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Abstract

We present a novel distributed QR factorization algorithm for orthogonalizing a set of vectors in a decentralized
wireless sensor network. The algorithm is based on the classical Gram-Schmidt orthogonalization with all projections
and inner products reformulated in a recursive manner. In contrast to existing distributed orthogonalization
algorithms, all elements of the resulting matrices Q and R are computed simultaneously and refined iteratively after
each transmission. Thus, the algorithm allows a trade-off between run time and accuracy. Moreover, the number of
transmitted messages is considerably smaller in comparison to state-of-the-art algorithms. We thoroughly study its
numerical properties and performance from various aspects. We also investigate the algorithm’s robustness to link
failures and provide a comparison with existing distributed QR factorization algorithms in terms of communication
cost and memory requirements.
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1 Introduction
Orthogonalizing a set of vectors is a well-known prob-
lem in linear algebra. Representing the set of vectors by
a matrix A ∈ R

n×m, with n ≥ m, several orthogo-
nalization methods are possible. One example is the so-
called reduced QR factorization (matrix decomposition),
A = QR, with a matrix Q ∈ R

n×m having orthonor-
mal columns, and an upper triangular matrix R ∈ R

m×m

containing the coefficients of the basis transformation [1].
In the signal processing area, QR factorization is used
widely in many applications, e. g., when solving linear
least squares problems or decorrelation [2–4]. In adap-
tive filtering, a decorrelation method is typically used as
a pre-step for increasing the learning rate of the adaptive
algorithm [5], ([6], p. 351), ([7], p. 700).
From an algorithmic point of view, there are many

methods for computing QR factorization with different
numerical properties. A standard approach is the Gram-
Schmidt orthogonalization algorithm, which computes a
set of orthonormal vectors spanning the same space as the
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given set of vectors. Other methods include Householder
reflections or Givens rotations, which are not considered
in this paper.
Optimization of QR factorization algorithms for a spe-

cific target hardware has been addressed in the literature
several times (e.g., [8, 9]). Parallel algorithms for com-
puting QR factorization, which are applicable for reliable
systems with fixed, regular, and globally known topology,
have been investigated extensively (e.g., [10–13]).
Besides parallel algorithms, there are two other poten-

tial approaches for computation across a distributed net-
work. In the standard—centralized—approach, the data
are collected from all nodes and the computation is per-
formed at a fusion center. Another approach is to consider
distributed algorithms for fully decentralized networks
without any fusion center where all nodes have the same
functionality and each of them communicates only with
its neighbors. Such an approach is typical for sensor-
actuator networks or autonomous swarms of robotic net-
works [14]. Nevertheless, the investigation of distributed
QR factorization algorithms designed for loosely cou-
pled distributed systems with independently operating
distributed memory nodes and with possibly unreliable
communication links has only started recently [3, 15, 16].
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In the following, we focus on algorithms for such decen-
tralized networks.

1.1 Motivation
The main goal of this paper is to present a novel dis-
tributed QR factorization algorithm—DS-CGS—which is
based on the classical Gram-Schmidt orthogonalization.
The algorithm does not require any fusion center and
assumes only local communication between neighboring
nodes without any global knowledge about the topol-
ogy. In contrast to existing distributed approaches, the
DS-CGS algorithm computes the approximations of all
elements of the new orthonormal basis simultaneously
and as the algorithm proceeds, the values at all nodes
are refined iteratively, approximating the exact values of
Q and R. Therefore, it can deliver an estimate of the full
matrix result at any moment of the computation. As we
will show, this approach is, among others, superior to
existing methods in terms of the number of transmitted
messages in the network.
In Section 2, we briefly recall the concept of a consensus

algorithm which we use later in the distributed orthogo-
nalization algorithm. In Section 3, we review the basics of
the QR decomposition and existing distributed methods.
In Section 4, we describe the proposed distributed Gram-
Schmidt orthogonalization algorithm with simultaneous
refinements of all elements (DS-CGS). We experimentally
compare DS-CGS with other distributed approaches in
Section 5 where we also investigate the properties of DS-
CGS frommany different viewpoints. Section 6 concludes
the paper.

1.2 Notation and terminology
In what follows, we use k as the node index, Nk denotes
the set of neighbors of node k, N denotes the (known)
number of nodes in the network, E the set of edges (links)
of the network, dk the kth node degree (dk = |Nk|), d̄ the
average node degree of the network, and t a discrete time
(iteration) index.
We will describe the behavior of the distributed algo-

rithm from a network (global) point of view with the
corresponding vector/matrix notation. For example, the
(column) vector of all ones denoted by 1, corresponds to
all nodes having value 1. In general, we denote the num-
ber of rows of a matrix by n and the number of columns
by m. Element-wise division of two vectors is denoted as
z = x

y ≡ xi
yi ,∀i, element-wise multiplication of two vectors

as z = x◦y ≡ xiyi,∀i and of twomatrices asZ = X◦Y. The
operationX�Y is defined as follows: Having twomatrices
X = (x1, x2, . . . , xm) and Y = (y1, y2, . . . , ym), the result-
ing matrix Z = X � Y is a stacked matrix of all matrices
Zi such that Zi=(x1, x2, . . . , xi) ◦ ((1, 1, . . . , 1︸ ︷︷ ︸

i

) ⊗ yi+1) (⊗

denotes the Kronecker product; i =1, 2, . . . ,m − 1), i.e.,

Z = (x1◦y2︸ ︷︷ ︸
Z1

, x1◦y3, x2◦y3︸ ︷︷ ︸
Z2

, . . . , xm−2◦ym, xm−1◦ym︸ ︷︷ ︸· · ·
Zm−1

), thus

creating a big matrix containing combinations of column
vectors: Z ∈ R

n×m2−m
2 . This later corresponds in our algo-

rithm to the off-diagonal elements of the matrix R. Also
note that all variables with the “hat” symbol, e.g., û(t) rep-
resent variables that are computed locally at nodes, while
variables with the “tilde” symbol, e.g., ũ(t), are updated
based on the information from neighbors.

2 Average consensus algorithm
We model a wireless sensor network (WSN) by syn-
chronously working nodes which broadcast their data into
their neighborhood within a radius ρ (so-called geometric
topology). TheWSN is considered to be static, connected,
and with error-free transmissions (except for Section 5.4
ahead). Although the practicality of synchronicity can be
argued [17, 18], we note that it is not an unrealizable
assumption [19].
In the following, we briefly review the classical con-

sensus algorithm for computing the average of values
distributed in a network. Note that the algorithm can be
easily adapted to computing a sum by multiplying the final
average value (arithmetic mean) by the total number of
nodes N.
The distributed average consensus algorithm computes

an estimate of the global average of distributed initial data
x(0) at each node k of a WSN. In every iteration t, each
node updates its estimate using the weighted data received
from its neighbors, i.e.,

xk(t) = [W]kk xk(t − 1) +
∑
k′∈Nk

[W]kk′ xk′(t − 1)

or from a global (network) point of view

x(t) = Wx(t − 1). (1)

The selection of the weight matrix W, representing the
connections in a strongly connected network, crucially
influences the convergence of the average consensus algo-
rithm [20–22]. The main condition for the algorithm to
converge is that the largest eigenvalue of W is equal to 1,
i.e., λmax = 1, with multiplicity one, and that each row of
W sums up to 1. It can then be directly shown [20] that
the value xk(t) at each node converges to a common global
value, e.g., average of the initial values.
If not stated otherwise, we use the so-called Metropolis

weights [22] for matrixW, i.e.,

[W]ij =

⎧⎪⎨
⎪⎩

1
1+max{di,dj} if (i, j) ∈ E ,
1 − ∑

i′∈Ni [W]ii′ if i = j,
0 otherwise.

(2)

These weights guarantee that the consensus algorithm
converges to the average of the initial values.
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3 QR factorization
As mentioned in Section 1, there exist many algorithms
for computing the QR factorization with different proper-
ties [1, 23]. In this paper we utilize the QR decomposition
based on the classical Gram-Schmidt orthogonalization
method (in �2 space).

3.1 Centralized classical Gram-Schmidt orthogonalization
Given matrix A = (a1, a2, . . . , am) ∈ R

n×m, n ≥ m, clas-
sical Gram-Schmidt orthogonalization (CGS) computes
a matrix Q ∈ R

n×m with orthonormal columns and an
upper-triangular matrix R ∈ R

m×m, such that A = QR.
Denoting

Q = (q1 q2 . . . qm)

R =

⎛
⎜⎜⎜⎝

〈q1, a1〉 〈q1, a2〉 . . . 〈q1, am〉
0 〈q2, a2〉 〈q2, a3〉 . . .
...

. . . . . .

0 . . . 0 〈qm, am〉

⎞
⎟⎟⎟⎠ ,

(3)

we have

qi = ui
‖ui‖2 , i = 1, 2, . . . ,m, (4)

and

ui = ai −
i−1∑
j=1

〈qj, ai〉
〈qj,qj〉qj, i = 1, 2, . . . ,m, (5)

where ‖u‖2 =
√∑n

i=1 u2i and 〈q, a〉 = ∑n
i=1 qiai.

It is known that the algorithm is numerically sensitive
depending on the singular values (condition number) of
matrix A as well as it can produce vectors qi far from
orthogonal when the matrix A is close to being rank defi-
cient even in a floating-point precision [23]. Numerical
stability can be improved by other methods, e.g., modified
Gram-Schmidt method, Householder transformations, or
Givens rotations [1, 23].

3.2 Existing distributed methods
Assuming that each node k stores its local values u2k and
qkak , it is then straightforward to redefine the CGS in a
distributed way, suitable for a WSN, by following the def-
inition of the �2 norm, i.e., ‖u‖22 = u21 + u22 + · · · + u2n
(cf. (4)), and inner products, 〈q, a〉 = q1a1 + q2a2 + · · · +
qnan (cf. (5)). The summations can then be computed
using any distributed aggregation algorithm, e.g., average
consensus [20]1 (see Section 2), and asynchronous gossip-
ing algorithms [24], using only communication with the
neighbors.
Nevertheless, to our knowledge, all existing distributed

algorithms for orthogonalizing a set of vectors are based
on the gossip-based push-sum algorithm [16, 24]. Specif-
ically in [3], authors used a distributed CGS based on

gossiping for solving a distributed least squares prob-
lem and in [15], a gossip-based distributed algorithm
formodifiedGram-Schmidt orthogonalization (MGS) was
designed and analyzed. The authors also provided a quan-
titative comparison to existing parallel algorithms for QR
factorization. A slight modification of the latter algorithm
was introduced in [25], which we use for comparison in
this paper. We denote the two Gossip-based distributed
Gram-Schmidt orthogonalization algorithms as G-CGS
[3] and G-MGS [25], respectively.
Since the classical Gram-Schmidt orthogonalization

computes each column of the matrix Q from the previ-
ous column recursively, i.e., to know vector q2, we need
to compute the norm of u2 which depends on vector q1,
the existing distributed algorithms always need to wait for
convergence of one column before proceeding with the
next column. This may be a big disadvantage in WSNs as
it requires a lot of transmissions. Also, if the algorithm
fails at some moment, e.g., due to transmission errors, the
matricesQ and R are incomplete and unusable for further
application.
In contrast, the distributed algorithm proposed in

this paper overcomes these disadvantages and computes
approximations of all elements of the matrices Q and
R simultaneously. All the norms and inner products are
refined iteratively which leads to a significant decrease of
transmitted messages, and also the algorithm brings an
intermediate approximation of the whole matrices Q and
R at any time instance.

4 Distributed classical Gram-Schmidt with
simultaneous elements refinement

As mentioned in Section 3.2, the Gram-Schmidt orthog-
onalization method can be computed in a distributed
way using any distributed aggregation algorithm.We refer
to CGS based on the average consensus (see Section 2)
as AC-CGS. AC-CGS as well as G-CGS [3] and G-MGS
[25] have the following substantial drawback.
In all Gram-Schmidt orthogonalization methods, the

computation of the norms ‖ui‖ and the inner prod-
ucts 〈qj, ai〉, 〈qj,qj〉, occurring in the matrices Q and R,
depends on the norms and inner products computed from
the previous columns of the input matrix A. Therefore,
each node k must wait until the estimates of the previous
norms

∥∥uj∥∥ (j < i) have achieved an acceptable accu-
racy before processing the next norm ‖ui‖ (a “cascading”
approach; see [15]). The same holds also for computing
the inner products. We here present a novel approach
overcoming this drawback.
Rewriting Eqs. (4) and (5) by a recursion, we obtain

q̂i(t) = ûi(t)√
N ũi(t − 1)

, i = 1, 2, . . . ,m, (6)

ûi(t) = ai − pi(t), i = 1, 2, . . . ,m, (7)
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where ũi(t) is the approximation of 1/N ‖ui‖22 1 at time t
and

pi(t) =
i−1∑
j=1

p̃(2)
j+(i−1)(i−2)/2(t − 1) ◦ q̂j(t − 1)

q̃j(t − 1)
,

with p̃(2)
j+(i−1)(i−2)/2(t) being an approximation of the off-

diagonal inner products 1/N〈qj, ai〉1 (∀j < i) of matrix
R (cf. (3)) and q̃j(t) an approximation of 1/N〈qj,qj〉1 at
time t. Similarly, we define p̃(1)

i (t) to be an approximation
of 1/N〈qi, ai〉1. As we show later, ũi(t), q̃j(t), p̃(1)

i (t), and
p̃(2)
j+(i−1)(i−2)/2(t) converge to 1/N ‖ui‖22 1, 1/N〈qj,qj〉1,

1/N〈qi, ai〉1, and 1/N〈qj, ai〉1, respectively.
Similarly to the state-of-the-art methods (see

Section 3.2), we further assume that the matrices
A ∈ R

n×m and Q ∈ R
n×m are distributed over the

network row-wise, meaning that each node stores at least
one row of the matrix A and corresponding rows of the
matrix Q and each node stores the whole matrix R. In
case n > N , more rows must be stored at the node and
each node must sum the data locally before broadcasting
to neighbors. Obviously, the data distribution over the
network influences the speed of convergence of the algo-
rithm, as can be seen also in the simulations ahead (see
Section 5).
NotationAk ,Qk(t) here represent the rows of thematri-

ces A and Q at a given node k at time t. If more rows are
stored in one node, Ak and Qk(t) are matrices, otherwise
they are row vectors. Matrix R(k)(t) represents the whole
matrix R at node k at time t.
From a global (network) point of view, the algorithm is

defined in Algorithm 1.

Proof of convergence of DS-CGS. For the first column,
vector i = 1, û1(t) = a1, and thus the convergence
results of the average consensus, see Section 2, apply,
i.e., as t → ∞, the nodes will monotonically reach the
common values, i.e., ũ1(t) = 1/N‖a1‖221 and thus also,
q̂1(t) = a1

‖a1‖22
, q̃1(t) = 1/N1, p̃(1)

1 (t) = 1/N‖a1‖221, and
p̃(2)
1 (t) = 1/N〈a1, a2〉1.
Furthermore, for all columns i > 1, all the ele-

ments depend only on the first column (i = 1), e.g.,

Eq. (7), û2(t) = a2 − p̃(2)
1 (t−1)◦q̂1(t−1)

q̃1(t−1)

(
from Eq. (6)

q̂1(t) = û1(t)√
N ũ1(t−1)

)
. Thus, eventually, û2(t) will converge

to u2 (Eq. (5)) and similarly will do all norms and inner
products (Eqs. (4) and (5)) of matrixQ and R.

Intuitively, we can see that as ũ1(t) converges to its
steady state, all other variables converge, with some
“delay,” to their steady states as well.Wemay say that as the
first column converges, it “drags” other elements to their

Algorithm 1 : DISTRIBUTED GRAM-SCHMIDT
ORTHOGONALIZATION WITH SIMULTANEOUS
REFINEMENT (DS–CGS)

• Input matrix A = (a1, a2, . . . , am) ∈ R
n×m with

n ≥ m is distributed row-wise across N nodes. If
n > N , some nodes store more than one row. Each
node computes the rows ofQ corresponding to the
stored rows of A and an estimate of the whole matrix
R. indices: k = 1, 2, . . . ,N (nodes); i = 1, 2, . . . ,m
(columns).

1. Initialization (t = 0):

Ũ(0) = A ◦ A, Û(0) = A,
Q̃(0) = A ◦ A, Q̂(0) = A,
P̃(1)(0) = A ◦ A, P̃(2)(0) = A� A

2. Repeat for t = 1, 2, . . .

(a) Compute locally at each node k

pi(t) = ∑i−1
j=1

p̃(2)
j+(i−1)(i−2)/2(t−1) ◦ q̂j(t−1)

q̃j(t−1)
ûi(t) = ai − pi(t)
q̂i(t) = ûi(t)√

N ũi(t−1)

(b) At each node k store
Qk(t) = (q̂k,1(t), q̂k,2(t), . . . , q̂k,m(t)), and

R(k)(t) = N

⎛
⎜⎜⎜⎜⎝

p̃(1)
k,1(t) p̃

(2)
k,1(t) . . . p̃(2)

k,(m2−3m+4)/2(t)
0 p̃(1)

k,2(t) p̃
(2)
k,3(t) . . .

...
. . . . . .

0 . . . 0 p̃(1)
k,m(t)

⎞
⎟⎟⎟⎟⎠

(c) Aggregate data

�(1) = Ũ(t − 1) + Û(t) ◦ Û(t) − Û(t − 1) ◦ Û(t − 1)
�(2) = Q̃(t − 1) + Q̂(t) ◦ Q̂(t) − Q̂(t − 1) ◦ Q̂(t − 1)
�(3) = P̃(1)(t − 1) + Q̂(t) ◦ A − Q̂(t − 1) ◦ A
�(4)︸︷︷︸ = P̃(2)(t − 1)︸ ︷︷ ︸ + Q̂(t) � A − Q̂(t − 1) � A︸ ︷︷ ︸
�(t) = X(t − 1) + �S(t)

(d) If n > N , sum �(t) locally at the nodes and
broadcast �(t) = (

�(1),�(2),�(3),�(4)),
(�(t) ∈ R

N×m2+5m
2 ) to the neighbors, i.e.,(

Ũ(t), Q̃(t), P̃(1)(t), P̃(2)(t)
)

︸ ︷︷ ︸
X(t)

= W�(t).

steady states. In the worst case, the consequent (following)
column starts to converge only when the previous column
is fully converged. This behavior differs from the known
methods where we have to wait for ũ1(t) to be converged
before computing other terms.
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Note that instead of knowing the number of
nodes N and using it as a normalization con-
stant, we could transmit an additional weight
vector ω(t) ∈ R

N×1, i.e., �(0)(t) = ω(t) and
�(t) = (�(0)(t),�(1)(t),�(2)(t),�(3)(t),�(4)(t)), such
that ω(0) = (1, 0, . . . , 0)� and Eq. (6) would change only
slightly2, i.e.,

q̂i(t) = ûi(t)√
1

ω(t) ◦ ũi(t − 1)
.

We note that the normalization constant N (or ω(t),
respectively) affects only3 the orthonormality (columns
remain orthogonal but not normalized) of the columns of
the matrix Q(t), and in case only orthogonality is suffi-
cient, as in [26], we can omit this constant. We can, thus,
overcome the necessity of knowing the number of the
nodes or reduce the number of transmitted data in the
network, respectively.

4.1 Relation to dynamic consensus algorithm
The dynamic consensus algorithm is a distributed algo-
rithm which is able to track the average of a time-varying
input signal. There exist many variations of the algorithm,
e.g., [27–33]. Comparing the proposedDS-CGS algorithm
with a dynamic consensus algorithm from [30, 32], we
observe an interesting resemblance.
Formulating DS-CGS from a global point of view, i.e.,

X(t) = W [X(t − 1) + �S(t)] ,

we observe that it is a variant of the dynamic consen-
sus algorithm with an “input signal” S(t). However, the
“input signal” S(t) in our case is very complicated as it
depends on X(t − 1) and S(t − 1) and cannot be consid-
ered as an independent signal as it is usually considered in
dynamic consensus algorithms. Therefore, it is difficult to
analyze the properties of this input signal and convergence
conditions of DS-CGS based on the dynamic consensus
algorithm. It is also beyond the scope and focus of this
paper to analyze this algorithm in general. Nevertheless,
some analysis of this type of dynamic consensus algo-
rithm, for a general input signal, together with the bounds
on convergence speed, has been conducted in [34].

5 Performance of DS-CGS
In our simulations, we consider a connected WSN with
N=30 nodes.We explore the behavior of DS-CGS for var-
ious topologies: fully connected (each node is connected
to every other node), regular (each node has the same
degree d), and geometric (each (randomly deployed) node
is connected to all nodes within some radius ρ—a WSN
model). If not stated otherwise, the randomly generated
input matrix A ∈ R

300×100 has uniformly distributed ele-
ments from the interval [ 0, 1] and a low condition number

κ(A) = 35.7. In Section 5.3.2, we, however, investi-
gate the influence of various input matrices with different
condition numbers on the algorithm’s performance.
Also, except for the Sections 5.3.1 and 5.4, for the

consensus weight matrix we use the metropolis weights
(Eq. (2)).
The confidence intervals were computed from the sev-

eral instantiations using a bootstrap method [35].

5.1 Orthogonality and factorization error
As performance metrics in the simulations, we use the
following:

• Relative factorization error—
∥∥∥A−Q(t)R(k)(t)

∥∥∥
2‖A‖2

—which measures the accuracy of the QR
factorization at node k,

• Orthogonality error—
∥∥I − Q(t)�Q(t)

∥∥
2 —which

measures the orthogonality of the matrixQ(t) (see
step 2 of the algorithm).

Note that both errors are calculated from the network
(global) perspective and as depicted, they are not known
locally at the nodes, since only R(k)(t) is local at each
node, whereas Q(t) is distributed row-wise across the
nodes (Qk(t)). From now on, we simplify the notation
by dropping the index t in Q(t) and R(k)(t). The simu-
lation results for a geometric topology with an average
node degree d̄ = 8.533 are depicted in Fig. 1. Since
both errors behave almost identically (compare Fig. 1a,
b) and since each node k can compute a local factor-
ization error

∥∥Ak − QkR(k)∥∥
2 / ‖Ak‖2 from its local data,

we conjecture that such local error evaluation can be
used also as a local stopping criterion in practice. Note
that this fact was used in [26] for estimating a network
size.
Note that the error at the beginning stage in Fig. 1 is

caused by the disagreement and not converged norms
and inner products across the nodes, i.e., the values of
Ũ(t), Q̃(t), P̃(1)(t), and P̃(2)(t). We also observe that the
error floor4 is highly influenced by the network topol-
ogy, weights of matrix W, and condition number of input
matrix A. We investigate these properties in Section 5.3.

5.2 Initial data distribution
If n > N , some nodes store more than one row of A.
Thus, before doing distributed summation (broadcasting
to neighbors), every node has to locally sum the values of
its local rows.
Simulations show that the convergence behavior of DS-

CGS strongly depends on the distribution of the rows
across the network (see Fig. 2). We investigate the follow-
ing cases: (1) each node stores ten rows of A (“uniform”);
(2) 271 rows are stored in the node with the lowest degree,
the other 29 rows in the remaining 29 nodes; and (3) 271
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Fig. 1 Example of orthogonality (a) and factorization error (b) for each
node k for a geometric topology with d = 8.533. N = 30, k = 1,
2, . . . , 30

rows are stored in the node with the highest degree, the
rest in the remaining 29 nodes.
We observe that not only the initial distribution of the

data influences the convergence behavior but also the
topology of the underlying network. In the case of a reg-
ular topology (Fig. 2a), the influence of the distribution is
small and relatively weak in terms of convergence time but
stronger in terms of the final accuracy achieved. We rec-
ognize that the difference between the nodes comes only
from the variance of the values in input matrix A. On the
other hand, in case of a highly irregular geometric topol-
ogy (see Fig. 2b), where the node with most neighbors
stores most of the data, the algorithm converges much
faster than in the case when most of the data are stored in
a node with only few neighbors.
We further observe that in the “uniform” case, the

algorithm behaves slightly differently for different distri-
butions of the rows (although still having ten rows in
each node). In Fig. 3, we show results for six different
placements of the data across the nodes for three dif-
ferent topologies, where we depict the mean value and
the corresponding confidence intervals of the simulated
orthogonality error. As we can observe, in case of the fully
connected topology, the data distribution is of no impor-
tance, since all the nodes exchange data in every step
with all other nodes. In case of the geometric topology,

Fig. 2 Convergence for networks with different topology and initial
data distribution: either all nodes store the same amount of data
(“uniform”) or most of the data is stored in one node (with minimum
or maximum degree) (a - Regular topology with d = 5; b - Geometric
topology with d = 5). In case of the regular topology (a), the nodes i, j
are picked randomly

however, the convergence of the algorithm is influenced
by the distribution of data, even if every node contains the
same number of rows (ten rows in each node). This can be
recognized by bigger confidence intervals of the orthog-
onality error. Nevertheless, the speed of convergence for
all cases is bigger than the case when most data is stored
in the “sparsest” node (cf. Fig. 2b). In case of the regu-
lar topology, the difference is small only due to numerical
accuracy of the mixing parameters.

Fig. 3 “Uniform” distribution for different topologies. (Boldface line is
the mean value across six different uniform data distributions. Shaded
areas are 95% confidence intervals)
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5.3 Numerical sensitivity
As mentioned in Section 3.1, the classical Gram-Schmidt
orthogonalization possesses some undesirable numerical
properties [1, 23]. In comparison to centralized algo-
rithms, numerical stability of DS-CGS is furthermore
influenced by the precision of the mixing weight matrix
W, the network topology, and properties of input
matrix A, i.e., its condition number (see Fig. 5 ahead) and
the distribution of the numbers in the rows of the matrix
(see Figs. 2 and 3). In this section, we provide simulation
results showing these dependencies.

5.3.1 Weights
As mentioned in Section 2, matrix W can be selected in
many ways. Mainly, the selection of the weights influences
the speed of convergence. Unlike previous simulations,
where we used the metropolis weights (see Eq. (2)), here
we selected constant weights for matrixW [20], i.e.,

[W]ij =

⎧⎪⎨
⎪⎩

c
N if (i, j) ∈ E ,
1 − c

N di if i = j,
0 otherwise,

(8)

where c ∈ (0, 1]. Such weights, in general, lead to slower
convergence. However, we can also see in Fig. 4 that the
weights influence not only the speed of convergence but
also the numerical accuracy of the algorithm (different
error floors).

5.3.2 Condition numbers
It is well known that the classical Gram-Schmidt orthog-
onalization is numerically unstable [23]. In cases when
input matrix A is ill-conditioned (high condition num-
ber) or rank-deficient (matrix contains linear dependent
columns), the computed vectorsQ can be far from orthog-
onal even when computed with high precision.
In this section, we study the influence of the con-

dition number of input matrix A on the accuracy of
the orthogonality. The condition number is defined with
respect to inversion as the ratio of the largest and small-
est singular value. In comparison to classical (centralized)
Gram-Schmidt orthogonalization, we observe (Fig. 5a)
that the DS-CGS algorithm behaves similarly, although it
reaches neither the accuracy of AC-CGS nor of the cen-
tralized algorithm (even in the fully connected network).
We observe in all of the simulations that the orthogonality
error in the first phase can reach very high values (due to
divisions by numbers close to zero), which may influence
the numerical accuracy in the final phase.
We further observe that the algorithm requires matrixA

to be very well-conditioned even for the fully connected
network. Unlike other methods, the factorization error
in case of DS-CGS has the same characteristics as the
orthogonality error and is also influenced by the condition
number of the input matrix, see Fig. 5b. Although, as we

Fig. 4 Influence of different constant weights c (Eq. (8)) on the
algorithm’s accuracy and convergence speed for three different
topologies (a - Fully connected topology; b - Regular topology;
c - Geometric topology) averaged over ten different input matrices
(a–c). (Shaded areas are 95% confidence intervals)

noted in Section 5.1, orthogonality and factorization error
of DS-CGS behave almost identically, the dependence of
condition number κ(A) on the factorization error would
need a further investigation.
Figure 5 also shows that G-MGS is the most robust

method in comparison to the others. This is caused by the
usage of the modified Gram-Schmidt orthogonalization
instead of the classical one.

5.3.3 Mixing precision
Another factor influencing the algorithm’s performance is
the numerical precision of the mixing weights W. Here,
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Fig. 5 Impact of the condition number κ(A) of matrix A on the
orthogonality (a) and factorization error (b). Averaged over ten
matrices for each condition number. Fully connected network. (Both
axes are in logarithmic scale. Shaded areas are 95% confidence
intervals)

we simulate the case of a geometric topology with the
Metropolis weights model, where the weights are of given
precision—characterized by the number of variable deci-
mal digits (4, 8, 16, 32, “Infinite”).5
If we compare Fig. 6 with Fig. 7, we find that the numer-

ical precision of the mixing weights have bigger influence
in cases when the input matrix is worse conditioned.
In Figs. 8 and 9, we can see the difference between

Fig. 6 Influence of the numerical precision of the mixing weights on
the orthogonality error of DS-CGS. Geometric topology, matrix A with
low condition number (κ(A) = 1.04)

Fig. 7 Influence of the numerical precision of the mixing weights on
the orthogonality error of DS-CGS. Geometric topology, matrix A with
higher condition number (κ(A) = 76.33)

orthogonality errors for various precisions. We observe
that for the matrix A with higher condition number, the
higher mixing precision has bigger impact on the result.
As we find in Fig. 6, the error floor moves with the mix-

ing precision. However, we must note that even for the
“infinite” mixing precision the orthogonality error stalls
at an accuracy (∼10−12) lower than the used machine
precision—taking into account also the conversion to dou-
ble precision. From the simulations, we conclude that this
is caused by high numerical dynamic range in the first
phases of the algorithm as well as by the errors created by
the misagreement among the nodes during the transient
phase of the algorithm.

5.4 Robustness to link failures
In case of distributed algorithms, it is of big importance
that the algorithm is robust against network failures. Typ-
ical failures in WSN are message losses or link failures,
which occur due to many reasons, e.g., channel fad-
ing, congestions, message collisions, moving nodes, or
dynamic topology.
We model link failures as a temporary drop-out of

a bidirectional connection between two nodes, meaning

Fig. 8 Difference in the orthogonality error
(
log10

∣∣∣∥∥I − Q�Q
∥∥(vpa−i)
2

− ∥∥I − Q�Q
∥∥(Inf)
2

∣∣∣) for the case of 16 and 32 decimal digits versus

“infinite” precision (converted to double)
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Fig. 9 Difference in the orthogonality error
(
log10

∣∣∣∥∥I−Q�Q
∥∥(vpa−16)
2

− ∥∥I − Q�Q
∥∥(Inf)
2

∣∣∣) for the case of 16 decimal digits versus “infinite”

precision (converted to double). Note that in comparison to Fig. 8, the
difference between “infinite” and more than 16 digits is below the
machine precision (exact same results)

that no message can be transmitted between the nodes.
In every time step, we randomly remove some per-
centage of links in the network. As a weight model,
we picked the constant weights model, Eq. (8), due
to its property that every node can compute at each
time step the weights locally based only on the num-
ber of received messages (di). Thus, no global knowl-
edge is required. However, the nodes must still work
synchronously.6
From Fig. 10, we conclude that the algorithm is very

robust and even if we drop in every time step, a big
percentage (up to 60%) of the links, the algorithm still
achieves some accuracy (at least 10−2; Fig. 10c).
It is worth noting that moving nodes and dynamic net-

work topology can be modeled in the same way. We
therefore argue that the algorithm is robust also to such
scenarios (assuming that synchronicity is guaranteed).

5.5 Performance comparison with existing algorithms
We compare our new DS-CGS algorithm with AC-
CGS, G-CGS, and G-MGS introduced in Section 3.2.
Although all approaches have iterative aspects, the cost
per iteration strongly differs for each algorithm. Thus,
instead of providing a comparison in terms of number
of iterations to converge, we compare the communi-
cation cost needed for achieving a certain accuracy of
the result. We investigate the total number of messages
sent as well as the total amount of data (real numbers)
exchanged.
Simulation results for various topologies are shown in

Figs. 11 and 12. The gossip-based approaches exchange,
in general, less data (Fig. 12), but since their message size
is much smaller than in DS-CGS, the total number of
messages sent is higher (Fig. 11).
Because the message size of AC-CGS is even smaller

than in the gossip-based approaches, it sends the high-
est number of messages. Since the energy consumption in

Fig. 10 Robustness to link failures for different percentages of failed
links at every time step (a - Fully connected; b - Regular topology; c -
Geometric topology). Constant weight model with c = 1, i.e., the
fastest option (see Fig. 4). (Shaded areas are 95% confidence intervals)

a WSN is mostly influenced by the number of transmis-
sions [36, 37], it is better to transmit as few messages as
possible (with any payload size); therefore, DS-CGS is the
most suitable method for a WSN scenario. However, we
notice that in many cases, DS-CGS does not achieve the
same final accuracy of the result as the other methods.
Note that in fully connected networks, AC-CGS deliv-

ers a highly accurate result from the beginning, because
within the first iterations, all nodes exchange the required
information with all other nodes.
In Table 1, we summarize the total communication cost

and local memory requirements of the algorithms. How-
ever, due to different parameters, it is difficult to rank the
approaches in a general case. The requirements depend
especially on the topology of the underlying network, the
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Fig. 11 Total number of transmitted messages in the network vs. orthogonality error (both axes are in logarithmic scale log10) (a - Fully connected
topology; b - Geometric topology with d = 8.53; c - Geometric topology with d = 24.46; d - Regular topology with d = 5)

Fig. 12 Total number of transmitted real numbers (data) in the network vs. orthogonality error (both axes are in logarithmic scale log10) (a - Fully
connected topology; b - Geometric topology with d = 8.53; c - Geometric topology with d = 24.46; d - Regular topology with d = 5)
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Table 1 Comparison of various distributed QR factorization
algorithms

Total number of Total amount of Local memory
sent messages data (real numbers) requirements

per node

DS-CGS N · I(d) N · I(d) · m2+5m
2 O(mn/N+m2)

AC-CGS N · I(s) · (m+1)m
2 N · I(s) · (m+1)m

2 O(mn/N+m2)

G-CGS N · R · (2m − 1) N · R · m2+5m−2
2 O(nm/N)

G-MGS N · R · (2m − 1) N · R · m2+5m−2
2 O(nm/N)

I(d) denotes the number of iterations of “dynamic” consensus, I(s) the number of
iterations of “static” consensus, R the number of rounds per push-sum, N the
number of nodes,m the number of columns of the input matrix

number of iterations I(s) and I(d) required for convergence
in “static” and “dynamic” consensus-based algorithms or
the number of rounds R needed for convergence of push-
sum in the gossip-based approaches. For example, in
a fully connected network R = O(logN) [24], I(s) =
1. Thus, AC-CGS requires O(m2N) messages sent as
well as data exchanged, whereas gossip-based approaches
need O(mN logN) messages and O(m2N logN) data.
Note that G-CGS and G-MGS have theoretically iden-
tical communication cost; however, G-MGS is numer-
ically more stable (see Fig. 5) and achieves a higher
final accuracy (see Figs. 11 and 12). In case of DS-
CGS and a fully connected network, we can interpret
DS-CGS in the worst case as m consequent static con-
sensus algorithms (one for each column); thus, I(d) =
O(m), and the number of transmitted messages is O(mN)

and data O(m3N). Nevertheless, theoretical convergence
bounds of DS-CGS (on I(d)) remain an open research
question.

6 Conclusions
We presented a novel distributed algorithm for comput-
ing QR decomposition and provided an analysis of its
properties. In contrast to existing methods, which com-
pute the columns of the resulting matrix Q consecutively,
our method iteratively refines all elements at once. Thus,
in any moment, the algorithm can deliver an estimate
of both matrices Q and R. The algorithm dramatically
outperforms known distributed orthogonalization algo-
rithms in terms of transmitted messages, which makes
it suitable for energy-constrained WSNs. Based on our
empirical observation, we argue that the evaluation of
the local factorization error at each node might lead to
a suitable stopping criterion for the algorithm. We also
provided a thorough study of its numerical properties,
analyzing the influence of the precision of the mixing
weights and condition numbers of the input matrix. We
furthermore analyzed the robustness of the algorithm to
link failures and showed that the algorithm is capable to

reach a certain accuracy even for a high percentage of
link failures.
The biggest drawback of the algorithm is the neces-

sity to have synchronously working nodes. This leads to
poor robustness when themessages are sent (or lost) asyn-
chronously. As we showed, since the algorithm originates
from the classical Gram-Schmidt orthogonalization, also
the numerical sensitivity of the algorithm is a big issue
and needs to be addressed in the future. The optimization
of the weights and design of algorithm in such way that
it avoids a big dynamic numerical range, especially in the
first phases, is also of interest.
An alternative approach, not considered here, which

could be worth of future research, would be to find a
distributed algorithm as an optimization problem, e.g.,
mins.t. Q�Q=I ‖A − QR‖. In literature, there exist many
distributed optimization methods, e.g., [38, 39], which
could lead to even superior algorithms, with even faster
convergence and smaller error floors.
Last but not least, theoretical bounds of DS-CGS for the

convergence time and rate remain an open issue. A first
application of the algorithm has already been proposed in
[26]. Also, since the proposed algorithm is not restricted
to the usage in wireless sensor networks only, a transfer
of the proposed algorithm onto so-called network-on-
chip platforms [40] could possibly lead to further new
interesting and practical applications as well.

Endnotes
1Knowing n, ‖u‖22 = n limt→∞ Wt(u ◦ u) = ∑n

i=1 u2i .
2limt→∞ ω(t) = 1/N1.
3Not considering numerical properties.
4Error level at which the algorithm stalls at given

computational precision.
5The simulations were performed in Matlab R2011b

64-bit using the Symbolic Math Toolbox with variable
precision arithmetic. “Infinite” precision denotes weights
represented as an exact ratio of two numbers. The
depicted result after “infinite” precision multiplication
was converted to double precision.

6If there is a link, nodes see each other and
immediately exchange messages. From a mathematical
point of view, this implies that weight matrixW will be
doubly stochastic [1] in every time step.

Appendix: local algorithm
For a better clarity, we here reformulate DS-CGS algo-
rithm from the point of view of an individual node i (local
point of view). Note that inputmatrixA is stored row-wise
in the nodes, and for simplicity, we show here the case
when the number of rows of matrix A ∈ R

N×m is equal
to the number of nodes in the network. For a formulation
from the network (global) point of view and arbitrary size
of matrix A, see Section 4.
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1. Initialization (t = 0). Node i stores the following
vectors.

ûi(0) = (ai,1, ai,2, . . . ai,m)

q̂i(0) = (ai,1, ai,2, . . . ai,m)

ũi(0) = (a2i,1, a
2
i,2, . . . a2i,m)

q̃i(0) = (a2i,1, a
2
i,2, . . . a2i,m)

p̃(1)
i (0) = (a2i,1, a

2
i,2, . . . a2i,m)

p̃(2)
i (0) = (ai,1ai,2, ai,1ai,3, ai,2ai,3, . . . ai,m−1ai,m)

2. Repeat for t = 1, 2, . . .

(a) Compute vectors locally.

pi(t) =
(
0 , p̃(2)

i1 (t − 1) q̂i,1(t−1)
q̃i,1(t−1) ,

p̃(2)
i,2 (t − 1) q̂i,1(t−1)

q̃i,1(t−1) + p̃(2)
i,3 (t − 1) q̂i,2(t−1)

q̃i,2(t−1) , . . . ,∑m−1
j=1 p̃(2)

i,j+(m−1)(m−2)/2(t − 1) q̂i,j(t−1)
q̃i,j(t−1)

)
ûi(t) = (

ai,1 − pi,1(t), ai,2 − pi,2(t), . . . , ai,m − pi,m(t)
)

q̂i(t) =
(

ûi,1(t)√
Nũi,1(t−1)

,
ûi,2(t)√

Nũi,2(t−1)
, . . . ,

ûi,m(t)√
Nũi,m(t−1)

)

(b) Store the local part of the resulting matrixQ
and the whole matrix R, i.e.,

q̂i(t) =
( ûi,1(t)√

Nũi,1(t−1)
, ûi,2(t)√

Nũi,2(t−1)
, . . . , ûi,m(t)√

Nũi,m(t−1)

)

R(i)(t) = N

⎛
⎜⎜⎜⎜⎝

p̃(1)
i,1 (t) p̃(2)

i,1 (t) . . . p̃(2)
i,(m2−3m+4)/2(t)

0 p̃(1)
i,2 (t) p̃(2)

i,3 (t) . . .

...
. . . . . .

0 . . . 0 p̃(1)
i,m(t)

⎞
⎟⎟⎟⎟⎠

(c) Aggregate the following data into one message:

ψ
(1)
i = (

ũi,1(t − 1) + û2i,1(t) − û2i,1(t − 1) , . . . ,
ũi,m(t − 1) + û2i,m(t) − û2i,m(t − 1)

)
ψ

(2)
i = (

q̃i,1(t − 1) + q̂2i,1(t) − q̂2i,1(t − 1) , . . . ,
q̃i,m(t − 1) + q̂2i,m(t) − q̂2i,m(t − 1)

)
ψ

(3)
i =

(
p̃(1)
i,1 (t − 1) + ai,1q̂i,1(t) − ai,1q̂i,1(t − 1) , . . . ,

p̃(1)
i,m(t − 1) + ai,mq̂i,m(t) − ai,mq̂i,m(t − 1)

)
ψ

(4)
i =

(
p̃(2)
i,1 (t − 1) + q̂i,1(t)ai,2 − q̂i,1(t − 1)ai,2,

p̃(2)
i,2 (t − 1) + q̂i,1(t)ai,3 − q̂i,1(t − 1)ai,3, . . . ,
p̃(2)
i,(m2−m)/2(t − 1) + q̂i,m−1(t)ai,m

−q̂i,m−1(t − 1)ai,m
)

(d) Broadcast the message containing the
vectors

{
ψ

(1)
i ,ψ (2)

i ,ψ (3)
i ,ψ (4)

i

}
to the

neighbors and update the own local data{
ũi(t), q̃i(t), p̃(1)

i (t), p̃(2)
i (t)

}
from received data.
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