvolution. Under alternative minimiza-
tion framework, we also propose an effective solution to
solve this problem. With the group sparsity constraint,
more slices with rotation angles around 0 can be activated,
and extremely when all the slices except angle 0 are inac-
tivated, the non-uniform delburring method can degrade
to uniform blind deconvolution.
Experimental results show that the proposed GAC

method can obtain comparable or better deblurring
results than the competing uniform and non-uniform
deblurring methods. Compared to non-uniform deblur-
ring method, GAC has a much lower peak memory
usage than [16, 30, 33] and is much more efficient
than the state-of-the-art camera shake removal methods
[16, 29, 30, 32, 33].
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We summarize our contributions as follows:

(1) We develop GAC framework together with two GAC
models, i.e., slice GAC and fiber GAC, for forward
modeling of camera shake blurring, by which FFT
can be employed for efficient computation.

(2) To further reduce the computational complexity, a
greedy algorithm is proposed to generate hybrid
GAC from any camera motion trajectory, resulting in
a more compact GAC model.

(3) As for the optimization algorithm, we adopt a fast
gradient method, i.e., GAPG [34], to estimate latent
image, contributing to the faster convergence of the
deblurring algorithm.

(4) By imposing group sparsity of pose weight matrix in
slice GAC, we interestingly provide a way to connect
uniform and non-uniform deblurring.

The rest of the paper is organized as follows. Section 2
provides a brief review on camera shake models and
optimization algorithms. Section 3 presents the pro-
posed GAC models, which in Section 4 are embedded
in non-uniform deblurring, and can be efficiently solved
via GAPG. Section 5 presents experimental results, and
finally, Section 6 concludes this paper.

2 Prerequisites and related work
For efficient non-uniform deblurring, it is crucial to
design forward blur models and efficient optimization
algorithms. In this section, we briefly review the original
projective motion path blur (PMPB) model and its simpli-
fied 3D approximation, and the optimization algorithms
in MAP-based deblurring.

2.1 Homography-basedmodel
In the PMPB model, a camera shaken image is geometri-
cally the integration of what the camera “sees” along the
motion trajectory that can be modeled in a 6D camera
pose space including x-, y-, and z-axes rotation and x-, y-,
and z-axes translation. With the discretion of the time
t and camera pose space, the integration can be rewrit-
ten as the weighted summation of all homographies in
the discrete camera pose space, where a homography is
the transformed sharp image projected by corresponding
camera pose.
For each pose j along the camera motion trajectory, the

corresponding homography can be represented as:

H j = C
(
Rj + tj

d
[
0 0 1

])
C−1 (1)

where C is the matrix of camera intrinsic parameters, d
is the depth of the scene, and Rj and tj are the rotation
matrix and translation vector, respectively.

Given H j, we can construct the corresponding warping
matrixK j. Figure 1 shows a flowchart of PMPBmodel, and
the PMPBmodel treats the process of non-uniform blur as
a summation over the images transformed by the warping
matrix

b =
∑

j
wjK jx + v = Kx + v (2)

where wj is the fraction of time the camera spent at pose j,
b ∈ R

n×n is the blurry image, x ∈ R
n×n is the latent sharp

image, K is the sparse warping matrix with size n2 × n2,
and v denotes the additive Gaussian white noise.
PMPB is faithful to real-world camera motion, but has

too many unknowns to be estimated. Fortunately, recent
studies have shown that the full 6D camera pose space can
be well approximated by the discrete 3D subspace of pitch,
yaw, and roll rotations [29], or the 3D subspace of in-plane
translations and roll rotation in wide focal lengths range
[30], which are both effective [35]. In [33], constrained
camera pose subspace was further introduced to refine
the set of camera poses. Interestingly, the global camera
motion constraint can be adopted to guide the construc-
tion of local blur kernels [32]. However, the method in
[29] suffers from the problem of heavy computational load
to compute huge warping matrices, while the methods in
[30, 33] suffer from the extensive memory burden prob-
lem to store huge warping matrices.

2.2 Additive convolution model
Deng et al. [36] suggested an additive convolution (AC)
model for non-blind deblurring, where non-uniform blur
is modeled as the weighted summation of the convolution
of the sharp image with a set of basis convolution kernels

b =
∑C

i=1
αi ◦ (x ⊗ ki) (3)

where ki is the i-th basis convolution kernel, αi denotes
the i-th weight matrix, ⊗ denotes the convolution oper-
ation, ◦ denotes the pixel-wise multiplication operator,
and C is the number of basis convolution kernels. With
FFT, the computational complexity of AC model is only
O(Cn2 log n). Furthermore, principal component analysis
(PCA) is adopted to learn the basis convolution kernels
in advance. However, when applied to blind non-uniform
deblurring, both the basis kernels and the weighted maps
should be updated in each iteration, making it unpractical
in blind deblurring of camera shaken images.
In this paper, we propose a fast forward blur model, i.e.,

GAC, to represent non-uniform blur caused by camera
shake, which is distinctly different with the existing mod-
els. Instead of utilizing sparse warping matrix [29, 30, 33],
GAC models reformulate homography as convolution
related to slice and fiber and can achieve better trade-off
between computational cost andmemory complexity. Dif-
ferent from [32], GAC is an efficient implementation of
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Fig. 1 PMPB model for camera shake blurring

the global geometric model rather than the locally uni-
form approximation. Compared with [36], the basis con-
volution kernels and the weighted maps can be efficiently
constructed based on the camera motion trajectory, and
thus is easy to update.

2.3 MAP-based blind deblurring
Given the blurry image b, MAP strategy is usually adopted
to estimate the blur K and the latent sharp image x by
minimizing the negative logarithm of posterior probabil-
ity with respect to K and x,

−logp(K , x|b) ∝ − logp(y|K , x) − logp(x)
− logp(K) (4)

∝1
2
‖Kx − b‖2 + �1(x) + �2(K)

where �1(x) denotes the regularizer on the latent sharp
image and�2(K) denotes the regularizer on the blur oper-
ator. For non-uniform blur, Kx = ∑

j wjK jx, where the
blur operator is parameterized by the weights wj. Like
the alternative updating strategy commonly adopted in
uniform blind deconvolution [16, 18], the estimation of
weight matrix W and latent image x should be alterna-
tively performed.
To constrain the ill-posed problem for better deblur-

ring quality, proper regularizers should be imposed. In 3D
camera pose subspace, only a few poses are active given a
camera motion trajectory so that it is reasonable to intro-
duce sparsity on W . In [29, 33], l2-norm of weight matrix
or its gradient is imposed, where the estimation of W
is a linear least square problem, which can be solved by
gradient-based optimization method, while in [30], non-
convex regularizer is introduced, which is optimized by an
iterative re-weighted least squares (IRLS).
As for updating the latent clear image, the edge predic-

tion step is usually necessary to guarantee the algorithm
converge to the desired solution, so that the sparsity,
e.g., total variation [29, 33], is also imposed. In earlier
researches, simple but efficient optimization method, e.g.,
Rachardson-Lucy (RL) algorithm, was adopted to solve
the problem [28]; however, the deblurring results often

suffer from ringing artifacts. As a non-blind deconvolu-
tion problem, fast gradient-based optimization method
has been intensively studied [37, 38]. The iterative shrink-
age thresholding algorithm (IST) [37] was first proposed,
and due to its simplicity and efficiency, two accelerated
IST-based algorithms had been developed, i.e., FISTA [39]
and TwIST [38], which both possess higher convergence
rate. Furthermore, Zuo and Lin proposed the GAPG algo-
rithm [34], which further accelerated the convergence rate
of APG algorithm.
In this paper, the GAC-based deblurring problem is

solved in the alternative minimization framework, where
the updating of pose weight matrix with both sparsity and
group sparsity regularizers can be solved, and the updat-
ing of latent clear image can be efficiently solved by GAPG
algorithm.

3 Generalized additive convolutionmodel for
camera shake

In this section, we first propose the general form of the
GAC model and then decompose camera motion trajec-
tory into slices and fibers, which provides a solution to
specify GACmodel for efficient modeling of camera shake
blurring. Finally, we propose a greedy algorithm to gen-
erate hybrid GAC model and discuss the memory and
computational complexity of the GAC model.

3.1 Generalized additive convolution model
The form of the GAC model is defined as

b =
∑C

i=1
f i

(
gi (x) ⊗ ki

)
(5)

where f i and gi are two pixel-wise operators. GAC is
the generalization of the AC model [36], by defining
f i(x) = αi ◦ x and gi(x) = x. Moreover, since both f i
and gi are pixel-wise operators, the computational com-
plexity of GAC is the same as that of the AC model,
i.e., O(Cn2log2n), where n2 is the number of pixels of
the image x. The smaller the C value indicates that GAC
model is more efficient. Thus, the key issue of GACmodel
is to better specify ki, f i, and gi to reduce the C value.
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3.2 Decomposition of slice and fiber
In this subsection, we show that camera poses in the 3D
camera pose subspace [30] can be decomposed into slices
and fibers, which then provides proper choices to design
ki, f i, and gi in GAC model to reduce C value.
In the 3D camera pose subspace [30], pose in a camera

motion trajectory is parameterized as

θ = (
θz, tx, ty

)
(6)

where θz is the roll angle and tx and ty are the translations
along x- and y- axes, respectively. For each pose in the 3D
camera subspace, θ j = (

θz,j, tx,j, ty,j
)
, by defining

Mθ j,r =
⎡
⎣ cos θz,j − sin θz,j tx,j

sin θz,j cos θz,j ty,j
0 0 1

⎤
⎦ (7)

the homography [40] can be defined as:

Hθ j = CMθ jC
−1

= C
(
Rθ z,j + 1

d ∗ tj
[
0 0 1

])
C−1

= C

⎡
⎣ cos(θz,j) − sin(θz,j) tx,j

sin(θz,j) cos(θz,j) ty,j
0 0 1

⎤
⎦C−1

(8)

where tj =[ tx,j, ty,j, 1]T is the translation vector, d is the
depth of the scene.
As in [30, 33], we also assume that the camera intrin-

sic parameters are known in advance, and the calibration
matrix has the standard form:

C =
∣∣∣∣∣∣
αx 0 x0
0 αy y0
0 0 1

∣∣∣∣∣∣ (9)

where αx = f ∗ mx_ccd
mx_im

is the scale factors relating pixels to
distance,mx_ccd is the maximum width of the CCD,mx_im
is the maximumwidth of the related image, αy = f ∗ my_ccd

my_im
is quantified in the same manner, f is the focal length, and
(x0, y0) is the center coordinate.
GivenHθ j , we can construct the corresponding warping

matrix K θ j (more detailed explanations can be found in
[30, 33, 36]).We then have that the homography transform
can be decomposed into in-plane translation followed by
roll rotation, yielding the following proposition.

Proposition 1.

K θ j = K θ j,rK θ j,t

Proof. By defining

Rθ j,r =
⎡
⎣ cos θz,j − sin θz,j 0

sin θz,j cos θz,j 0
0 0 1

⎤
⎦

Tθ j,t =
⎡
⎣ 1 0 tx,j
0 1 ty,j
0 0 1

⎤
⎦

and according to the definition of Mθ j in Eq. (7), it is
obvious to see that Mθ j = Tθ j,tRθ j,r . Based on the defi-
nition of Hθ j in Eq. (8), we can define Hθ j,r and Hθ j,t as
Hθ j,r = CRθ j,rC

−1 and Hθ j,t = CTθ j,tC
−1. One can easily

see that

Hθ j,tHθ j,r = CTθ j,tC
−1CRθ j,rC

−1

= CTθ j,tRθ j,rC
−1 = Hθ j

and we then have
H−1

θ j
= H−1

θ j,r
H−1

θ j,t (10)

Based on the definition of K θ jx, for the pixel at the
location [ lx1, lx2, 1]T , K θ jx assigns the value of the pixel

located at H−1
θ j

(
[lx1, lx2, 1]T

)
of x to the pixel located at

[ lx1, lx2, 1] of K θ jx. Based on Eq. (10), H−1
θ j

(
[lx1, lx2, 1]T

)

can also be explained as H−1
θ j,r

H−1
θ j,t

(
[lx1, lx2, 1]T

)
, which

means that K θ jx = K θ j,rK θ j,tx.

Proposition 1 indicates that K θ jx is the combination of
two atom operations, i.e., first translating the image x by
tx,j and ty,j along x-axis and y-axis respectively, and then
rotating the translated image by roll angle θz,j. So we can
rewrite K θ j,rx and K θ j,tx as

K θ j,rx = Rθz,j(x) (11)

K θ j,tx = ktj ⊗ x (12)

where Rθz,j denotes the pixel-wise image rotation opera-
tion, and the translation convolution kernel is defined as

ktj(x, y)
{
1, if x = tx,j and y = ty,j
0, else (13)

The non-uniform forward blur model Eq. (2) can be
further formulated as

Kx =
∑

θ j
wθ jK θ jx =

∑
θ j
wθ jK θj,rK θj,tx (14)

where wθ j denotes the contribution (weight) of pose θ j.
It should be noted that the poses along a real camera
motion trajectory form a connected 1D path, and thus,
the weights of most poses are zeros. So in Eq. (14), we can
only consider the subset of poses with positive weights,
P =

{
θ j : wθ j > 0

}
.

Finally, we define two special classes of subsets of P :
slice and fiber. A slice Sθ is defined as Sθ = {θ j =
{θz,j, tx,j, ty,j} : θ j ∈ P and θz,j = θ}, while a fiber
Ft is defined as Ft = {θ j = {θz,j, tx,j, ty,j} : θ j ∈
P and (tx,j, ty,j) = t}. Actually, P can be decomposed
into a number of non-intersected slices and fibers. In the
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following, we will introduce how to construct slices and
fibers fromP and how to reformulate camera shake as the
GAC model.

3.3 Slice-based GAC
Figure 2 shows an example of a slice of camera poses
which have the same roll angle. Given a slice Sθ , the blur
caused by camera motion within Sθ can be formulated as

K θx =
∑

θ j∈Sθ

wθ jK θ ,rK θ j,tx

=
∑

θ j∈Sθ

wθ jRθ (ktj ⊗ x) (15)

= Rθ

⎛
⎝

⎛
⎝ ∑

θ j∈Sθ

wθ jktj

⎞
⎠ ⊗ x

⎞
⎠

= Rθ

(
kSθ ⊗ x

)
where kSθ denotes the slice kernel with respect to the roll
angle θ .
For a general camera motion trajectory P , we first clas-

sify the poses inP into a number of non-intersected slices
with P = ∪θ {Sθ }, and then, the non-uniform blur in
Eq. (14) can be equivalently reformulated as

Kx =
∑

θ
Rθ

(
kSθ ⊗ x

)
(16)

It is obvious that this is a GAC model with f θ (x) =
Rθ (x) and gθ (x) = x. If the range of the roll angles is dis-
cretized into nz intervals, we can see that the number C in
slice GAC should be not higher than nz.
Similarly, we can define the adjoint operator KTy as

KTy =
∑

θ
k̃Sθ ⊗ RT

θ (y) (17)

where k̃Sθ is the adjoint operator of kSθ constructed by
flipping the kSθ upside-down and left-to-right, and RT

θ is
the strict adjoint operator of the discrete version of Rθ . It

Fig. 2 Poses of a camera motion trajectory which form a slice

is obvious that the adjoint operator in Eq. (17) is also a
GAC model and can be efficiently computed.
Finally, we discuss some implementation issues of slice

GAC. To implement Rθ , one can simply adopt the Matlab
command imrotate. To enhance the efficiency, we main-
tain a lookup table (LUT) for each discrete roll angle to
record the correspondence of the coordinates before and
after rotation. By discretizing the range of roll angles into
nz intervals, we pre-compute and store nz LUTs. In the
continuous case, R−θ is the adjoint operator of Rθ , but in
the discrete case, the error caused by discretization and
interpolation cannot be overlooked. Thus, instead of using
R−θ , we adopt the strictly adjoint operator RT

θ .

3.4 Fiber-based GAC
Figure 3 shows an example of a fiber of camera poses
which have the same translation t =[ tx, ty]T , which
applies a visual validation of our fiber-based GAC model.
Given a fiber Ft , the non-uniform blur caused by the
camera motion along Ft can be formulated as

Ktx =
∑

θ j∈Ft

wθ jK θ j ,rK θ j,tx

=
∑

θ j∈Ft

wθ jRθz,j(K θ j,tx) (18)

= IPT
(
wt ⊗ PT(K θ t x)

)

where θ t =[ 0, tx, ty]T , K θ t x denotes the in-plane transla-
tion operation, and PT(·) and IPT(·) stand for the polar
transform and inverse polar transform [41], respectively.

(a)Fiber (b) Sharp image

(c) Gupta et al. (d) F-GAC

Fig. 3 Simulated blurry images obtained using fiber GAC model
Eq. (20) and using the 3D camera pose subspace model in [30].
a Fiber, b sharp image, c blurry-image based on the model in [30],
and d blurry image based on fiber GAC model
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In the polar transform, we use the same interval to dis-
cretize angular and roll angles, and thus, the basis filterwt
can be defined as

wt = [
wt,θ1 ,wt,θ1 , · · · ,wt,θnz

]
(19)

where θ1 is the minimal roll angle and θnz is the maximal
roll angle.
We compare the model in Eq. (18) with the 3D cam-

era pose subspace model in [30] for the simulation of
blur caused by camera shake along a fiber. Figure 3 shows
the blurry images obtained by using these two methods.
One can easily see that the difference between Fig. 3c,
d is insignificant, which demonstrates that the model in
Eq. (18) can be used for modeling camera shaken image
with a series of roll rotations.
For a general camera motion trajectory P , we first clas-

sify the poses inP into a number of non-intersected fibers
with P = ∪t{Ft}, and then, the non-uniform blur in
Eq. (14) can be equivalently reformulated as

Kx =
∑

t
Ktx =

∑
t
IPT

(
wt ⊗ PT(K θ t x)

)
(20)

It is obvious that this is a GAC model with f t(x) =
IPT(x) and gt(x) = PT(K θ t x). If the range of the in-
plane translations is discretized into nx × ny intervals,
then the number C in fiber GAC should be not higher
than nxny.
We can then define the adjoint operator KTy as

KTy =
∑

t
K−θ t

(
PTT

(
w̃t ⊗ IPTT (x)

))
(21)

where w̃t is the adjoint operator of wt , and PTT and IPTT

are the adjoint operators of PT and IPT, respectively. To
enhance the computational efficiency, two extra LUTs are
pre-computed to record the correspondence of polar and
inverse polar transform, respectively. Moreover, we use
the strict adjoint operators of PT and IPT, i.e., PTT and

IPTT , to avoid the inconsistence caused by discretization
and interpolation.

3.5 Hybrid GAC for modeling
For GAC, the key to save computational cost is to reduce
C, the number of basis filters. Given a general cam-
era motion trajectory as shown in Fig. 4, neither pure
slice-based nor pure fiber-based GAC can guarantee suf-
ficiently small value of C. However, in a hybrid (slice
and fiber mixed) decomposition, only two slices and two
fibers are required to model the camera motion trajec-
tory, so that the computational complexity is significantly
reduced. Thus, we propose a greedy method to decom-
pose a camera motion trajectory into a hybrid set of slices
and fibers to reduce the C value.
Given the pose subset P and the 3D weight matrix

W with W (θz, tx, ty), the weight of the pose θ =(
θz, tx, ty

)
, in each iteration, the proposed method first

finds a candidate slice S
θ̂z
, and a candidate fiber Ft̂x,t̂y ,

compare their relative contributions, and then choose
the slice or fiber with higher weights. By this way, we
can obtain a slice set

{(
θj,Sj, kj

)
: j = 1, ..., ns

}
and a

fiber set
{(
ti,Fi,wj

)
: i = 1, ..., nf

}
. As shown in Fig. 4,

the proposed greedy algorithm can successfully decom-
pose the camera motion trajectory into two slices and
two fibers. The detailed algorithm is summarized in
Algorithm 1.
Based on the slice set and the fiber set, the non-uniform

caused by camera shake can be reformulated as

Kx =
∑nf

i=1
IPT

(
wi ⊗ PT(K θ ti

x)
)

(22)

+
∑ns

j=1
Rθj

(
kj ⊗ x

)

The adjoint operator KTy is then defined as

KTy =
∑nf

i=1
K−θ tPT

T
(
w̃i ⊗ IPTT (y)

)
(23)

+
∑ns

j=1
k̃j ⊗ RT

θj

(
y
)

Fig. 4 Decomposing a camera motion trajectory into a slice set and a fiber set
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Algorithm 1 Greedy algorithm for hybrid GAC
Input: P andW
Output: The fiber set

{(
ti,Fi,wj

)
: i = 1, ..., nf

}
and the

slice set
{(

θj,Sj, kj
)
: j = 1, ..., ns

}
.

1: WS(θz) = ∑
tx,ty W (θz, tx, ty), e = e0 = ∑

θz WS(θz),
WF(tx, ty) = ∑

θz W (θz, tx, ty), ns = 0, nf = 0, ε, 0 <

α, null fiber set and null slice set.
2: while e/e0 > ε do
3: (t̂x, t̂y) = argmax

tx,ty
WF(tx, ty) and wf = WF(t̂x, t̂y).

4: θ̂z = argmax
θz

WS(θz), ws = WS(θ̂z).

5: Update the slice set: If ws ≥ αwf , add the θ̂ thz slice
to the slice set, and modifyWS(θ̂z) = 0,WF(tx, ty) =
WF(tx, ty) − W (θ̂z, tx, ty), and ns = ns + 1.

6: Update the fiber set: If ws < αwf , add the (t̂x, t̂y)th
fiber to the fiber set, modifyWF(t̂x, t̂y) = 0,WS(θ̂z) =
WS(θ̂z) − W (θ̂z, tx, ty), and nf = nf + 1.

7: Update e = ∑
θz WS(θz).

8: k ← k + 1
9: end while

3.6 Discussions
With FFT, the computational complexity of the model in
Eq. (22) isO((ns+nf )n2 log2 n). If ns and nf are small, GAC
would be more efficient than the other methods. Let nz be
the number of intervals for the roll angle. It is reasonable
to assume that (ns + nf ) < nz; otherwise, we can use the
pure slice-based GAC model.
To further improve the computational efficiency, the

LUTmethod can be adopted for fast image rotation, polar
and inverse polar transform, and nz + 2 LUTs should
be pre-computed and stored in memory. In [30, 33], a
sparse n2×n2 matrix was constructed for each pose in the
3D camera pose subspace. Compared with the model in
[30, 33], GAC can achieve much better tradeoff between
memory and computational complexity.
In [32], camera shake blurring is approximated as the

sum of R2 uniformly blurry patches, and the computa-
tional complexity of the model in [32] is O(R2(n/R +
w)2 log2(n/R + w)), where w × w is the size of the blur
kernel. Compared with [32], when R and w are higher,
GAC would be computationally more efficient, and our
experimental results also validates the efficiency of GAC
against the model by Hirsch et al. [32]. Moreover, the
model in [32] is a locally uniform approximation of the
camera shake blurring model, while GAC can be strictly
equivalent with the geometric model in [30].

4 GAC-based non-uniform deblurring
In this section, by incorporating the proposed GAC for-
ward blur model into existing deblurringmodel, the GAC-

based non-uniform deblurring can be efficiently solved.
Then, by imposing l2,1-norm regularizer on pose weight
matrixW , the slice GAC deblurring can approach toward
uniform blind deconvolution.

4.1 GAC-based deblurring via GAPG
In typical non-uniform deblurring methods, TV reg-
ularizer on latent image and l2-norm regularizer on
pose weight matrix are imposed, yielding the deblurring
formulation

min
W ,x

∥∥∥∥∥
∑
θ∈P

wθK θx − b

∥∥∥∥∥
2

+ λTV(x) + τ‖W‖2 (24)

where λ and τ are trade-off parameters. By substitut-
ing the forward blur model with any GAC model, we
come to the GAC-based non-uniform deblurring method,
which can be solved by alternatively updating pose weight
matrix W and latent clear image x. By fixing x, we use
the method in [33] to update W , while by fixing W ,
we develop an efficient solution to x based on GAPG
algorithm.
In [34], GAPG was developed to solve uniform non-

blind deblurring, where the Lipschitz constant is general-
ized to diagonal matrix that can guarantee faster conver-
gence rate. By introducing two auxiliary variables dh and
dv, we reformulate the TV-based model into the following
equivalent problem

min
x,dh,dv

1
2

( μ ‖Kx − b‖2 + ‖dv − Dvx‖2 (25)

+ ‖dh − Dhx‖2 ) + λμ‖(dv dh)‖TV
whereμ is the relaxation parameter andDh andDv are the
horizontal and vertical gradient operators, respectively.
According to [34], in each iteration, several sub-problems
should be solved for the updating of x, dh, and dv, respec-
tively. We use the same method as [34] for updating dh
and dv and choose the proper Lipschitz matrix for updat-
ing x. For the updating of x, the subproblem is formulated
as

min
x

λmax
2

∥∥∥∥ x −
{
yx − λ−1

max

[
KT (

Kyx − b
)

+ DT
v

(
Dvyx − ydv

)
(26)

+ DT
h

(
Dhyx − ydh

) ] } ∥∥∥∥
where yx, ydv , and ydh have the same definition as in
[34]. Here, KT (

Kyx − b
)
is computed based on Eq. 22

and Eq. 23. In [34], λmax is set based on the inequality
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λmax ≤ (√
μ‖K‖2 + √

η‖Dh‖2 + √
η‖Dv‖2

)2 with η = 1,
‖Dh‖2 ≤ 2, and ‖Dv‖2 ≤ 2 [34]. The diagonal Lipschitz
matrix is

Lf = diag(λmaxI , ηI, ηI) (27)

By using smaller λmax and η, GAPG algorithm will con-
verge faster. For non-uniform blur, we choose ‖K‖2 = 1
based on the following proposition.

Proposition 2.

‖K‖2 ≤ 1

Proof. In matrix analysis, we have

‖K‖2 ≤ √‖K‖1‖K‖∞

where ‖·‖1 and ‖·‖∞ denote the largest l1-norm of the
columns and rows, respectively. For the uniform blur pro-
cedure b = Kx, where each row of K is a shifted version
of blur kernel k, Zuo and Lin had proved that the l1-norm
of the row of matrix K corresponding to the (i, j)-th entry
of b is ||k||1 [34]. For the non-uniform blur matrix K ,
(i, j)-th entry of b has its own blur kernel k(i,j), and con-
sequently, ||K ||∞ = max(i,j)||k(i,j)||1. By the non-negative
constraint ki ≥ 0,∀i and the normalization constraint∑

i ki = 1, l1-norm of any blur kernel is 1, i.e., ||k(i,j)||1 =
1. Thus, we have ||K ||∞ = 1. Similarly, ||K ||1 =
1 can be derivated from [34]. Thus, the inequality is
proved.

The updating of subproblems should be performed sev-
eral iterations. With the properly chosen Lipschitz matrix,
each variable has it own Lipschitz constant, rather than
the largest one adopted in APG algorithm, so that the
GAPG-based deblurring method has a faster convergence
rate.

4.2 Connection with uniform blind deconvolution
We impose group sparsity, i.e., l2,1-norm, on weight
matrix W along roll angle dimension to connect GAC-
based non-uniform deblurring and uniform blind decon-
volution

min
W ,x

∥∥∥∥∥
∑
θ∈P

wθK θx − b

∥∥∥∥∥
2

+ λTV(x) +
∑
θj

τθj‖W θj‖2 (28)

where τθj is the trade-off parameter controlling the weight
of all slices with angle θj, and by setting τθj=0 < τθi , ∀i > j,
the slices with larger rotation angle will be gradually inac-
tivated, and naturally, the non-uniform deblurring will
approach toward uniform blind deconvolution.
To solve the this problem, we also adopt the alternative

minimization strategy, where the updating of latent clear
image shares the same solution via GAPG as Section 4.1.
Due to the non-smoothness of l2,1-norm regularizer, we
propose an effective solution to solve it. By introducing
auxiliary variableW ′, the problem can be reformulated as

min
W ,W ′

∥∥∥∥∥
∑
θ∈P

wθK θx−b

∥∥∥∥∥
2

+
∑
θj

τθj‖W ′
θj‖2+

δ

2
‖W−W ′‖2(29)

where δ is the positive penalty parameter. For the W -
subproblem, it is also a linear least square problem, which
can be efficiently solved [33], and for theW ′-subproblem,
it is a standard l2,1-norm optimization problem, which can
be solved by group shrinkage operator [42].
The slice GAC with group sparsity provides a natu-

ral connection of non-uniform deblurring and uniform
deconvolution. When there are only camera in-plane
translations, i.e., no roll rotation, the camera shake blur-
ring will be uniform, and the slice GAC can play like the
traditional uniform blind deconvolution method. Other-
wise, roll rotations will cause the non-uniform blur, where
slice GAC can play like non-uniform deblurring method.
Figure 5 shows a deblurring example of the standard

slice GAC (S-GAC) and slice GAC with group sparsity

(a) Original image (b) S-GAC (c) GS-GAC
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(d) Slices weight distribution

Fig. 5 Comparison of standard S-GAC and GS-GAC. a Original camera shaken image. b Deblurring result by standard S-GAC method. c Deblurring
result by GS-GAC. d Distribution of slice angles where the weights with the same rotation angle are summated
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(a) Books (b) Butcher Shop (c) Statue

Fig. 6 The results of different GAC models on three real camera-shaken images. For the close-ups, from top to bottom rows are the input real
camera-shaken images, deblurring results by F-GAC, deblurring results by S-GAC, deblurring results by H-GAC. a Books. b Butcher shop. c Statue

(GS-GAC) on a real camera-shaken image. From the dis-
tribution of pose weights shown as Fig. 5d, the group
sparsity constrains the slices gathering at small rotation
angles, where especially slices with angle 0 dominate,
while in slice GAC, the activated poses are more randomly
distributed. Thus, for the blurry image with slight roll
rotation shown as Fig. 5a, GS-GAC performs much better
than S-GAC, significantly suffering less artifacts.

5 Experimental results
In this section, we evaluate the performance of proposed
GAC deblurring methods. First, three GAC variants, i.e.,
slice-based GAC (S-GAC), fiber-based GAC (F-GAC),

and hybrid GAC (H-GAC), are compared in terms of com-
putational time, memory usage, and visual quality. Due to
its superiority over S-GAC and F-GAC, H-GAC is then
compared with the state-of-the-art geometrical methods,
i.e., Whyte et al. [29], Gupta et al. [30], and Hu and
Zhang [33], and the state-of-the-art EFF-based methods,
i.e., Hirsch et al. [32], Xu et al. [16], and Cao et al. [27].
Finally, in the comparison with the state-of-the-art uni-
form deblurring methods [9, 21, 24, 43], slice GAC with
GS-GAC is adopted. All the experiments are conducted
on a PC with Intel Core i5-2400 3.10 GHz CPU and 16 G
RAMmemory, and the proposed method is implemented
in Matlab.

Table 1 Running time (s) and peak memory usage (GB) of different GAC models

Image ID Image size
Time Memory

F-GAC S-GAC H-GAC F-GAC S-GAC H-GAC

Books 512 × 768 947 698 543 1.71 1.75 1.60

Butcher Shop 401 × 601 486 403 351 0.95 0.97 0.97

Statue 710 × 523 979 694 664 1.39 1.49 1.51
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(a) Cabin (b) Car-in-yard (c) Dim-Petrol-Station (d) Petrol-Station (e) Six-Books

Fig. 7 Visual comparison of GAC model with three geometrical methods on five images. From top to bottom rows: blurry images, close-ups of blurry
images, deblurring results of Whyte et al. [29], Gupta et al. [30], Hu and Yang [33], and GAC, respectively. a Cabin. b Car-in-yard. c Dim-Petrol-Station.
d Petrol-Station. e Six-Books

5.1 Comparison of three GAC variants
On three real-world camera-shaken images shown as
Fig. 6, three GAC variants are evaluated in terms of run-
ning time and memory usage. As shown in Table 1, the
three GAC methods have comparable peak memory cost
to each other, while in terms of running time, H-GAC
is more efficient than both S-GAC and F-GAC, since
the set of slices and fibers decomposed by H-GAC is
usually more compact, thus having lower computational
complexity.
From the restoration quality shown as Fig. 6, H-GAC

and S-GAC perform better than F-GAC in recovering
more details and achieving more visual plausible deblur-
ring quality. Due to its superiority over both S-GAC and
F-GAC, H-GAC is adopted in the following comparison
with non-uniform deblurring methods.

5.2 Comparison with geometrical methods
We use five real-world camera-shaken images, shown
in the top row of Fig. 7, to compare GAC with three

Table 2 Running time (s) of the four geometrical methods

Image ID Image size Whyte Gupta Hu and GAC
et al. et al. Yang

Cabin 512 × 768 98,872 7789 2113 514

Car-in-yard 512 × 768 87,527 8829 7495 531

Dim-Petrol-Station 512 × 768 88,767 8512 2512 596

Petrol-Station 406 × 679 89,673 7982 1402 308

Six-Books 512 × 768 96,732 7356 2601 572

geometrical methods, i.e., Whyte et al. [29], Gupta et al.
[30], and Hu et al. [33], where their deblurring results are
obtained by running source codes or executable programs
provided by authors. Although GAC costs more mem-
ory than that of Whyte et al.’s [29] shown as Table 2, it
is at least 100× faster, and in terms of deblurring qual-
ity shown as Fig. 7, GAC performs much better than that
of Whyte et al.’s [29] in achieving clearer and plausible
texture details. At the same time, Gupta et al.’s [30], Hu
and Yang’s [33], and the proposed GAC model actually
adopt the same 3D subspace to approximate the full 6D
camera pose space and consequently can obtain the simi-
lar deblurring results. Thus, it is more critical to evaluate
their performance in terms of computational efficiency
and memory usage. Tables 2 and 3 show that GAC not
only is at least 2.5× faster but also significantly relaxes
memory burden than Gupta et al.’s [30] and Hu and
Yang’s [33].

Table 3 Peak memory usage (GB) of the four geometrical
methods

Image ID Image size Whyte Gupta Hu and GAC
et al. et al. Yang

Cabin 512 × 768 1.00 14.00 10.06 2.06

Car-in-yard 512 × 768 0.98 14.04 10.20 1.93

Dim-Petrol-Station 512 × 768 0.91 13.98 10.20 1.03

Petrol-Station 406 × 679 0.92 14.01 8.25 1.44

Six-Books 512 × 768 0.91 14.05 11.4 1.95
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(a) Butcher shop (b) Coke (c) Statue (d) Books (e) Sixbooks (f) Dimpetrolstation

Fig. 8 Set of real camera-shaken images for comparing with non-geometrical methods

5.3 Comparison with non-geometrical methods
Using the images in Fig. 8, we further compare GAC with
four non-geometricalmethods proposed byHarmeling et al.
[44], Hirsch et al. [32], Xu et al. [16], and Cao et al. [27].
Since neither source code nor executable program of

Harmeling et al. [44] and Hirsch et al. [32] is available, we
collected the deblurring results from their papers or web-
sites. The non-geometrical methods greatly rely on the
reasonability of region division and often sacrifice image
details to smooth out possible artifacts at region bound-
aries. As shown in Fig. 9a, b, GAC can achieve more
visually plausible deblurring results, while the results by
Harmeling et al. [44] and Hirsch et al. [32] are visually

over-smoothed. Although the method by Cao et al. [27]
is designed for better recovering clear text, the camera
shake blurring in text field is not fully removed and sig-
nificant artifacts are included in the results, like the first
two images in Fig. 10. Moreover, GAC also performs bet-
ter than themethod by Cao et al. [27] in text-less fields. Xu
et al. [16] and Cao et al. [27] respectively provided the exe-
cutable program and source codes, so in Table 4, we report
the CPU running time and memory usage comparison
with Xu et al. [16] and Cao et al. [27] on several camera-
shaken images shown in Fig. 8, from which one can see
that GAC also performs better than Xu et al. or Cao et al.
[27]. As for deblurring quality shown as Fig. 9c, GAC can

(a) Butcher Shop (b) Coke (c) Statue

Fig. 9 Deblurring effect comparison with non-geometrical methods. The top row from left to right are by Harmeling et al. [44], Hirsch et al. [32], and
Xu et al. [16], respectively. The bottom row are deblurring results by GAC. a Butcher Shop. b Coke. c Statue
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(a) Original (b) Cao et al. (c) GAC

Fig. 10 Deblurring effect comparison with Cao et al. [27]. a Original. b Cao et al. [27]. c GAC

Table 4 Running time (s) and peak memory usage (GB) comparison of Cao et al. [27] and hybrid GAC

Image ID Image size
Time Memory

Xu et al. Cao et al. GAC Xu et al. Cao et al. GAC

Butcher shop 401 × 601 922 1520 351 2.24 0.43 1.50

Coke 680 × 731 1434 800 952 4.54 0.66 3.61

Statue 710 × 523 1334 4236 716 2.90 0.48 1.67

Books 512 × 768 4698 2053 596 2.94 0.54 2.03

Sixbooks 512 × 768 2270 3786 572 2.91 0.55 1.95

Dimpetrolstation 512 × 768 1842 4582 596 3.57 0.53 1.03
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obtain comparable if not superior deblurring result than
Xu et al. [16].

5.4 Comparison with uniform deblurring methods
In the comparison experiments with the state-of-the-
art uniform deblurring methods, i.e., Shan et al. [9], Xu
et al. [21], Zuo et al. [24], and Pan et al. [43], we adopt
GS-GAC, which performs better in handling spatially
invariant blurry images. In Fig. 11, the first image is of
non-uniform blur with slight roll rotations, from which
one can see that GAC can achieve more visually plausible
deblurring results, such as the statue’s face is recovered
more clearly, while the uniform deblurring methods usu-
ally suffer from ringing artifacts. Then, on two spatially
invariant blurred images, GAC can also achieve satisfac-
tory deblurring results, since the imposed group sparsity
enforces the GAC method to play like uniform deblurring
method.

6 Conclusions
In this paper, by designing GAC model to geometrically
represent camera shake blurring, non-uniform deblurring
is efficiently addressed. Since the slices and fibers decom-
posed from the camera motion trajectory can be formu-
lated as convolution, all the GAC methods can exploit
FFT for efficient optimization. Compared with the meth-
ods in [30, 33], the proposed method only needs several
FFTs and to store several basis convolution kernels and
look-up-tables in memory. By incorporating group spar-
sity into pose weight matrix, the GAC-based deblurring
methods can also work like uniform blind deconvolu-
tion, better handling uniform blurry images. Compared
with non-uniform deblurring methods, GAC method has
a much lower peak memory usage and is much more
efficient. Compared with uniform deblurring methods,
GAC method also can achieve satisfactory deblurring
results.

(a) Original (b) Shan et al. (c) Xu et al. (d) Pan et al. (e) Zuo et al. (f) GAC

Fig. 11 Deblurring effect comparison with uniform deblurring methods on uniformly blurred images. First column is the real blurry image. From the
second column, left to right are deblurring results by Shan et al. [9], Xu et al. [21], Pan et al. [43], and Zuo et al. [24], respectively. The last column are
deblurring results by GAC. a Original. b Shan et al. [9]. c Xu et al. [21]. d Pan et al. [44]. e Zuo et al. [24]. f GAC
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