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classification for face recognition under
low-resolution and illumination variation
conditions
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Abstract

In this paper, a novel class-specific kernel linear regression classification is proposed for face recognition under very
low-resolution and severe illumination variation conditions. Since the low-resolution problem coupled with illumination
variations makes ill-posed data distribution, the nonlinear projection rendered by a kernel function would enhance the
modeling capability of linear regression for the ill-posed data distribution. The explicit knowledge of the nonlinear
mapping function can be avoided by using the kernel trick. To reduce nonlinear redundancy, the low-rank-r
approximation is suggested to make the kernel projection be feasible for classification. With the proposed
class-specific kernel projection combined with linear regression classification, the class label can be determined
by calculating the minimum projection error. Experiments on 8 × 8 and 8 × 6 images down-sampled from extended Yale
B, FERET, and AR facial databases revealed that the proposed algorithm outperforms the state-of-the-art methods under
severe illumination variation and very low-resolution conditions.
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1 Introduction
Numerous studies [1] have been greatly proposed for face
recognition recently. In realistic situations such as video
surveillance, face recognition may encounter many great
challenges, especially low-resolution problems, caused by
the cameras at a distance. Additionally, the low-resolution
(LR) problems might be coupled with other effects such
as illumination variations. Therefore, it is desired to devise
a face recognition method for both very low-resolution
and illumination variation problems.
In the literature, numerous researches based on the sub-

space projection methods have been proposed to achieve
successful face recognition. The principle component ana-
lysis (PCA) [2–6] and independent component analysis
(ICA) [7–9] have been reported to be robust in noisy con-
ditions. The linear discriminant analysis (LDA) [3–6]
yields better results in clean conditions and lighting
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changes than the PCA. Moreover, the kernel variants such
as kernel PCA (KPCA) [10–12] and kernel LDA (KLDA)
[12–14] have been presented to achieve better perform-
ance by nonlinearly mapping the data from the original
space to a very high-dimensional feature space, which is
called the reproducing kernel Hilbert space (RKHS).
Therefore, KPCA and KLDA by nonlinearly mapping could
be improved from high-order statistics, whereas the PCA
and LDA only utilize the first- and second-order statistics.
Thus, for highly nonlinear data distribution, these kernel
methods are more suitable for low-resolution and illumin-
ation variation conditions. Moreover, some geometrically
motivated approaches such as locality preserving projection
(LPP) [15] and neighboring preserving embedding (NPE)
[16] have been shown effectiveness for face recognition.
Recently, the spare representation classification (SRC)

[17, 18] and a linear regression classification (LRC) algo-
rithms [19] have been proposed for face recognition. Al-
though SRC-based approaches perform very well in many
situations, the execution time in SRC-based approaches is
more than that in LRC-based approaches. For pursuing the
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accuracy and speed, the LRC would be a good choice for
further investigation. The LRC is based on that face images
from a specific class are known to lie on a class-specific lin-
ear subspace [3, 20]. The regression coefficients can be esti-
mated by using the least-square method, and the decision
can be determined by the minimum reconstruction error.
Experiments reported have shown that the down-sampled
low-resolution face image could be used for face classifica-
tion directly. However, as the results reported, the LRC
could not withstand severe illumination variations. In
addition, a robust linear regression classification algorithm
(RLRC) [21] has been introduced to address the problem of
robust face recognition. However, low-resolution problems
did not be addressed.
The performances achieved by the existing methods, such

as PCA, LDA, LPP, and NPE methods, decrease under low-
resolution condition because of the loss of high-frequency
information [22]. Boom et al. in [23] showed that low-
resolution face images below 32 × 32 pixels degraded the
performances of the PCA and LDA seriously. In [24], the
face images with 20 × 20 and 10 × 10 resolution dramatic-
ally deteriorated the recognition performance compared
with those with 40 × 40 pixels in video-based face recogni-
tion systems. In [25], face resolution below 36 × 48 reduced
the expression recognition performance.
To overcome the problem of low-resolution face rec-

ognition, several works have been presented to resolve
this problem by using the super-resolution (SR) method
[26–30]. One is to train relationship between the low-
resolution (LR) and its corresponding high-resolution
(HR) face images [29]. The other uses the canonical cor-
relation analysis to compute the coherent features be-
tween the LR and its HR face images [30]. Here, we can
observe that the LR and HR image pairs are needed for
SR methods.

1.1 Problem statements
In realistic situations, it may be a case that only the LR
face images are available in training set for identifying
criminals, so it is imperative to overcome the problem
that some training individuals may not be the same as
gallery. In other words, the HR face images for specific
persons are not available for modeling the relationship
and computing the similarity in SR approaches [26–30].
Thus, how to perform LR face recognition directly with-
out the HR information is a critical and practical topic.
To conquer the illumination variation problems, sev-

eral approaches [3, 31–35] have been proposed. For in-
stance, numerous preprocessing methods, such as the
histogram equalization, gamma correction, and loga-
rithm transform, are widely used for the illumination
normalization. Other methods including the gradient
operation, Gabor filters, and LDA-based approaches are
well-known illumination invariant methods. However,
these methods would fail because the important features
in high-frequency details for face recognition are lost
under the LR problems.

1.2 Contributions
We propose a novel face recognition algorithm to im-
prove the limitation of the LRC [15] by embedding the
kernel method into the linear regression. The key of the
proposed method is to apply a nonlinear mapping func-
tion to twist the original space into a higher dimensional
feature space for better linear regression. Moreover, in
order to make the proposed kernel projection feasible, a
constrained low-rank approximation [36–38] is pro-
posed to obtain low-rank-r singular value approxima-
tion. The low-rank approximation is a rank reduction
method which minimizes the difference between a given
matrix and an approximation matrix. Simulations carried
on the extended Yale B, FERET, and AR facial databases
reveal that the proposed kernel linear regression classifi-
cation (KLRC) can achieve good performance for LR
face recognition under variable lighting changes without
any preprocessing. At the same time, the proposed algo-
rithm can reconstruct the very low-resolution face image
under illumination variations with high quality measured
by quality assessments.

1.3 Paper outline
The rest of this paper is organized as follows. Section 2
reviews the LRC approach and presents the motivations.
Section 3 formulates the proposed KLRC method with a
constrained low-rank approximation algorithm. Section 4
shows the comparisons with the related work. Section 5
gives experimental results. Finally, we draw conclusions
in Section 6.

2 Background and motivations
2.1 Linear regression classification (LRC)
Assume we have N subjects with pi training images from
the ith class, i = 1, 2,…,N. Each gray scale training image
is in size of a × b pixels and is represented as vi,j ∈ℜ

a × b,
i = 1, 2,…,N and j = 1, 2,…,pi. Then, each training image
is transformed to a column vector as wi,j ∈ℜ

q × 1, where
q = a × b. For applying the linear regression to estimate
the class-specific model, we stack all column vectors wi,j

regarding the class-membership. Hence, for the ith class,
we have

W i ¼ wi;1;…;wi;j;…;wi;pi

� �
∈ℜq�pi ; ð1Þ

where each vector wi,j is a column vector of Wi. Thus, in
the training phase, the ith class is represented by a vec-
tor space Wi, which is called the regressor for each
subject.
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If y belongs to the ith class, it can be represented as a
linear combination of the training images from the ith
class and can be defined as

y ¼Wiβi þ e; i ¼ 1; 2;…;N ; ð2Þ
where βi∈ℜ

pi�1 is the vector of regression parameters
and e is an error vector whose elements are independent
random variables with zero mean and variance σ2. The
goal of the regression is to find ~βi , which minimizes the
residual errors as

~βi ¼ arg min
βi

W iβi−yk k22; i ¼ 1; 2;…;N ð3Þ

The regression coefficients can be solved through the
least-square estimation and can be written as a matrix
form as

~βi ¼ WT
i W i

� �−1
W T

i y; i ¼ 1; 2;…;N ð4Þ

The vector of estimated parameters, ~βi , and the pre-
dictor, Wi, are used to predict the response vector i

for the ith class as

~yi ¼ W i
~βi; i ¼ 1; 2;…;N ð5Þ

By substituting (4) for ~βi in (5), the optimal prediction
in the least-square sense becomes

~yi ¼ W i W T
i W i

� �−1
W T

i y; i ¼ 1; 2;…;N ð6Þ
Theoretically, we can treat the above equation as a

class-specific projection as [39],

~yi ¼ H iy; i ¼ 1; 2;…;N ; ð7Þ
where ỹi is the projection of y onto the subspace of the
ith class by the projection matrix, H i ¼ W i WT

i W i
� �−1

W T
i . It is noted that the projection matrix is a symmet-

ric and idempotent matrix.
The LRC is developed based on the minimum recon-

struction error. In other words, if the original vector be-
longs to the subspace of class i, the predicted response
vector ỹi will be the closest vector to the original vector.
The identity i* could be determined by calculating the
Euclidean distance measure between the predicted response
vectors and the original vector as

i� ¼ arg min
i

~yi−yk k; i ¼ 1; 2;…;N

¼ arg min
i

H iy−yk k
ð8Þ

2.2 Motivations
The LRC has been developed based on the concept that
samples from a specific person are known to lie on a
class-specific linear subspace and demonstrated that it
could achieve good performance for the low-resolution
face images, but not good for severe illumination varia-
tions. This is because illumination variations make the data
distribution more complicated. So the face images cap-
tured under variable lighting conditions may cause the lin-
ear subspace approaches inappropriate. In other words, the
linear subspace methods would fail when they violate the
Lambertian assumption regarding the illumination prob-
lem. Especially, when the low-resolution problem is
coupled with illumination variations, the linear subspace
methods, such as the PCA and LDA, and the linear regres-
sion classification (LRC) could not counteract the problem.
In this paper, a kernel linear regression classification
(KLRC) with a constrained low-rank approximation is pro-
posed for low-resolution face recognition under illumin-
ation variations. The KLRC with the nonlinear mapping
function can evaluate the LRC in the higher dimensional
feature space and can achieve good results.

3 KLRC
Assume the original input space can be always mapped
to some higher dimensional feature space where the data
set is distributed linearly. As shown in Fig. 1, the left fig-
ure shows that it is difficult to fit the data by a regres-
sion line because of nonlinear data distribution, whereas
the right figure shows that it is easy to fit the data by a
regression plane because of data distribution linearly by
a mapping function from R2 to R3. Thus, it can be ex-
pected that a nonlinear mapping prior to linear regres-
sion could improve the limitation of the LRC under
severe illumination variations. In order to formulate a
general equation and solve the problem systematically,
we will discuss it in details later. Here, we first introduce
the kernel linear regression classification (KLRC)
method. The KLRC is also developed based on the the-
ory that samples from a specific class are known to lie
on a linear subspace by a nonlinear mapping. The key is
to apply a nonlinear mapping function to the input
space and then evaluate it by the LRC in the higher di-
mensional feature space. The dimension of the resulting
feature space could be very large. Fortunately, this expli-
cit knowledge of the nonlinear mapping function can be
computationally avoided by using the kernel trick [40].
For the following theoretical derivation, a vector space

should be defined as

Zi ¼

zi;1
⋮
zi;j
⋮
zi;q

2
66664

3
77775 ¼ W i; ð9Þ

where each vector zi,j is a row vector of Zi. Specifically,
each row vector in Zi is projected from the original



Fig. 1 Illustration of a mapping from R2 to R3. The left figure shows it is difficult to fit the data by a regression line because of nonlinear data
distribution, whereas the right figure shows it can fit the data by a regression plane because of linear data distribution in the higher
dimensional space
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space ℜpi to a high-dimensional space ℜf by a nonlinear
mapping function Φ zi;j

� �
: ℜpi→ℜf ; f > pi . There-

fore, now, ℜf is the space spanned by Φ(zi,j). The pro-
jected row vectors can be used for linear regression as

y ¼ Φ Zið Þβi; i ¼ 1; 2;…;N ð10Þ
Because of the increase in dimensionality, the mapping

function Φ(zi,j) is made implicitly by using the kernel func-
tion satisfying Mercer’s theorem. Furthermore, by using the
dual representation βi =Φ(Zi)

Tαi, the linear regression
stated in (10) becomes

y ¼ Φ Zið ÞΦ Zið ÞTαi ¼ K iαi; i ¼ 1; 2;…;N ; ð11Þ
where the kernel matrix Ki is positive semi-definite. Typ-
ically, kernel functions include the polynomial kernel
and Gaussian kernel, which satisfy Mercer’s theorem.
We first perform singular value decomposition (SVD)

on the kernel matrix Ki as

K i ¼ USVT ; ð12Þ
where U and VT are left and right SVD orthonormal matri-
ces and S = diag{λ1, λ2,…, λg} is an rectangular diagonal
matrix with the descend-sorted singular values on the diag-
onal with λ1 ≥… ≥ λk ≥… ≥ λg ≥ 0. To achieve a robust esti-
mation, we propose a constrained rank-r approximation of
Ki defined as

K r
i ¼ USrVT ; ð13Þ

where

Sr ¼ diag λ1; λ2;…; λr; 0; 0; … 0f g; ð14Þ
by discarding (g − r) least SVD components. The num-

ber of principle SVD components, r, is determined by

r ¼ arg max
k

∀λk jλk > λmedian þ μ λmedian−λg
� �� �

;

ð15Þ
where μ is a selected control factor, λg is the smallest
singular value, and λmedian , which is the median of all sin-
gular values, is expressed as

λmedian ¼ median ∀λk jk < gf g ð16Þ
After the construction of the constrained low-rank ap-

proximation stated in (13), we could obtain a kernel linear
regression model for the ith class as

y≈K r
iαi þ e ð17Þ

Then, the kernel linear regression aims to minimize
the residual errors as

~αi ¼ arg min
αi

K r
iαi−y

�� ��2
2: ð18Þ

The above solution can be also solved by the least-
square estimation since it has the same form as stated
in (2). After the low-rank approximation, we can use
the pseudo-inverse of K r

i to obtain the least-square
solution as

~αi ¼ K r
i

� �−
y; ð19Þ

where the pseudo-inverse of K r
i is expressed by

K r
i

� �− ¼ U Srð Þ−VT ; ð20Þ
with

Srð Þ− ¼ diag λ−11 ; λ−12 ;…; λ−1r ; 0; 0; … 0
� � ð21Þ

Since K r
i K r

i

� �−≠I , it will be feasible to compute the
minimum reconstruction error between the original vec-
tor and projected vector for determining the classification
results.
In the classification phase, the response vector i for

the ith class can be predicted by

~yi ¼ K r
i ~αi: ð22Þ

By substituting (19) in (22), we can obtain
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~yi ¼ Piy; ð23Þ

and obtain a class-specific kernel projection matrix as

Pi ¼ K r
i K r

i

� �−
; ð24Þ

where i is the projection of y onto the kernel subspace
of the ith class by the class-specific kernel projection
matrix, Pi. It is noted that K r

i K r
i

� �−≠I is necessary for
the KLRC computation.
The KLRC is also developed based on the minimum

reconstruction error. So in the recognition phase, the
identity i* could be determined by calculating the Eu-
clidean distance measure between the predicted re-
sponse vectors and the original vector as

i� ¼ arg mini ~yi−yk k; i ¼ 1; 2;…;N
¼ arg mini Piy−yk k ð25Þ

4 Comparison with the related works
4.1 Analysis of the regression parameter
To simplify the analysis, we assume that Wi is a square
matrix. We have Wi =UiDiVi

T by SVD with Ui
TUi = I, be-

cause Wi is a square matrix, Ui
T =Ui

− 1, and UiUi
T = I.

Similarly, ViVi
T =Vi

TVi = I. In addition, the linear kernel
k(zij, zij) = < zij, zij > = zijzij

T is used in the KLRC for the
theoretical analysis below.

4.1.1 LRC

The goal of the LRC is to find ~βi , which minimizes the
residual errors. Statistically, the linear regression model
is an unbiased estimate. Also, the variance of the regres-

sion parameter vector ~βi in the linear regression model
is expressed as

Var ~βi

� �
LRC ¼ Ε ~βi−βi

� �
~βi−βi

� �Tn o
¼ Ε W T

i W i
� �−1

W T
i ee

TW i W T
i W i

� �−1n o
¼ σ2 W T

i W i
� �−1 ¼ σ2 V iDiU i

TU iDiV i
T

� �−1
¼ σ2

XJ

j¼1

1
dij

vijvTij ;

ð26Þ

where Wi =UiDiVi
T by SVD, vij is the jth column eigen-

vector of Vi, and dij is the jth eigenvalue corresponding
to the vij.

4.1.2 KLRC
The goal of the KLRC is to find ~αi , which minimizes the
residual errors. Statistically, the kernel linear regression
model is also an unbiased estimator since the kernel lin-
ear regression model in (17) has the same form as in (2).
On the other side, the variance of the regression
parameter vector in the kernel linear regression model is
expressed as

Var ~αið ÞKLRC ¼ Ε ~αi−αið Þ ~αi−αið ÞT
n o

¼ Ε K r
i

� �−1
eeT K r

i

� �−1	 

T

n o

¼ σ2 K r
i K r

i

� �T	 
−1

¼ σ2 Zr
i Zr

i

� �T	 

Zr
i Zr

i

� �T	 
T
� �−1

¼ σ2 W r
i W r

i

� �T	 

W r

i W r
i

� �T	 
T
� �−1

¼ σ2 U r
iD

r
iD

r
iD

r
iD

r
i U r

i

� �T	 
−1

¼ σ2
Xr

j¼1

1

d2
ij

uiju
T
ij ;

ð27Þ

where r < J, W r
i ¼ U r

iD
r
iV

r
i T by the SVD, and dij is the

jth eigenvalue corresponding to the jth eigenvector.
Compared (26) with (27), the variance of the regression
parameter vector in the KLRC is smaller than that in the
LRC. Therefore, it can be expected that the KLRC can
provide more reliable regression parameter to the re-
gression model for classification.

5 Experimental results
For verifications, we examine the proposed algorithms
on the facial images, which are down-sampled from
the extended Yale B (EYB) [41], AR [42], and FERET
[43] face databases. In the experiments, we evaluate
the proposed method against low-resolution problems
coupled with illumination variations. In this section,
all experimental results report the top 1 recognition
accuracy (%).
The experiments are designed to evaluate the ef-

fectiveness of the proposed method in coping with
unseen lighting changes under the LR condition. In
the experiments, we compare the proposed methods,
KLRC-p and KLRC-g, with the PCA+Euclidean, PCA
+Mahalanobis [44], KPCA-p, KPCA-g, LDA+Euclid-
ean, LDA+Mahalanobis, KLDA-p, KLDA-g, LRC,
RLRC, SRC, LPP, NPE, improved principal compo-
nent regression (IPRC) [45], unitary regression clas-
sification (URC) [46], linear discriminant regression
classification (LDRC) [47], and local binary pattern
(LBP) [48], where p and g denote the polynomial
kernel and Gaussian kernel, respectively. The PCA-
based and LDA-based approaches utilize 85 % di-
mensionality for experiments. It should be noted
that this paper assumes the corresponding HR face
images for the LR face images are not available as
stated in Section 1.1. Hence, the existing face
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recognition systems with the SR method are not
suitable for this problem.
5.1 Experiments on EYB
The EYB contains images of 38 subjects with 9 poses
and 64 illuminations per pose. The frontal face images
of all subjects with 64 different illuminations are used
for evaluation. The EYB is divided into five subsets
based on the angle of the light source directions. As a
result, there are total 2432 images: 266 (7 images per
person), 456 (12 images per person), 456 (12 images per
person), 532 (14 images per person), and 722 (19 images
per person) images in subsets 1 to 5, respectively. All
images are cropped, lowpassed, and resized to low-
resolution images in size of 8 × 8 pixels, as shown in
Fig. 2. Subset 1 is conducted for training, and the
remaining subsets (subsets 2 to 5) are used for testing.
First of all, we investigate the performances under

different image resolutions. Figure 3 shows the aver-
age recognition rate over the remaining subsets. Re-
sults reveal that the proposed KLRC-p and KLRC-g
outperform the other methods consistently. Low-
resolution face images with 8 × 8 pixels degrade the
performances significantly. Nonetheless, the proposed
KLRC algorithms still could perform well under the
very low-resolution condition. Also, the results show
that the performances achieved by the PCA-based,
LDA-based, and the other subspace projection
methods are drastically reduced for resolution below
16 × 16 pixels. Moreover, it is interesting to point out
that the KLRC-p and KLRC-q under 8 × 8 pixels out-
perform the PCA-based and LDA-based approaches
under 32 × 32 pixels significantly and achieve compar-
able recognition rate by the LRC-based approaches
under 32 × 32 pixels. LBP [48] is a local feature
method which can effectively defense the illumination
variations under 32 × 32 pixels. However, LBP cannot
perform very well under very low-resolution situation
Fig. 2 10 samples with the low-resolution problem which are obtained fro
since the facial information is not enough for local
feature extraction. This success should be attributed
to perform linear regression in the higher dimensional
feature space.
Then, we further focus on the low-resolution images. As

shown in Table 1, the KLRC-p and KLRC-g outperform
the LRC, RLRC, IPCR, URC, LDRC, PCA+Euclidean,
PCA+Mahalanobis, kernel-based PCA, LDA+Euclidean,
LDA+Mahalanobis, kernel-based LDA, SRC, LPP, NPE,
and LBP for the low-resolution face recognition under
illumination variations. The PCA-based methods are
the worst ones. Note that although it is widely accepted
that the discriminant-based approaches offer higher ro-
bustness to lighting variations than the PCA-based ap-
proaches [3], the discriminant-based approaches still
cannot withstand the low-resolution problem coupled
with illumination variations in our work. It is because
the low-resolution image contains insufficient high-
frequency components containing the discriminative
information for discriminant analysis. In [45], Huang
et al. had shown that the regression-based method can
perform better than the discriminant-based approach
for face recognition under illumination variations. The
proposed KLRC-p and KLRC-q have gained improve-
ment significantly. In addition, although the RLRC per-
forms better than the LRC, the RLRC could not obtain
satisfactory performance because of performing regres-
sion in the original linear space.
5.2 Experiments on AR
For further verifications, we conducted experiments on
AR face database. The AR database, built by Martinez
and Benavente, totally contains 3510 mug shots of 135
subjects (76 males and 59 females) with different facial
expressions, lighting changes, and partially occlusions.
Each subject contains 26 images in two sessions. The
first session, containing 13 images, includes the neutral
expression, smile, anger, screaming, different lighting
m five subsets of two persons from the EYB face database



Fig. 3 The recognition rate under different image resolutions on the EYB face database
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changes, and two realistic partial occlusions with lighting
changes. The second session duplicates the first session
in the same way 2 weeks later.
To evaluate the effectiveness of the proposed approach

in coping with variable illuminations, only the face
Table 1 Performance (%) comparisons of different methods on
EYB in size of 8 × 8 pixels

Methods\testing
faces

Subset
2

Subset
3

Subset
4

Subset
5

Average

PCA+Euclidean 70.18 19.52 2.63 2.63 23.74

PCA+Mahalanobis 66.67 34.17 19.29 18.42 34.64

KPCA-p 75.57 22.85 2.13 2.77 25.83

KPCA-g 76.67 25.48 3.57 2.91 27.16

LDA+Euclidean 100.00 89.91 26.50 4.02 55.11

LDA+Mahalanobis 88.33 72.50 27.86 7.89 49.15

KLDA-p 98.68 64.69 24.66 4.57 48.15

KLDA-g 99.56 74.34 26.54 4.71 51.29

LRC 100.00 98.03 51.69 11.77 65.37

RLRC 100.00 98.68 60.34 22.16 70.30

SRC 95.83 41.67 17.86 23.68 44.76

LPP 100.00 80.00 30.71 13.68 50.10

NPE 97.50 49.17 19.29 15.79 45.44

IPCR 100.00 96.67 56.43 16.84 67.49

URC 100.00 97.50 57.14 21.05 68.92

LDRC 100.00 75.83 39.29 17.37 58.12

LBP 96.67 70.00 31.43 23.68 55.40

KLRC-p 100.00 98.68 77.82 46.26 80.69

KLRC-g 100.00 98.68 79.51 45.01 80.80

Italicized data means the proposed methods' results
images with illumination variations were considered in
the experiments. All color face images in the AR are
converted to gray levels, cropped, and down-sampled to
the size of 8 × 6 pixels. Note that no face alignment is
done in the copped face images. As shown in Fig. 4, 120
subjects with 8 face images under illumination variations,
including no lighting, left lighting, right lighting, and full
lighting, are chosen for evaluation. Training is conducted
on the images with no lighting, and the remaining lighting
conditions (left lighting, right lighting, and full lighting)
are used for testing.
The experimental results are tabulated in Table 2,

which reflects that the proposed KLRC-p and KLRC-g
can attain higher recognition rate than the LRC, RLRC,
IPCR, URC, LDRC, PCA+Euclidean, PCA+Mahalanobis,
kernel-based PCA, LDA+Euclidean, LDA+Mahalanobis,
kernel-based LDA, NPP, NPE, and LBP for low-
resolution face recognition under illumination variations.
Fig. 4 Eight samples in size of 8 × 6 pixels from the lighting subset
of one person from AR database



Table 2 Performance (%) comparisons of different methods on
AR in size of 8 × 6 pixels

Methods\training
data

Left
lighting

Right
lighting

Full
lighting

Average

PCA+Euclidean 41.67 34.17 8.75 28.20

PCA+Mahalanobis 40.00 32.08 22.50 31.53

KPCA-p 41.25 31.25 12.50 28.33

KPCA-g 42.42 34.58 16.67 31.22

LDA+Euclidean 74.42 44.00 50.25 56.22

LDA+Mahalanobis 52.92 34.17 54.17 46.09

KLDA-p 75.25 47.33 41.50 54.69

KLDA-g 73.50 51.75 47.17 57.47

LRC 75.33 54.08 42.00 57.14

RLRC 74.42 57.75 41.90 58.03

SRC 80.00 72.50 34.17 62.22

LPP 60.83 42.92 30.83 44.86

NPE 82.08 52.50 30.42 55.00

IPCR 41.25 31.25 8.33 26.94

URC 43.75 32.92 17.50 31.39

LDRC 75.00 48.75 55.42 59.72

LBP 61.25 55.42 46.67 54.45

KLRC-p 75.42 57.92 51.25 61.53

KLRC-g 73.75 59.17 53.75 62.22

Italicized data means the proposed methods' results
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From the experimental results, we can observe that SRC
performs well as the proposed KLRC, especially under
low ill-posed situation. However, the execution time in
SRC-based approaches generally is more than that in
LRC-based approaches [49]. The discriminant-based ap-
proaches, LRC, RLRC, IPCR, URC, and LDRC, could
not work well for low-resolution face recognition under
illumination variations.

5.3 Experiments on FERET
We further conduct experiments on the FERET face
database to evaluate the performance on the illumin-
ation and expression variations since the different
facial expression is inevitable to face recognition.
Table 3 Performance (%) comparisons of different methods on FERE

Methods PCA+Euclidean PCA+Mahalano

Recognition rate 70.0 36.2

Methods LDA+Mahalanobis KLDA-p

Recognition rate 58.3 72.4

Methods SRC LPP

Recognition rate 73.8 61.2

Methods LDRC LBP

Recognition rate 76.0 53.8

Italicized data means the proposed methods' results
The FERET includes 250 people with four frontal
view images from each subject. These 1000 face
images with illumination and expression variations
are resized to 8 × 6 pixels. Two images of each
person are randomly selected for training, and the
other two images are for testing. The experimental
results are tabulated in Table 3, which has reported
that the KLRC-p and KLRC-g can achieve higher
recognition rate than the LRC, RLRC, IPCR, URC,
LDRC, PCA+Euclidean, PCA+Mahalanobis, kernel-
based PCA, LDA+Euclidean, LDA+Mahalanobis,
kernel-based LDA, SRC, NPP, NPE, and LBP. As the
results shown, we can observe that the KLRC-p and
KLRC-g can work well for low-resolution problems
with illumination and expression variations. It is rea-
sonable because the LR face image will lose facial
expression information [25]. On the other hand, in
FERET, the lighting variations are slight, so the im-
provement is limited.
6 Conclusions
In this paper, the statistical analyses and experiment
results verified that the proposed class-specific ker-
nel linear regression classification performs the best
for the low-resolution face recognition under illu-
mination variations. With the kernel trick, the non-
linear and increased-dimension mapping function
enhances the modeling capability for low-resolution
and illumination variations. Furthermore, the con-
strained low-rank approximation has been proposed
to perform low-rank approximation automatically to
make the kernel projection feasible for classification.
The comparisons with the state-of-the-art methods
indicate a comparable performance for the proposed
KLRC-p and KLRC-g. We have demonstrated that the
proposed KLRC-p and KLRC-g perform better than the
PCA+Euclidean, PCA+Mahalanobis, KPCA-p, KPCA-g,
LDA+Euclidean, LDA+Mahalanobis, KLDA-p, KLDA-g,
LRC, RLRC, SRC, LPP, NPE, IPRC, URC, LDRC, and
LBP for low-resolution face recognition under variable
lighting. In summary, the KLRC-p and KLRC-g
T in size of 8 × 6 pixels

bis KPCA-p KPCA-g LDA+Euclidean

71.2 71.4 72.0

KLDA-g LRC RLRC

72.4 74.0 74.2

NPE IPCR URC

28.0 63.5 71.6

KLRC-p KLRC-g

76.8 76.4
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dramatically improve the LRC to possess good robust-
ness for very low-resolution face recognition under se-
vere illumination variations.
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