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Abstract

Motion detection is a hard task for intelligent vehicles since target motion is mixed with ego-motion caused by
moving cameras. This paper proposes a stereo-motion fusion method for detection of moving objects from a
moving platform. A 3-dimensional motion model integrating stereo and optical flow has been established to
estimate the ego-motion flow. The mixed flow is calculated from an edge-indexed correspondence matching
algorithm. The difference between the mixed flow and the ego-motion flow yields residual target motion flow
where the intact target is segmented from. To estimate the ego-motion flow, a visual odometer has been
implemented. We first extract some feature points in the ground plane that are identified as static points
using the height constraint and Harris algorithm. And then, 6 DOF motion parameters of the moving camera
are calculated by fitting the feature points into the linear least square algorithm. The approach presented
here is tested on substantial traffic videos, and the results prove the efficiency of the method.
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1 Introduction
Detection on moving obstacles like pedestrians and vehi-
cles is of critical importance for autonomous vehicles.
Vision-based sensing systems have been used for object
detection in many applications including autonomous
vehicles, robotics, and surveillance. Compared with the
static systems such as the traffic and crowd surveillance,
motion detection from a moving platform (vehicle) is
more challengeable since target motion is mixed with
camera’s ego-motion. This paper addresses on this issue
and presents a binocular stereovision-based in-vehicle
motion detection approach which integrates stereo with
optical flow. The approach fully makes use of two pairs
of image sequences captured from a stereovision rig, i.e.,
disparity from left and right pair images and motion
fields from consecutive images.
Vision-based motion detection methods can be cate-

gorized into three major classes, i.e., temporal difference,
background modeling and subtraction, and optical flow.
Temporal difference methods [1] readily adapt to sudden
changes in the environment, but the resulting shapes of
moving objects are often incomplete. Background

modeling and subtraction is mainly used in video sur-
veillance where the background is relatively fixed and
static. Its basic idea is to subtract or differentiate the
current image from a reference background model [2].
However, the generated background model may not be
applicable in some scenes such as gradual or sudden
illumination changes and dynamic background (wave
trees). To address these issues, a hierarchical back-
ground modeling and subtraction [3] and a self-adaptive
background matching method [4] have been proposed.
Adaptive background models have also been used in
autonomous vehicles in an effort to adapt surveillance
methods to the dynamic on-road environment. In [5], an
adaptive background model was constructed, with vehi-
cles detected based on motion that differentiated them
from the background. Dynamic modeling of the scene
background in the area of the image where vehicles typ-
ically overtake was implemented in [6].
Optical flow, a fundamental machine vision tool, has

advantages that directly reflect an accurate estimation of
point motion, representing an evident change in position
of a moving point. It has been used for motion detection
and tracking in defense [7] and abnormal crowd behav-
ior detection in video surveillance [8]. In autonomous
vehicles, monocular optical flow has been used to detect
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head-on vehicle [9], overtaking vehicles in the blind spot
[10] and crossing obstacles [11]. In [12], interest points
that persisted over long periods of time were detected
and tracked using the hidden Markov model as vehicles
traveling parallel to the ego vehicle. In [13], optical flow
was used to form a spatiotemporal descriptor, which was
able to classify the scene as either intersection or non-
intersection. The use of optical flow has also heavily
been found in stereovision-based motion detection, i.e.,
stereo-motion fusion method, which benefits from
motion cues as well as depth information. There are
many different fusion schemes. In [14], Pantilie et al.
fuse motion information derived from optical flow into a
depth-adaptive occupancy grid (bird-view map) gener-
ated from stereovision 3D reconstruction. As an im-
provement of stereovision-based approach, the method
is of benefits to distinguish between static and moving
obstacles and to reason about motion speed and direc-
tion. Franke and Heinrich [15] propose a depth/flow
quotient constraint. Independently moving regions of
the image do not fulfill the constraints and are detected.
Since the fusion algorithm compare the flow/depth quo-
tient against a threshold function at distinct points only,
it is computationally efficient. However, the approach
reduces the possibility of carrying out geometrical rea-
soning and lacks a precise measurement of the detected
movements. In addition, the approach is limited with
respect to robustness since only two consecutive frames
are considered. To get more reliable results, the Kalman
filter is equipped to integrate the observations over time.
In [16], Rabe et al. employ a Kalman filter to track image
points and to fuse the spatial and temporal information
so that static and moving pixels can be distinguished
before any segmentation is performed. The result is an
improved accuracy of the 3D position and an estimation
of the 3D motion of the detected moving objects. In
[17], Kitt et al. use a sparse set of static image features
(e.g., corners) with measured optical flow and disparity
and apply the Longuet-Higgins-Equations with an impli-
cit extended Kalman filter to recover the ego-motion.
The feature points with optical flow and disparity flow
not consistent with the estimated ego-motion indicate
the existence of independently moving objects. In [18],
Bota and Nedevschi focus on fusing stereo and optical
flow for multi-class object tracking by designing Kalman
filter fitted with static and dynamic cuboidal object
models. In [19], interest moving points are first detected
and projected on 3D reconstruction ground plane using
optical flow and stereo disparity. The scene flow is
computed via finite differences for a track up to five
3D positions, and points with a similar scene flow are
grouped together as rigid objects in the scene. A
graph-like structure connecting all detected interest
points is generated, and the resulting edges are

removed according to scene flow differences exceed-
ing a certain threshold. The remaining connected
components describe moving objects.
A precise recovery of the ego-motion is essential in

order to distinguish between static and moving objects
in dynamic scenes. One of the methods of ego-motion
estimation was to use in-vehicle inertial navigation sys-
tem (INS) [15]. However, ego-motion from the in-car
sensor is not sufficient for a variety of reasons like navi-
gation loss, wheel slip, INS saturation, and calibration
errors. Thus, it is ideal to estimate the camera ego-motion
directly from the imagery. Ego-motion estimation using
monocular optical flow and integrated detection of vehicles
was implemented in [20]. Several groups have reported
stereo-based ego-motion estimation based on tracking
point features. In [18], the concept of 6D vision, i.e., the
tracking of interest points in 3D using Kalman filtering,
along with ego-motion compensation, was used to identify
moving objects in the scene. In [21], vehicle’s ego-motion
was estimated from computational expensive dense stereo
and dense optical flow with the method of iterative learn-
ing from all points in the image.
Stereo-motion fusion has been studied in a theoretical

manner by Waxman and Duncan [22]. The important
result was the relationship between camera’s 3D motion
and corresponding image velocities with stereo con-
straints. Our work builds on the basic principles pre-
sented in [22] and extends it to dynamic scene analysis.
In this work, a mathematical model, integrating optical
flow, depth, and camera ego-motion parameters, is firstly
derived from Waxman and Duncan’s theoretical analysis.
Camera’s ego-motion is then estimated from the model
by using ground feature points, and accordingly ego-
motion flow of the image is calculated from the model.
A moving target is detected from the difference of the
mixed flow and the ego-motion flow.
The main contributions of this work can be summa-

rized as follows: (1) The relationship between optical
flow, stereo depth, and camera ego-motion parameters
has been established based on Waxman and Duncan’s
theoretical model. Accordingly, a novel motion detection
approach fusing stereo with optical flow sensor has been
proposed for in-vehicle environment sensing systems. A
visual odometer able to estimate camera’s ego-motion
has also been proposed. Motion detection using stereo-
motion fusion normally identifies image points [16, 19]
or features [17] as static or moving and then segment
moving objects accordingly. Our method works on the
image level, i.e., the difference between the mixed flow
image and the ego-motion flow image. (2) Existing mo-
tion detection approaches often make some assumptions
on object/vehicle motion or scene structure. Our ap-
proach can detect moving objects without any con-
straints on object/vehicle motion or scene structure
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since the proposed visual odometer can estimate all six
motion parameters. (3) When fusing stereo with optical
flow, the computational load, accuracy, and comparabil-
ity (or consistence) between stereo and optical flow
calculations are practical issues. Our method uses the
edge-indexed method for all calculations and therefore
greatly reduces computational load without impact on
detection performance, improves calculation accuracy
especially on the mixed flow, and provides pixel-wise
consistence for all calculations so that the stereo depth,
the mixed flow, and the ego-motion flow can be com-
pared pixel by pixel.

2 Approaches
2.1 Overview of the approach
The difficulty of motion detection from a moving cam-
era/vehicle is that the background is also moving and its
motion is mixed with target motion. Therefore, the key
of motion detection in dynamic scenes is to distinguish
the background motion from the target motion. The
underlying idea of our approach is to subtract the mo-
tion of the camera (ego-motion) from the calculated
(mixed) optical flow, that is, a moving target can be
detected from the difference between the mixed optical
flow and the ego-motion optical flow. Figure 1 gives an
overview of the approach.
The mixed flow of the scene is caused by both

camera motion and target motion and is obtained
from correspondence matching between consecutive
images. The ego-motion flow is caused only by cam-
era motion and calculated from a mathematical model
derived from Waxman and Duncan’s theoretical ana-
lysis [22], which indicates the relation between optical
flow, depth map, and camera ego-motion parameters.
To calculate the ego-motion flow, we need first know
the ego-motion parameters of six degree of freedom.

A visual odometer has been implemented for this
purpose, in which six motion parameters are esti-
mated by solving a set of equations fitted with a fixed
number of feature points using the linear least square
method. The feature points are selected as corner
points lying on the road surface and determined by
using height constraint and Harris corner detection
algorithm [23]. Within the two stages, the depth of
the image points is provided by the stereovision dis-
parity map. The difference between the mixed flow
and the ego-motion flow yields an independent flow
which is purely caused by the target motion. The
moving target is extracted according to the continuity
of the similar independent flow.
To reduce the computational workload and consider-

ing that object contour is the most effective cue for
object segmentation, all calculations are edge-indexed,
i.e., we only conduct calculations on edge points for ste-
reo matching, the mixed flow, and the ego-motion flow
calculations. This tactic greatly increases the real-time
performance and has no impact on object detection
performance.

2.2 The mixed flow
Many methods have been developed to calculate dense
optic flow from image sequences [24]. Basically, these ap-
proaches can be split into two categories: spatiotemporal
gradient-based and correspondence matching techniques.
The spatiotemporal gradient-based techniques calculate
optic flow based on assumptions including globe smooth-
ness or direction smoothness. Our experiences show that
these methods take huge computation cost and are diffi-
cult to obtain accurate optical flow in complex traffic sce-
narios. The correspondence matching-based techniques
detect optic flow by searching for correspondence points
between consecutive images, therefore are more suitable

Fig. 1 The flowchart of motion detection in dynamic scenes
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for dynamic traffic scene images. In this work, we
implement an edge-indexed correspondence matching
algorithm based on greyscale similarity to calculate
the mixed optical flow. The details of the algorithm
can be found in our previous work [25]. A summary
is as follows:

Step 1. Generate edge image using Canny operator
and use the edge points as seed points to find the
correspondence points in next frame.

Step 2. Define the searching range as a square area
centered at the seed point and define a rectangular
matching window.

Step 3. Use the normalized cross correlation
coefficients as a measure of greyscale similarity
of two matching windows. The correspondence
points are regarded as those with the maximum
cross correlation coefficient that must be greater
than a predefined threshold.

Step 4. Achieve the sub-pixel estimation of the
calculated optical flow along the vertical and
horizontal directions by introducing a quadratic
interpolation. This is to improve the optical flow
resolution so that a higher optical flow accuracy
can be achieved.

2.3 3-dimensional motion and ego-motion flow
Ego-motion flow is the optical flow evoked by the mov-
ing camera/vehicle, representing the effect of the camera
motion. The camera’s 3-dimensional motion and planer
imaging model is represented in Fig. 2. The origin of the
world coordinate system (X,Y, Z) is located at the center
of image coordinates (x, y), and the Z-axis is directed
along optical axis of the camera. The translational vel-
ocity of the camera is �V ¼ Vx;Vy;Vz

� �
, and the rota-

tional velocity �W ¼ Wx;Wy;Wz
� �

.

Assuming a point P(X,Y, Z) in space moves to point
P′(X′,Y′, Z′), the relation between the point motion
and camera motion is as below [22]:

dP
dt

¼ − �V þ �W � Pð Þ ð1Þ

The cost product of the point P(X,Y, Z) and camera’s
rotational velocity vector can be represented as

�W � P ¼
i j k

Wx Wy Wz

X Y Z

������
������

¼ WyZ−WzY
� �

iþ WzX−WxZð Þj
þ WxY−WyX
� �

k ð2Þ

where i; j; kð Þ denotes the unit vector in the direc-
tion of X-, Y-, and Z-axes, × refers to cross-product.
Thus, Eq. (2) can be rewritten as

�W � P ¼
WyZ−WzY
WzX−WxZ
WxY−WyX

2
4

3
5 ð3Þ

The 3-dimensional velocity
dX
dt

dY
dt

dZ
dt

� �
of the

point can be obtained as below:

dX=dt ¼ − Vx þWyZ−WzY
� �

dY=dt ¼ − Vy þWzX−WxZ
� �

dZ=dt ¼ − Vz þWxY−WyX
� � ð4Þ

For an ideal pinhole camera model, the image point
p(x y) of the world point P(X, Y, Z) projected in the
image plane can be expressed as

x ¼ f
X
Z
; y ¼ f

Y
Z

ð5Þ

where f denotes the focal length of the stereo camera.
The optical flow (u, v) of P(X,Y, Z) can be obtained by

Fig. 2 3D motion and planar imaging model
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estimating the derivatives along X-axis and Y-axis in 2D
image coordinates.

u ¼ dx
dt

¼ 1
Z

f
dX
dt

−x
dZ
dt

� �

v ¼ dy
dt

¼ 1
Z

f
dY
dt

−y
dZ
dt

� � ð6Þ

Integrating Eqs. (4) to (6) yields the following:

u
v

� �
¼ −

f
Z

0 −
x
Z

0
f
Z

−
y
Z

−
xy
f

f 2 þ x2

f
−y

−
f 2 þ y2

f
xy
f

x

2
664

3
775

Vx

V y

V z
Wx

Wy

Wz

2
666664

3
777775
¼ A �V ; �Wð ÞT

ð7Þ

where A ¼
f
Z

0 −
x
Z

0
f
Z

−
y
Z

−
xy
f

f 2 þ x2

f
−y

−
f 2 þ y2

f
xy
f

x

2
664

3
775.

Equation (7) indicates the relationship between the
ego-motion flow, the depth and the six parameters of
the camera motion. It is evident that the ego-motion
flow can be calculated from Eq. (7) if the depth and the
six motion parameters are known. The depth can be ob-
tained from stereovision as reported in our previous
work [26]. Two methods can be used to obtain the mo-
tion parameters: one is to use an in-vehicle INS or gyro-
scope to measure them; the other is to use a visual
odometer. However, subject to problems like navigation
loss, wheel slip, INS saturation, and calibration errors
between the IMU and the cameras, in-vehicle INS may
cause inaccurate motion estimation in some cases. Thus,
it is ideal to estimate the camera motion directly from
the imagery. Ultimately, it could be fused with other
state sensors to produce a more accurate and reliable
joint estimate of cameral/vehicle motion.

2.4 Visual odometry
It can be known from Eq. (7) that if the ego-motion flow
and the depth of six or more points in the scene are
known, we can set up a set of equations with six
unknown variables, i.e., six camera motion parameters
and estimate these variables by solving the equations set
using the least square fitting method. The points used
for the least square fitting must be assured with accurate
optical flow calculation and must not be any moving
points.
In this work, the corner points lying on the road sur-

face are selected for this purpose since the ground
points are static and the corner points are of good stabil-
ity and inflexibility to light intensity, therefore possessing
relatively accurate optical flow.

2.4.1 Extraction of ground corner points using stereovision
and Harris method
Ground points can be determined from the height infor-
mation that can be obtained from the stereovision as re-
ported in our previous work [26]. The height Yg of the
ground points, namely their Y-axis coordinate, depends
on the camera installation height Hc, the tilt angle to-
wards the road plane θ, and distance Zg, as indicated in
Eq. (8) and Fig. 3. Those points with Y-axis coordinate
less than Yg are regarded as ground points.

Y g ¼ Zg � sinθ−Hc
� �

= cosθ ð8Þ

A corner is defined as a point for which there are two
dominant and different edge directions in a local neigh-
borhood of the point. Harris corner points are detected
by considering the differential of the corner score with
respect to direction [23]. The corner score is referred as
autocorrelation. Assuming that a pixel I(X,Y) moves in
any directions by small displacements (∇x,∇y), the auto-
correlation function is defined as below:

Fig. 3 Camera installation geometry for determination of road surface points
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C∇x;∇y ¼
X

x;yð Þ∈W x;yð Þ
φ x; yð Þ I xþ ∇x; yþ ∇yð Þ−I x; yð Þ½ �2

¼
X

x;yð Þ∈W x;yð Þ

φ x; yð Þ Ix∇xþ Iy∇yþ O ∇x2 þ ∇y2ð Þ	 
2

≈
X

x;yð Þ∈W x;yð Þ
φ x; yð Þ Ix Iy

	 
 ∇x
∇y

� �� �2

¼ ∇x ∇y½ �M x; yð Þ ∇x
∇y

� �

ð9Þ
where φ(x, y) is Gaussian weighting function used here
to reduce the impact of noise; W(x, y) denotes window
blocks centered at the point; Ix is the gradient in x direc-
tion; and Iy is the gradient in y direction. The Sobel con-
volution kernel ωx and its transposed form ωy are used
to obtain Ix = I(X,Y) ⊗ ωx , and Iy = I(X,Y) ⊗ ωy.
M(x, y) is called the autocorrelation matrix and

M x; yð Þ ¼ φ x; yð Þ

X
W x;yð Þ

I2x
X
W x;yð Þ

IxIy
X
W x;yð Þ

IxIy
X
W x;yð Þ

I2y

2
664

3
775 ð10Þ

The corner response function (CRF) can be calculated
as.

CRF ¼ det Mð Þ−α⋅ traceMð Þ2 ð11Þ
where det(M) = λ1 × λ2 and traceM = λ1 + λ2, λ1 and λ2
denote the eigenvalues of the matrix M, we set α = 0.04.
The point with CRF bigger than a certain threshold is
regarded as a corner point.

2.4.2 Ego-motion parameter estimation using the linear
square algorithm
The objective function is defined as the Euclidean dis-
tance between the estimated optical flow û; v̂ð Þ and the
true optical flow (u, v).

J ¼
XN
n¼1

û; v̂ð Þ− u; vð Þk2�� ð12Þ

The true optical flow (u, v) is calculated from the
method introduced in Section 2.2. The estimated optical

flow û; v̂ð Þ ¼ A �V ; �Wð ÞT is obtained from Eq. (7). The
minimum value of the object function is found by set-
ting the gradient to zero and the optimal parameter
values are

�V ; �Wð Þ ¼ ATA
� �−1

AT u; vð Þ ð13Þ

where A denotes the coefficient matrix made up with
the focal length f of the stereo camera, the depth Z, and
the image coordinates as shown in Eq. (7).

2.5 Independent flow and target segmentation
The difference between the mixed flow and the ego-
motion flow yields the independent flow which attri-
butes purely to moving targets. This operation ideally
cancels out the effects of inter-fame changes caused by
vehicle motion and involves a 2D vector difference:

ur vr½ � ¼ um vm½ �− ue ve½ � ð14Þ

where [ur vr] denotes the independent flow in the hori-
zontal and vertical directions, [um vm] the mixed flow,
and [ue ve] the ego-motion flow. The synthetic of the
two components of the independent flow is calculated as
s ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2
p

. Target segmentation is based on the syn-
thetic independent flow.
In theory, the independent flow of the background

should be zero. However, the background has some re-
sidual independent flow due to calculation errors. The
key to distinguish a moving object from the background
is to determine a threshold of the independent flow. In
this work, we adopt the OTSU algorithm to determine a
self-adapting threshold. The algorithm can be described
as follows:

1. For a threshold t, smin < t < smax , define the variance
ε(t) between the moving target’s independent flow
and the background’s independent flow as

ε tð Þ ¼ Po so−tð Þ2 þ Pg sg−t
� �2 ð15Þ

where so denotes the mean of the independent flows of the

moving points, so ¼
X

si�pi
po

si > t; i ¼ 1; 2; 3…ð Þ , sg
denotes the mean of the independent flows of the back-

ground points, sg ¼
X

si�pi
pg

si < t; i ¼ 1; 2; 3…ð Þ; po
denotes the proportion of the points with s > t, pg the pro-
portion of the points with s < t, and pi the proportion of the
points with s < si.
2. Search for the t from smin to smax to make ε(t)

maximum and use it as the threshold to segment
the moving objects from the background. This
process endures a maximum between-class distance.

We cancel out the pixels with the independent flow
below the threshold determined above. For the pixels
with the independent flow above the threshold, we use
the region-growing method to cluster similar potentials
together to form the eventual segmentation. Actually, in
this work, the independent flow is also combined with
the disparity (depth) for object clustering. This tactic is
especially useful for separating objects close to each
other or with occultation.
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3 Experiments and results
A VIDERE stereo rig with strict calibration is used to
capture images in this work. The two cameras have the
image resolution of 640 × 480 pixels, the pixel size of
15 μm, and the baseline of 218.95 mm. The focal length
is 16.63 mm. The detection ranges from −8 to 8 m in
lateral and from 4 to 50 m in distance. Figure 4a, d
shows the left images of two typical traffic scenarios.
The first scenario involves a pedestrian, an oncoming

coach, and some static obstacles like parked cars and
trees, where the equipped vehicle moves in longitudinal
direction. In the second scenario, the vehicle is turning
in a bend. It helps to evaluate our algorithm when the
vehicle undergoes more complex movement.

3.1 Disparity of stereovision
Figure 4b, e shows the edge maps obtained from a
Canny detector. The edge points in the left image are

Fig. 4 Traffic scenarios and disparity images. a Left image at frame 72 of scenario 1. b Edge image of scenario 1. c Disparity map of scenario 1. d
Left image at frame 72 of scenario 2. e Edge image of scenario 2. f Disparity map of scenario 2

Fig. 5 Mixed flow obtained from the edge-indexed correspondence matching algorithm. a The mixed flow of scenario 1. b The mixed flow of scenario 2
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used as seed points to search for the correspondence
points in the right image by using greyscale similarity as
the measure. The resulting disparity maps are displayed
in Fig. 4c, f. A color scheme is used to visualize the dis-
parity. The depth information of the image points can
be derived from the disparity map. It should be noted
that some points like the trees out of the detection range
are not presented in the disparity maps. It is worthy to
be noted that contour occluding could be generated due
to the different viewpoints of the two cameras and
may bring troubles for stereo correspondence match-
ing especially for a short distance with a wider base-
line. In our application, we use a relatively short
stereo baseline of 218.95 mm, and the detection range
is 4 to 50 m. The occluding effect is not significant.
In addition, stereo matching depends on the selection
of matching windows and setting of threshold of cor-
relation coefficient. The detailed edge-indexed stereo
matching procedure can be found in our previous
work [26]. All experiments show that the edge-
indexed stereo matching can successfully generate an
edge-indexed disparity map.

3.2 Mixed flow results
Figure 5 shows the mixed flow obtained using the edge-
indexed correspondence matching algorithm described
in Section 2.2. It can be noted that even for static objects
like parked cars, trees, and ground points, there is obvi-
ous motion, which is caused by camera/vehicle’s motion.
The motion of the pedestrian and the oncoming coach
is significantly different from its surroundings due to its
own motion. The mixed motion shown in Fig. 5a, b re-
flects actual movement of the points and will be used
for subtraction of motion flows in late stage.

3.3 Visual odometer results
The edge points in the ground surfaces are successfully
extracted, as shown in Fig. 6a (scenario 1) and 6b (sce-
nario 2). The Harris corner points are detected and
marked with “+” in the figures. For each case, 15 Harris
Corner points with higher CRF scores are selected to set
up a set of equations for estimating the six ego-motion
parameters using the least square fitting method. The re-
sults are presented in Table 1. It can be found that for
both scenarios,Vz are significant and Vy,Wx,Wy, and Wz

are tiny. This is reasonable since the vehicle was moving
with a certain speed in a relatively flat road. For scenario
2,Vx is also significant because the vehicle was left turn-
ing in a bend. For scenario 1, Vx is equal to 0.17 m/
frame, indicating that the vehicle was not strictly moving
in longitudinal direction and had a small lateral moving
at the moment.
During the video acquisition, a spatial NAV 982 Iner-

tial Navigation System was fitted in the car to measure
the ego-motion parameters. Although the INS may lose
detection in some cases, the comparison between the
effective data of two systems shows that the difference of
the results is within 4 %, indicating that our visual
odometer is reasonably accurate.

3.4 Ego-motion flow results
The ego-motion flow calculated from Eq. (7) by using
above estimated ego-motion parameters is shown in

Fig. 6 Harris corner points in the road surface and their optical flows. a Scenario 1. b Scenario 2

Table 1 Results of ego-motion estimation

Ego-motion parameters Scenario 1 Scenario 2

Vx Vy Vz m=frameð Þ −0.22 −0.04 227.04 48.61 −0.03 214.25

Wx Wy Wz rad=frameð Þ 0.12 −0.15 −0.08 0.14 −0.02 0.07
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Fig. 7. The ego-motion shown in Fig. 7a, b will be used
for subtraction of motion flows in late stage.

3.5 Independent flow and motion extraction
The subtraction of Fig. 7a from Fig. 5a is shown in
Fig. 8a, while the subtraction of Fig. 7b from Fig. 5b is
shown in Fig. 8b. The subtraction yields the independent
flow which is purely caused by the target motion. It can
be seen that the most of the background have been can-
celed out and the moving objects are significantly

highlighted using the method described in Section 2.5.
Furthermore, the pedestrian can be framed according to
the continuity of the similar independent flow, as shown
in Fig. 8c, d.

3.6 Evaluation of the system
Experiments have also been conducted on the public
image database KITTI (Karlsruhe Institute Technology
and Toyota Technological Institute) [27]. Figure 9
shows the process of motion detection for one of the

Fig. 7 Ego-motion flow calculated from Eq. (7) by using the estimated ego-motion parameters. a The ego-motion flow of scenario 1.
b The ego-motion flow of scenario 2

Fig. 8 Independent flow and motion extraction result. a Independent flow of scenario 1. b Independent flow of scenario 2. c Motion extraction
in scenario 1. d Motion extraction in scenario 2
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scenarios containing multiple moving obstacles. A
total of 5000 frames of various scenarios with hand-
labeled moving objects including pedestrians and cars
have been tested using our approach. In general,
Recall and Precision are usually used to assess the ac-
curacy of object detection.
Recall is defined as follows:

Recall ¼ tp
tpþ f n

ð16Þ

where tp is the total number of true-positively detected
objects, fn is the total number of false-negatively de-
tected objects, and (tp + fn) indicates the total number
of objects in the ground truth. Precision is defined as
follows:

Precision ¼ tp
tpþ f p

ð17Þ

where fp is the total number of false-positively detected

objects, and (tp + fp) indicates the total number of the
detected objects.
Table 2 lists the performance of our method in terms

of detection of pedestrians and cars.
The system is implemented with C++ language in an

industrial computer equipped with a 2.40-GHz Intel
Dual Core i5 processor and 4 GB of RAM. In general,
we can achieve a processing rate of 10–15 frames per
second (FPS), depending on complexity of the images.
This processing rate includes the stereo pre-processing
time. Ideally, it should work at least 25 FPS for a real-
time system. But we believe that it will not be a problem
to achieve this by using a bespoke image processing
hardware in future.

Fig. 9 Detection results for one of KITTI scenarios. a Frame 905. b Edge image. c Disparity image. d Feature points in ground plane. e Mixed flow.
f Ego-motion flow. g Independent flow. h Extraction of the moving objects

Table 2 Accuracy rate of our method

Object type under detection Precision Recall

Pedestrian 94.0 % 92.2 %

Vehicle 94.5 % 93.1 %
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3.7 Comparison with other methods
Table 3 lists the comparison with the some other work
reported for moving object detection including applica-
tions in video surveillance [4]. It is a hard task to make a
uniform comparison with other approaches for two rea-
sons: (1) Evaluation metric used can be different; (2)
Many research work do not give statistical accuracy rate.
The work most related to our approach can be found in
[14–19], which use stereo-motion fusion. However,
there are no reports on detection rate or accuracy
rate in [14–16, 19]. In [17], authors only give the
accuracy for feature point detection rather than ac-
curacy for object detection. Moreover, the accuracy
definition is slightly different from ours. In [18],
authors only provide result for object tracking.

4 Conclusions
This paper presents a novel motion detection approach
using a stereovision sensor for in-vehicle environment
sensing system. The relationship between optical flow,
stereo depth, and camera ego-motion parameters has
been established. Accordingly, a visual odometer has
been implemented for estimation of six ego-motion pa-
rameters by solving a set of equations fitted with a num-
ber of feature points using the linear least square
method. The feature points are selected as corner points
lying on the road surface and determined by using
height constraint and Harris corner detection algorithm.
The ego-motion flow evoked by the moving camera/ve-
hicle is calculated from the relational model by using the
estimated ego-motion parameters. The mixed flow
caused by both camera motion and target motion is
obtained from the correspondence matching between
consecutive images. The difference between the mixed
flow and the ego-motion flow yields the independent
flow which attributes purely to the target motion. The
moving targets are extracted according to the continuity
of the similar independent flow. The approach presented

here was tested on substantial complex urban traffic vid-
eos. The experimental results demonstrate that the ap-
proach can detect moving objects with a correction rate
of 93 %. The accuracy of ego-motion estimation is
within 4 %, comparing to an in-vehicle INS sensor. The
processing rate reaches 10–15 FPS on an industrial com-
puter equipped with a 2.40-GHz Intel Dual Core i5
processor and 4 GB of RAM.
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