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Abstract

We study the performance of a single-cell massive multiple-input multiple-output orthogonal frequency-division
multiplexing (MIMO-OFDM) system that uses linear precoding to serve multiple users on the same time-frequency
resource. To minimize overhead, the channel estimates at the base station are obtained via comb-type pilot tones
during the training phase of a time-division duplexing system. Polynomial regression is used to interpolate the
channel estimates within each coherence block. We show how such regressors can be designed in an offline fashion
without the need to obtain channel statistics at the base station, and we assess the downlink performance over a
wide range of system parameters.

Keywords: MIMO, OFDM, Massive MIMO, Least squares, Interpolation, Channel estimation, Zero-forcing,
Beamforming, Precoding

1 Introduction
Multi-user multiple-input multiple-output (MU-MIMO)
systems with large number of base station antennas hold
the promise of high throughput communications for
emerging wireless deployment [1–4]. Using the notion of
spatial multiplexing, the antenna array at the base station
can serve a multiplicity of autonomous user terminals on
the same time-frequency resource. This spatial resource
sharing policy serves as an alternative not only to the
need for costly spectrum licensing but also the costly
procurement of additional base stations in conventional
cell-shrinking strategies.While the benefits of spatial mul-
tiplexing may be fully realized when the number of base
station antennas is equal to the number of scheduled user
terminals, MU-MIMO systems with an excessively large
number of antennas, also known as massive MIMO, have
recently gained attention owing in part to the following
benefits [5]:
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• Massive MIMO can increase the throughput and
simultaneously improve the radiated energy
efficiency via energy focusing.

• Massive MIMO can be built with rather inexpensive
components by replacing high-power (W) linear
amplifiers with low-power (mW) counterparts.

• Massive MIMO can simplify the multiple-access
layer (MAC) by scheduling the users on the entire
band without the need for feedback1.

Such benefits largely stem from asymptotic results on
random matrix theory that illustrates how the effects of
uncorrelated noise and small-scale fading are virtually
eliminated (and the required transmitted energy per bit
vanishes) as the number of antennas in aMIMO cell grows
to infinity.
Massive MIMO systems are also versatile over a wide

range of system parameters. For instance, the beam-
forming gain afforded by using a large number of
transmit antennas may be used to overcome the large
path loss associated with mmWave links in urban areas
[6]. Alternatively, the beamforming gain may be har-
nessed at VHF/UHF frequencies to provide wide-coverage
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connectivity to rural areas of the world [7]. Given such
promises, the practical and theoretical aspects of mas-
sive MIMO systems are actively under scrutiny for
potential beyond-4G wireless communication deploy-
ments not only by standardization entities such as the
3rd Generation Partnership Project (3GPP) but also by
many industrial base station and device manufacturers
worldwide.
Coherent massive MIMO systems require channel state

information (CSI) at the base station in order to compute
linear precoder filters for the downlink and equalization
filters for the uplink. Such systems are typically designed
for a time-division duplexing (TDD) scheme where the
uplink and downlink share the transmission bandwidth.
This is primarily due to the fact that the CSI may be
readily obtained in TDD mode when reciprocity is main-
tained in the signal path. For example, the base station
may estimate the downlink (and uplink) channel using
pilot symbols transmitted by the users during an uplink
“training phase” [8]. The estimation of CSI is a well-
studied area for MIMO [8], OFDM [9, 10], and MIMO-
orthogonal frequency-division multiplexing (OFDM) [11]
systems. For multi-user systems, the base station may use
the estimated CSI obtained from uplink pilots to construct
linear precoders (and equalizers). Fortunately, in the mas-
sive MIMO regime, the performance of such filters are
known to be close to the optimal schemes. In this context,
matched-filter (MF) and zero-forcing (ZF) are two popu-
lar linear filters [12]. The gains due to linear processing
must be weighed by the increases in baseband compu-
tational complexity as a result of adding more antenna
elements at the base station. For instance, MF and ZF
equalization are known to have linear and cubic com-
plexity, respectively, in the number of users. This may
present a bottleneck given current hardware capabilities;
hence, some researchers have devised suboptimal meth-
ods with reduced complexity such as the ordering scheme
proposed in [13] for MF or the inversion-approximation
for ZF proposed in [14]. The accuracy of these linear fil-
ters depend on the accuracy of the CSI on which they are
obtained from.
Interpolating a reduced set of pilots is a popular method

of estimating the CSI across the frequency band in
single and multi-user MIMO-OFDM system (see, e.g.,
[9, 10, 15–17] and references therein). In this paper, we
study the effects of regression-based interpolation of CSI
and its effects on the accuracy of linear precoding in a
downlink massiveMIMO system.We propose polynomial
regression as a way to interpolate the multiplexed pilots
in the uplink into a single channel estimate over a block
of bandwidth, i.e., over a coherence block. These regres-
sors may be computed in an offline fashion without any
knowledge of the channel. In Section 2, we formulate the
problem and propose some notation and in Section 3, we

present numeric results. We make concluding remarks in
Section 4.
Notation: Bold uppercase and lowercase letters repre-

sent matrices and vectors, respectively. X∗, XT, XH, X−1,
andX+ denote conjugate, transpose, conjugate-transpose,
matrix inverse, and Moore-Penrose inverse of a matrix X,
respectively.

2 Systemmodel
We consider a linearly precoded MU-MIMO-OFDM sys-
tem over N subcarriers with M antennas at the base
station serving K single-antenna users. The system oper-
ates under a hardware-calibrated time division duplexing
(TDD) scheme over a wireless channel with a coher-
ence time of Tc seconds. This allows simultaneous
uplink (users to base station) and downlink (base sta-
tion to users) transmissions across a common frequency
band.

2.1 Uplink pilot phase (training)
During the uplink pilot phase, the users transmit pilot
symbols to the base station for the purposes of chan-
nel estimation and precoder/equalizer calculation. To
minimize the overhead associated with pilot transmis-
sions, we adopt a comb-type pilot arrangement where the
pilot symbols are uniformly inserted into OFDM sym-
bols during the uplink pilot phase. The pilot spacing in
the frequency domain is chosen to be smaller than the
coherence bandwidth of the channel which is approxi-
mated as Bc = 0.02/τrms, where τrms is the channel delay
spread. As such, the channel estimation is processed on
a per resource block (RB) basis, where a resource block
is defined as a contiguous group of subcarriers spanning
one coherence bandwidth (within the channel coherence
time Tc). The pilot symbols are not precoded by the users
and are instead transmitted in a multiple-access fash-
ion. Figure 1 illustrates an example of an uplink pilot
resource grid over one RB spanning 12 subcarriers with
a total of 24 user-transmitting pilots across 6 OFDM
symbols.

2.1.1 Least squares channel estimation
The OFDM channel between each base station antenna
and each user can be estimated using the uplink pilots
with a least squares (LS) method. With a sufficiently long
cyclic prefix (CP) length, the received signal at symbol
time t on antenna m at subcarrier n, from the kth user, at
the base station is as follows:

ym[t, n]= Cm,k[t, n] sk[t, n]+vm[t, n] , (1)

where Cm,k[ t, n] is the channel frequency response,
sk[t, n] is the transmitted (quadrature amplitude
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Fig. 1 Pilot tone allocation over one resource block (RB) consisting of 12 subcarriers and 6 symbols. Each user is allocated three pilot tones per RB,
and this pattern is repeated over the frequency band

modulation (QAM)) pilot tone corresponding to user k,
and vm[t, n] is additive white Gaussian noise (AWGN).
Since the channel is assumed constant within an RB, we
re-formulate the received signal of (1) to represent the
rth RB:

y(r)
m [t′, n′]= C(r)

m,k[t
′, n′] s(r)k [t′, n′]+v(r)

m [t′, n′] . (2)

Here, t′ and n′ denote subsets of OFDM symbols and
subcarriers, respectively, in which user k has transmitted a
pilot tone within the rth RB. Let L denote the total number
of pilot tones per user per RB.2 For example, in Fig. 1 for
user 1, we have n′ = {1, 5, 9}, t′ = {1}, and for user 2,
we have n′ = {2, 6, 10}, t = {1}, and for user 24, we have
n′ = {4, 8, 12}, t′ = {6}, etc. In this case, for any user, we
have L = 3.
The transmitted pilot tones are chosen from the unit-

energy quadrature phase shift keying (QPSK) constella-
tion space so that

∣∣∣s(r)k [t′, n′]
∣∣∣2 = 1. The noise is normal

distributed: v(r)
m [t′, n′]∼ CN (0, 1) and i.i.d across m, t′,

and n′, and the channel response C(r)
m,k[ t

′, n′] absorbs all

link budget parameters (such as path loss and thermal
noise variance). The demodulated CSI on the pilot subcar-
riers for user k on RB r is as follows:

C̃(r)
m,k[t

′, n′]= y(r)
m [t′, n′]

(
s(r)k [t′, n′]

)∗
. (3)

2.2 Regressive interpolation
With the channel estimated on the pilot tones, the
channel at other subcarriers may be computed via
interpolation. In this paper, we use a polynomial
regression-based approach formulated as a weighted
average:

Ĉ(r)
m,k[n]=

∑
t′,n′

γ
(r)
m,k[n, t

′, n′] C̃(r)
m,k[t

′, n′]= γ
(r)
m,k[n] c̃

(r)
m,k ,

(4)

where γ
(r)
m,k[n] is a row vector of length L of elements

γ
(r)
m,k[n, t

′, n′] which are the interpolation weights associ-
ated with antenna m for user k for the rth RB for the
n subcarrier, for all t′, n′. We call γ

(r)
m,k[n] the interpola-

tion vector. Also, c̃ (r)
m,k is a column vector of length L of
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the values C̃(r)
m,k[t

′, n′] for all t′, n′. The interpolation vec-
tor may be computed from a polynomial regression of
order p, represented by the vector x<p>

m,k = [x0, x1, . . . , xp]T
satisfying:

V<p>
m,k x<p>

m,k = c̃(r)
m,k , (5)

where V<p>
m,k is the L × ( p + 1) Vandermonde matrix.

For 0 ≤ p < L, the solution to this linear system of
equations is

x<p>
m,k =

(
V<p>
m,k

)+
c̃(r)
m,k , (6)

where

(
V<p>
m,k

)+ =
((

V<p>
m,k

)T
V<p>
m,k

)−1 (
V<p>
m,k

)T
(7)

is the Moore-Penrose pseudo-inverse ofV<p>
m,k . With x<p>

m,k
in hand, the channel estimate at any subcarrier n in the RB
is simply an evaluation on the polynomial function: n0x0+
n1x1+n2x2+ . . .+npxp. Defining d[n]= [1, n, n2, . . . , np],
in vector form, we have

Ĉ(r)
m,k[n]= d[n]

(
V<p>
m,k

)+
c̃ (r)
m,k , (8)

Comparing the left-hand side of (8) with (4), we see that

γ
(r)
m,k[n]= d[n]

(
V<p>
m,k

)+
. (9)

Some further simplification is possible in (9) since the
Vandermonde matrix and interpolation vector do not
depend on the antenna indexm (as seen in Fig. 1, the pilot
subcarrier locations are fixed for any m). Also, the inter-
polation vector does not depend on the RB index since the
pilot subcarrier location pattern is identical across RBs.
For a system with N ′ subcarriers per RB, we have

γ k[n]= d[n]
(
V<p>
k

)+ , n = 1, 2, . . . ,N ′ (10)

As a result, the interpolated CSI across all subcarriers
(in any RB) in (4) can be rewritten as follows:

Ĉ(r)
m,k[n]= γ k[n] c̃

(r)
m,k . (11)

Finally, it should be noted that while suboptimal by
design, the polynomial interpolation method described
above may present some advantages compared to the
well-known linearminimummean square error (LMMSE)
channel interpolators of [9, 10]. For example, the polyno-
mial interpolators are both channel model and channel

signal-to-noise ratio (SNR) independent. Moreover, the
per-RB-based processing nature of the polynomial inter-
polation method may lead to computational savings since
for N total subcarriers and N ′ subcarriers per RB, the
LMMSE method requires inversion of complex-valued
matrices of size N

N ′ L, while the polynomial interpolators
require inversion of real-valued Vandermondematrices of
size p where p < L ≤ N

N ′ L.

2.3 Downlink precoding
During the downlink phase, the base station trans-
mits precoded data to the users. Let the vector
s[n]= [ s1[n] , s2[n] , . . . , sK [n] ] represent the QAM sym-
bols intended for the user terminals at subcarrier n
and v[n]∼ CN (0, IK ) be AWGN at the user ter-
minals. Similar to (1), the received signal at the
users may be modeled by the K × 1 vector y[n] as
follows:

y[n]= C[n]F[n] s[n]+v[n] , (12)

where C[n] is the K × M downlink MIMO channel
from the base station to the user terminals that absorbs
the link budget parameters (such as path loss and noise
variance) and also transmit power constraint of the
base station. The elements of the channel matrix are
estimated during the uplink pilot phase and are given
by (8). F[n]=

[
fTn,1, f

T
n,2, . . . , f

T
n,K

]
is the M × K pre-

coding matrix at subcarrier n so that fn,k is the pre-
coding vector allocated to user k by the base station
for subcarrier n. We consider ZF precoding in this
paper:

FZF[n] = Ĉ[n]H
(
Ĉ[n] Ĉ[n]H

)−1 , (13)

where the elements of Ĉ[n] are obtained using polynomial
regression via (11).

3 Numeric results
In this section, we assess the performance of the
regression-based linear precoding described in Section 2
using a system level simulator with Monte Carlo simula-
tions. We consider a single-cell multi-user MIMO-OFDM
system with N = 256 subcarriers of which 180 sub-
carriers are used for data and control signals. Each RB
consists of 12 contiguous subcarriers. The base station
serves K = 24 users using M ≥ K antennas. The
channel between each base station antenna and each
user is modeled as a tapped-delay line with an effective
delay spread of τrms. The UL pilot transmission phase
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consists of 6 OFDM symbols with QPSK pilot symbols
multiplexed for 24 users as in Fig. 1. The pilot phase
is followed by DL data transmissions with QPSK sym-
bols. The DL transmit powers, path loss, link budgets,
and noise variance are such that the SNR for each user is
identical.
The channel frequency response estimates are

computed using (8) using polynomial regressors
of the order p = 0, 1, 2. The interpolation vectors
γ k[ n] may be computed offline and selected from
the rows of base matrices �

<p>
k , where the sub-

scripts denote the user indices corresponding to
Fig. 1. We elaborate on this idea using an example
below.

Example 1. In Fig. 1, for user 1, we have n′ =
{1, 5, 9}, t′ = {1}, meaning there are L = 3 pilot tones
per RB allocated to this user. For p = 2, the 3 × 3
Vandermonde matrix in (10) and its inverse can be com-
puted as follows:

V<p=2>
1 =

⎡
⎣ 1 1 1
1 5 25
1 9 81

⎤
⎦ ,

(
V<p=2>
1

)−1

=
⎡
⎣ +1.4063 −0.5625 +0.1563

−0.4375 +0.6250 −0.1875
+0.0313 −0.0625 +0.0313

⎤
⎦ .

Since each RB is defined as 12 subcarriers in
Fig. 1, the length of three interpolation vectors
γ 1[n] can be computed for any n = 1, 2, . . . , 12 via
(10) and the inverse Vandermonde matrix above.
For example, γ 1[1] and γ 1[2] are computed as
follows:

γ 1[1] = [1, 1, 1]

⎡
⎣ +1.4063 −0.5625 +0.1563

−0.4375 +0.6250 −0.1875
+0.0313 −0.0625 +0.0313

⎤
⎦

= [1.0000, 0.0000, 0.0000] ,

γ 1[2] = [1, 2, 4]

⎡
⎣ +1.4063 −0.5625 +0.1563

−0.4375 +0.6250 −0.1875
+0.0313 −0.0625 +0.0313

⎤
⎦

= [0.6563, 0.4375,−0.0937] ,

and similarly for γ 1[ 3] , γ 1[ 4] , . . . , γ 1[ 12]. The inter-
polation vectors may be collected in the N ′ × L base
matrix:

�
<p=2>
1 =

[
γ 1[1]T , γ 1[2]T , . . . , γ 1[12]T

]T

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+1.0000 +0.0000 +0.0000
+0.6563 +0.4375 −0.0937
+0.3750 +0.7500 −0.1250
+0.1562 +0.9375 −0.0938
−0.0000 +1.0000 −0.0000
−0.0938 +0.9375 +0.1562
−0.1250 +0.7500 +0.3750
−0.0938 +0.4375 +0.6563
+0.0000 −0.0000 +1.0000
+0.1563 −0.5625 +1.4062
+0.3750 −1.2500 +1.8750
+0.6563 −2.0625 +2.4062

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Finally, noting that some users have identical pilot allo-
cation locations (e.g., users 1, 5, 9, 13, 17, and 21 in Fig. 1),
the base matrices are identical over such user sets. For
completeness, these matrices are computed below for
regression orders p = 0, 1, 2:

�
<p=0>
1,2,3,4,5...,24 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+0.3333 +0.3333 +0.3333
+0.3333 +0.3333 +0.3333
+0.3333 +0.3333 +0.3333
+0.3333 +0.3333 +0.3333
+0.3333 +0.3333 +0.3333
+0.3333 +0.3333 +0.3333
+0.3333 +0.3333 +0.3333
+0.3333 +0.3333 +0.3333
+0.3333 +0.3333 +0.3333
+0.3333 +0.3333 +0.3333
+0.3333 +0.3333 +0.3333
+0.3333 +0.3333 +0.3333

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

�
<p=1>
1,5,9,13,17,21 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+0.8333 +0.3333 −0.1667
+0.7083 +0.3333 −0.0417
+0.5833 +0.3333 +0.0833
+0.4583 +0.3333 +0.2083
+0.3333 +0.3333 +0.3333
+0.2083 +0.3333 +0.4583
+0.0833 +0.3333 +0.5833
−0.0417 +0.3333 +0.7083
−0.1667 +0.3333 +0.8333
−0.2917 +0.3333 +0.9583
−0.4167 +0.3333 +1.0833
−0.5417 +0.3333 +1.2083

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

�
<p=1>
2,6,10,14,18,22 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+0.9583 +0.3333 −0.2917
+0.8333 +0.3333 −0.1667
+0.7083 +0.3333 −0.0417
+0.5833 +0.3333 +0.0833
+0.4583 +0.3333 +0.2083
+0.3333 +0.3333 +0.3333
+0.2083 +0.3333 +0.4583
+0.0833 +0.3333 +0.5833
−0.0417 +0.3333 +0.7083
−0.1667 +0.3333 +0.8333
−0.2917 +0.3333 +0.9583
−0.4167 +0.3333 +1.0833

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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�
<p=1>
3,7,11,15,19,23 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+1.0833 +0.3333 −0.4167
+0.9583 +0.3333 −0.2917
+0.8333 +0.3333 −0.1667
+0.7083 +0.3333 −0.0417
+0.5833 +0.3333 +0.0833
+0.4583 +0.3333 +0.2083
+0.3333 +0.3333 +0.3333
+0.2083 +0.3333 +0.4583
+0.0833 +0.3333 +0.5833
−0.0417 +0.3333 +0.7083
−0.1667 +0.3333 +0.8333
−0.2917 +0.3333 +0.9583

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

�
<p=1>
4,8,12,16,20,24 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+1.2083 +0.3333 −0.5417
+1.0833 +0.3333 −0.4167
+0.9583 +0.3333 −0.2917
+0.8333 +0.3333 −0.1667
+0.7083 +0.3333 −0.0417
+0.5833 +0.3333 +0.0833
+0.4583 +0.3333 +0.2083
+0.3333 +0.3333 +0.3333
+0.2083 +0.3333 +0.4583
+0.0833 +0.3333 +0.5833
−0.0417 +0.3333 +0.7083
−0.1667 +0.3333 +0.8333

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

�
<p=2>
1,5,9,13,17,21 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+1.0000 +0.0000 +0.0000
+0.6563 +0.4375 −0.0937
+0.3750 +0.7500 −0.1250
+0.1562 +0.9375 −0.0938
−0.0000 +1.0000 −0.0000
−0.0938 +0.9375 +0.1562
−0.1250 +0.7500 +0.3750
−0.0938 +0.4375 +0.6563
+0.0000 −0.0000 +1.0000
+0.1563 −0.5625 +1.4062
+0.3750 −1.2500 +1.8750
+0.6563 −2.0625 +2.4062

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

�
<p=2>
2,6,10,14,18,22 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+1.4062 −0.5625 +0.1562
+1.0000 +0.0000 −0.0000
+0.6563 +0.4375 −0.0937
+0.3750 +0.7500 −0.1250
+0.1563 +0.9375 −0.0937
+0.0000 +1.0000 +0.0000
−0.0937 +0.9375 +0.1563
−0.1250 +0.7500 +0.3750
−0.0937 +0.4375 +0.6563
−0.0000 +0.0000 +1.0000
+0.1562 −0.5625 +1.4062
+0.3750 −1.2500 +1.8750

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

�
<p=2>
3,7,11,15,19,23 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+1.8750 −1.2500 +0.3750
+1.4062 −0.5625 +0.1562
+1.0000 +0.0000 −0.0000
+0.6563 +0.4375 −0.0937
+0.3750 +0.7500 −0.1250
+0.1563 +0.9375 −0.0937
+0.0000 +1.0000 +0.0000
−0.0937 +0.9375 +0.1563
−0.1250 +0.7500 +0.3750
−0.0938 +0.4375 +0.6563
−0.0000 +0.0000 +1.0000
+0.1562 −0.5625 +1.4062

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

�
<p=2>
4,8,12,16,20,24 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+2.4062 −2.0625 +0.6562
+1.8750 −1.2500 +0.3750
+1.4062 −0.5625 +0.1563
+1.0000 −0.0000 +0.0000
+0.6563 +0.4375 −0.0937
+0.3750 +0.7500 −0.1250
+0.1562 +0.9375 −0.0938
−0.0000 +1.0000 −0.0000
−0.0938 +0.9375 +0.1563
−0.1250 +0.7500 +0.3750
−0.0938 +0.4375 +0.6563
−0.0000 −0.0000 +1.0000

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

3.1 Performance vs. SNR: interpolation accuracy
The polynomial regression order p determines the inter-
polation matrices used to compute the channel estimates
over the frequency band. The selection of the regression
order depends on (a) the quality of the channel estimates
on the pilot tones, i.e., the SNR and (b) the channel vari-
ability, i.e., the delay spread τrms. It is shown in [15] that
in high channel noise, higher-order interpolation may be
affectedmore adversely than lower-order interpolation. In
Figs. 2 and 3, we confirm this observation for the proposed
polynomial regressors by plotting the normalized channel
estimation mean square error (NMSE) and the error vec-
tormagnitude (EVM) versus SNR.We plot results for both
flat fading (Rayleigh), i.e., τrms = 0, and a frequency selec-
tive channels with τrms = 0.104 μs. As a baseline for the
EVM curves, we include results from a genie-aided system
which computes the ZF precoding matrices on each sub-
carrier using perfect CSI; the genie-aided system does not
suffer from the effects of thermal or interpolation noise.
The interpolation noise floor is evident for the frequency
selective channel at high SNR for the non-genie-aided
approaches. Also, Fig. 2 shows how at low SNR, the zero-
order-hold regressor, i.e., p = 0, performs best since it
minimizes noise amplification while at high SNR p = 2
performs best by more accurately capturing the chan-
nel variation. In summary, for practical SNR ranges for
QPSK (e.g., < 15 dB), the performance of the proposed
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Fig. 2 NMSE versus SNR for (M, K) = (96, 24), τrms = 0 (Rayleigh), τrms = 0.104 μs

Fig. 3 EVM versus SNR for (M, K) = (96, 24), τrms = 0 (Rayleigh), τrms = 0.104 μs



Panah et al. EURASIP Journal on Advances in Signal Processing  (2016) 2016:36 Page 8 of 9

Fig. 4 Downlink average SER versus SNR for (M, K) = (96, 24), τrms = 0 (Rayleigh), τrms = 0.104 μs

Fig. 5 Downlink average SER over K = 24 users versus the number of base station antennas at SNR of 10 dB and τrms = 0.104 μs
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methods are close to the genie-aided system, even for
low-order regression models. Figure 4 shows the corre-
sponding average symbol error-rate (SER) performance
confirming this observation.

3.2 Performance vs.M: the massive MIMO effect
To serve K users, the base stations need to be equipped
with at least M = K antennas.3 However, owing to larger
array gain and “favorable propagation,” the performance
can improve by adding more antennas to the base station.
To confirm this observation, in Fig. 5, we plot the sim-
ulated downlink SER versus the number of base stations
antennas. The SNR is fixed at 10 dB for all the data points,
and the channel delay spread is τrms = 0.104 μs. We com-
pare results for polynomial regression vectors of orders
p = 0, 1, 2. The results show that a zero-order-hold inter-
polator (p = 0) performs best and is within 6 dB of the
genie-aided system whenM is large.

4 Conclusions
In this correspondence, we assessed the performance of
regression-based linear precoding in the downlink of a
multi-user massive MIMO-OFDM system. Simple lin-
ear polynomial regressors were used to reduce multiple
channel estimates over the resource blocks. These regres-
sors do not depend on the channel statistics and can be
computed in an offline manner. Simulations showed that
for practical SNR ranges, the performance of the pro-
posed methods are close to the genie-aided system, even
for low-order regression selections. Moreover, the order
of the regressor vectors may be adapted to the channel
conditions to obtain optimal performance.

Endnotes
1This is true for time-division duplexing (TDD) where

channel reciprocity holds.
2Assumed to be equal for all users over any RB.
3Otherwise, the ZF precoder matrix in (13) does not

exist.
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