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Abstract

This paper investigates the problem of distributed piecewise H∞ filtering for discrete-time large-scale nonlinear
systems. The considered large-scale system is composed of a number of nonlinear subsystems and exchanges its
information through communication network. Each nonlinear subsystem is described by a Takagi-Sugeno (T-S)
model, and data-packet dropouts happen intermittently in communication network, and its stochastic variables are
assumed to satisfy the Bernoulli random-binary distribution. Our objective is to design a distributed piecewise filter
such that the filtering error system is stochastically stable with an H∞ performance. Based on a piecewise Lyapunov
function and some convexifying techniques, less conservative results are developed for the distributed piecewise H∞
filtering design of the considered system in the form of linear matrix inequalities (LMIs). The effectiveness of the
proposed method is validated by two examples.
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1 Introduction
In practical application, some complex systems, such as
transportation systems, power systems, communication
networks, and industrial processes, are referred to as
large-scale systems [1, 2]. Due to strong interconnection
and high dimensionality, large-scale systems lead to severe
difficulties for their analysis and control synthesis. To
date, three main control approaches, centralized, decen-
tralized, and distributed control, have been proposed for
large-scale systems with interconnection. Since the cen-
tralized control suffers from the excessive information
processing and heavy computational burdens, there has
been recently an increasing interest in the use of decen-
tralized control for large-scale systems [3]. The decen-
tralized control is firstly to partition the overall control
problem of a large-scale system into several indepen-
dent or almost independent subproblems. Then, instead
of a single controller, a set of independent controllers can
be designed to achieve the overall control of large-scale
system [4]. However, the decentralized control strategy
appears weaker stability margins and performance, espe-
cially when the interconnections among subsystems are
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strong [5]. In the distributed control, the supplemen-
tal feedbacks with the interconnected information are
provided for the local controllers to enhance the require-
ments of stability and performance. As a result, the dis-
tributed control avoids those shortages appearing in both
centralized and decentralized controls [6, 7].
On the other hand, an important issue is to consider

the control problems of nonlinear systems because most
control plants are nonlinear. Recently, Takagi-Sugeno
(T-S) model has been proved to be a powerful solu-
tion to represent any smooth nonlinear functions at any
preciseness [8, 9]. The T-S model employs a group of
IF-THEN fuzzy rules to describe the global behavior of
the nonlinear system in which a number of linear mod-
els are connected smoothly by fuzzy membership func-
tions. T-S fuzzy approach combining the merits of both
fuzzy logic theory and linear system theory is success-
fully implemented in embedded microprocessors and is
widely applied in a variety of engineering fields [10–13].
During the past few years, a great number of results on
function approximation, systematic stability analysis, con-
troller and filtering design for T-S fuzzy systems have been
reported in the open literature [14–19].
With the rapid development of digital technology,

in the feedback loops, communication networks are
often used instead of point-to-point connections due
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to their great advantages, such as simple maintenance
and installation, and low cost [20–24]. Unfortunately,
the network-induced imperfections, such as quantization
errors, packet dropouts, and time delays, can degrade
significantly the performance of control systems and
may even lead to instability [25–29]. Recently, based
on fuzzy/piecewise Lyapunov functions, some results on
stability analysis and controller synthesis of fuzzy sys-
tems have been presented. It has been demonstrated
that the inherently conservatism in common Lyapunov
function can be relaxed by using piecewise/fuzzy Lya-
punov functions. More recently, T-S fuzzy control has
been developed to investigate large-scale nonlinear sys-
tems [30–35]. To mention a few, some results on anal-
ysis and synthesis methods for decentralized control
of large-scale systems have been presented in [30–32].
In [33, 34], the decentralized H∞ filtering problem
was studied for the discrete-time large-scale system
with time-varying delay. To the best knowledge of the
authors, few results on the distributed H∞ filtering
design have been given for large-scale networked T-
S fuzzy systems by using piecewise Lyapunov function,
which motivates us for the research presented in this
paper.
This paper will deal with the distributed H∞ fil-

tering problem for discrete-time large-scale nonlinear
systems. The large-scale system is composed of sev-
eral nonlinear subsystems and exchanges its information
through communication network. Each nonlinear sub-
system is described by a T-S model, and data-packet
dropouts occur intermittently in communication net-
work, and its stochastic variables satisfy the Bernoulli
random-binary distribution. Based on a piecewise Lya-
punov functional (PLF) and some convexifying tech-
niques, the distributed H∞ filtering design result will
be proposed. It will be shown that the filtering error
system is stochastically stable with an H∞ perfor-
mance, and the filtering gains can be given by the
form of LMIs. Two simulation examples will be pre-
sented to demonstrate the advantage of the proposed
methods.

Notations. �n×m is the n-dimensional Euclidean space
and �n×m denotes the set of n × mmatrices. P > 0 (≥ 0)
means that matrix P is positive definite (positive semidef-
inite). Sym{A} denotes A + AT . In and 0m×n are the n × n
identity matrix and m × n zero matrix, respectively. The
subscripts n andm×n are omitted when the size is irrele-
vant or can be determined from the context. For matrices
A ∈ �n×n, A−1 and AT denote the inverse and trans-
pose of the matrix A, respectively. l2[ 0,∞) is the space of
square-summable infinite vector sequences over [ 0,∞).
diag{· · ·} is a block-diagonal matrix. The notation ‖·‖
denotes the Euclidean vector norm, and ‖·‖2 is the usual

l2[ 0,∞) norm. E {·} denotes the mathematical expecta-
tion. The notation � denotes the symmetric terms.

2 Model description and problem formulation
This paper considers a class of discrete-time large-scale
systems, which consist of N nonlinear subsystems, the
ith nonlinear subsystem is described by the T-S model as
below.
Plant rule Rl

i : IF ζi1(t) is F l
i1 and ζi2(t) is F l

i2 and · · ·
and ζig(t) is F l

ig , THEN

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
xi (t + 1) = Ailxi (t) +

N∑
k=1
k �=i

Āiklxk(t) + Bilwi (t)

yi(t) = Cilxi(t) + Dilwi (t)
zi(t) = Lilxi(t), l ∈ Li := {1, 2, . . . , ri}

(1)

where i ∈ N := {1, 2, . . . ,N}; Rl
i denotes the lth

fuzzy inference rule; ri is the number of fuzzy infer-
ence rules; F l

iφ
(
φ = 1, 2, . . . , g

)
are fuzzy sets; xi(t) ∈

�nxi , yi(t) ∈ �nyi , and zi(t) ∈ �nzi are the system state, the
measured output, and the estimated signal, respectively;
wi(t) ∈ �nwi is the disturbance input, which belongs to
l2[ 0,∞); ζi(t) :=[ ζi1(t), ζi2(t), . . . , ζig(t)] are some mea-
surable variables of the ith subsystem; (Ail,Bil,Cil,Dil, Lil)
denotes the lth local model for the ith subsystem; Āikl
is the interconnection matrix between the ith and kth
subsystems.
Let us define μil [ζi(t)] as the normalized membership

function of the inferred fuzzy set F l
i := ∏g

φ=1 F l
iφ ; it

yields

μil [ζi(t)] :=
∏g

φ=1μilφ
[
ζiφ(t)

]
∑ri

ς=1
∏g

φ=1μiςφ

[
ζiφ(t)

] ≥ 0,
ri∑
l=1

μil [ζi(t)] = 1

(2)

where μilφ
[
ζiφ(t)

]
denotes the grade of membership of

ζiφ(t) inF l
iφ . For convenience, in the sequel, the argument

of μil [ζi(t)] will be dropped for the situations without
ambiguity, i.e., we denote μil := μil [ζi(t)] .
By using a standard fuzzy inference, we obtain the ith

global T-S fuzzy subsystem as below:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xi (t + 1) = Ai(μi)xi (t) +
N∑
k=1
k �=i

Āik(μi)xk(t) + Bi(μi)wi (t)

yi(t) = Ci(μi)xi(t) + Di(μi)wi (t)
zi(t) = Li(μi)xi(t), i ∈ N

(3)
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where

⎧⎪⎪⎨
⎪⎪⎩

Ai(μi) :=
ri∑
l=1

μilAil , Āik(μi) :=
ri∑
l=1

μilAikl , Bi(μi) :=
ri∑
l=1

μilBil

Ci(μi) :=
ri∑
l=1

μilCil , Di(μi) :=
ri∑
l=1

μilDil Li(μi) :=
ri∑
l=1

μilLil .

(4)

In this paper, we will address the distributed H∞ filter-
ing design problem of the discrete-time large-scale fuzzy
system in (3) based on a piecewise Lyapunov functional
(PLF). For each nonlinear subsystem i ∈ N , we fol-
low the idea proposed in [36, 37], where the premise
variable space is partitioned into two different kinds of
regions: fuzzy regions and crisp regions. The region with
0 < μil [ζi(t)] < 1 is defined as the fuzzy region,
where the system dynamics are governed by a convex
combination of several local models dropped into that
region. In addition, the crisp region is the region where
μil [ζi(t)] = 1 for some rules l, and the rest of member-
ship functions equal to zero. The system dynamics in crisp
region are governed by the l-th local model within that
region.
Let

{
Sij
}
j∈Ji

be the premise variable space partition for
the ith subsystem, and Ji be the set of region indices.
Based on the partition policy, the global T-S fuzzy system
in (3) can be rewritten as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
xi (t + 1) = Aijxi (t) +

N∑
k=1
k �=i

Āikjxk(t) + Bijwi (t)

yi(t) = Cijxi(t) + Dijwi (t)

zi(t) = Lijxi(t), ζi(t) ∈ Sij, j ∈ Ji, i ∈ N

(5)

where

⎧⎪⎪⎨
⎪⎪⎩

Aij := ∑
m∈Ii(j)

μimAim, Bij := ∑
m∈Ii(j)

μimBim Āikj := ∑
m∈Ii(j)

μimAikm

Cij := ∑
m∈Ii(j)

μimCim, Dij := ∑
m∈Ii(j)

μimDim Lij := ∑
m∈Ii(j)

μimLim

(6)

with 0 < μim [ζi(t)] < 1,
∑

m∈Ii(j) μim [ζi(t)] = 1. For
each local region Sij, Ii

(
j
)
contains the matrix indices

used in that region. For a crisp region, Ii
(
j
)
contains a

single index.
For convenience, we denote a new set �i, which repre-

sents all possible region transitions for the ith subsystem:

�i :=
{
(j, s) | ζi(t) ∈ Sij, ζi(t + 1) ∈ Sis,

(
j, s
) ∈ Ji

}
(7)

where j �= s when ζi(t) transits from the region Sij to Sis,
and j = s when ζi(t) stays in the same region Sij.
Given the large-scale fuzzy system (5) with the premise

variable space partition, we propose a distributed piece-
wise filter of the following form:

⎧⎪⎪⎨
⎪⎪⎩
xFi(t + 1) = AFijxFi(t) + BFijyFi(t) +

N∑
k=1
k �=i

BFikjyFk(t)

zFi(t) = CFijxFi(t), j ∈ Ji, i ∈ N
(8)

where xFi(t) ∈ �nfi is the filter state, zFi(t) ∈ �nzi

is an estimation of zi(t), yFi(t) is the measured out-
put applied to filter, and (AFij,BFij,BFikj, CFij) are filter
gains to be designed, where nfi = nxi for the full-
order filter, and 1 ≤ nfi < nxi for the reduced-order
one.
Here, we assume that the data loss happens in the com-

munication links between the filter and physical plain, the
measured output yi(t) is no longer equivalent to yFi(t).
The ith filtering subsystem with unreliable communica-
tion network is shown in Fig. 1, where the ith filter takes
all measured outputs via unreliable communication links.
This paper models the data-loss condition based on a
stochastic approach, thus, it yields [38]:

yFi(t) = αi (t) yi(t), i ∈ N (9)

where αi (t) is the independent Bernoulli processes, which
represent the unreliable condition of the links from the
sensor to the filter. Specifically, αi (t) ≡ 0 when the link
fails, i.e., data are lost, and αi (t) ≡ 1 represents successful
transmission, and αi (t) is supposed to be given by

Prob {αi (t) = 1} = E {αi (t)} = ᾱi, Prob {αi (t) = 0} = 1 − ᾱi.
(10)

In addition, let us define

α̃i (t) = αi (t) − ᾱi. (11)

It is easy to see from (11) that

E {α̃i (t)} = 0,E {α̃i (t) α̃i (t)} = ᾱi (1 − ᾱi) . (12)

By defining x̄i(t) = [xTi (t) xTFi(t)
]T , z̄i(t) = zi(t)−zFi(t),

and based on the large-scale fuzzy system in (5) and dis-
tributed piecewise filter in (8), the filtering error system is
given by
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Fig. 1 The ith subsystem with unreliable communication network

⎧⎪⎪⎨
⎪⎪⎩

x̄i (t + 1) = Aijx̄i (t) +
N∑
k=1
k �=i

Āikjxk(t) + Bijwi (t) +
N∑
k=1
k �=i

B̄ikjwk (t)

z̄i(t) = Cijx̄i (t) , ζi(t) ∈ Sij, j ∈ Ji, i ∈ N
(13)

where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Aij=A (1)
ij + α̃i (t)A (2)

ij , Āikj = ¯A (1)
ikj + α̃i (t) ¯A (2)

ikj ,

Bij=B(1)
ij + α̃i (t) B(2)

ij , B̄ikj = E
(
ᾱiBFikjDkj + α̃i (t)BFikjDkj

)
,

A (1)
ij =

[
Aij 0

ᾱiBFijCij AFij

]
,A (2)

ij =
[

0 0
BFijCij 0

]
,

¯A (1)
ikj =

[
Āikj

ᾱiBFikjCkj

]
, ¯A (2)

ikj =
[

0
BFikjCkj

]
,E =

[
0
I

]
,

B(1)
ij =

[
Bij

ᾱiBFijDij

]
,B(2)

ij =
[

Bij
BFijDij

]
,Cij=

[
Lij −CFij

]
.

(14)

Definition 1. Let x̃ (t) = [
x̄T1 (t) x̄T2 (t) · · · x̄TN (t)

]T
and w̃ (t) = [

wT
1 (t) wT

2 (t) · · · wT
N (t)

]T . Then, the filter-
ing error system in (13) is stochastically stable in the mean
square if there exists matrix W > 0 such that

E

{ ∞∑
t=0

∣∣x̃ (t)
∣∣2∣∣∣∣∣ x̃ (0)

}
< x̃T (0)Wx̃ (0) (15)

for any initial condition x̃ (0) when w̃ (t) ≡ 0.

Now, we formulate the distributed piecewise H∞ filter-
ing problem as below.

Given the fuzzy filtering system shown in Fig. 1, assume
that the communication link parameter ᾱi is available.
Given a prescribed scalar γ > 0, design a distributed
piecewise filter in the form of (8) such that the following
two conditions are satisfied simultaneously.

1) The filtering error system in (13) is stochastically
stable in the sense of Definition 1;
2) Under zero-initial conditions, the estimated error
z̃ (t) satisfies

∥∥z̃∥∥
E

≤ γ
∥∥w̃∥∥2 , (16)

where
∥∥z̃∥∥

E
:= E

{√
∞∑
t=0

∣∣z̃ (t)
∣∣2} .

If both the conditions are satisfied, then the filtering
error system in (13) is stochastically stable with an H∞
performance γ .

3 Main results
In this section, based on a piecewise Lyapunov functional
(PLF), the performance analysis and design of the dis-
tributed piecewise H∞ filter will be developed for the
considered system in (3). The filter gains will be given
for both full-order and reduced-order filters by solving a
number of LMIs.

3.1 Distributed H∞ filtering performance analysis
Here, we will present a distributed H∞ filtering perfor-
mance analysis, and the result can be summarized in the
following lemma.
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Lemma 1. Given the fuzzy system in (3) and dis-
tributed piecewise filter in (8), then the filtering error
system in (13) is stochastically stable with an H∞ per-
formance γ , if there exist matrices 0 < Pij = PTij ∈
�
(
nxi+nfi

)×(nxi+nfi
)
, j ∈ Ji, i ∈ N , and matrix multiplier

Gi ∈ �
(
2nxi+2nfi+nwi

)×(nxi+nfi), i ∈ N , and matrices 0 <

Hikj < Hik0 ∈ �nxi×nxi , 0 < Mikj < Mik0 ∈ �nwi×nwi , j ∈
Ji, k �= i, (i, k) ∈ N , such that for all (j, s) ∈ �i, j ∈
Ji, (i, k) ∈ N , the following matrix inequalities hold:

⎡
⎢⎢⎢⎢⎢⎢⎣

	ijs + Sym
{

ij
}

�(1) fi�(2) �(3) fi�(4) �(5)
� −Hij 0 0 0 0
� � −Hij 0 0 0
� � � −Mij 0 0
� � � � −Mij 0
� � � � � −I

⎤
⎥⎥⎥⎥⎥⎥⎦ < 0,

(17)

where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

	ijs = diag

⎧⎪⎨
⎪⎩Pis

N∑
k=1
k �=i

ĒHki0ĒT − Pij
N∑
k=1
k �=i

Mki0 − γ 2I

⎫⎪⎬
⎪⎭ ,


ij =
[
−Gi GiA

(1)
ij GiB

(1)
ij

]
,

�(1) = [�i1j(1) · · ·�ikj(1),k �=i · · ·�iNj(1)
]

︸ ︷︷ ︸
N−1

,�ikj(1) = Gi ¯A
(1)
ikj ,

�(2) = [�i1j(2) · · ·�ikj(2),k �=i · · ·�iNj(2)
]

︸ ︷︷ ︸
N−1

,�ikj(2) = Gi ¯A
(2)
ikj ,

�(3) = [�i1j(3) · · ·�ikj(3),k �=i · · ·�iNj(3)
]

︸ ︷︷ ︸
N−1

,�ikj(3) = ᾱiGiEBFikjDkj ,

�(4) = [�i1j(4) · · ·�ikj(4),k �=i · · ·�iNj(4)
]

︸ ︷︷ ︸
N−1

,�ikj(4) = GiEBFikjDkj ,

�(5) = [0 Cij 0
]T , fi = √

ᾱi (1 − ᾱi),E =
[
0
I

]
, Ē =

[
I
0

]
,

Hij = diag
{
Hi1j · · ·Hikj,k �=i · · ·HiNj

}
︸ ︷︷ ︸

N−1

,Mij = diag
{
Mi1j · · ·Mikj,k �=i · · ·MiNj

}
︸ ︷︷ ︸

N−1

.

(18)

Proof. Choose the following piecewise Lyapunov func-
tional (PLF):

V (t) =
N∑
i=1

Vi(t)

= x̄Ti (t)Pijx̄i (t) , ζi(t) ∈ Sij, j ∈ Ji (19)

where Pij ∈ �
(
nxi+nfi

)×(nxi+nfi
)
, j ∈ Ji, i ∈ N , are positive

definite symmetric Lyapunov matrices.

Define �Vi(t) = Vi(t + 1) − Vi(t), one has

�Vi(t) = x̄Ti (t + 1)Pisx̄i (t + 1)
− x̄Ti (t)Pijx̄i (t) , (j, s) ∈ �i.

(20)

It follows from the error system in (13) that

[−I Aij Bij
]
χi (t) +

N∑
k=1
k �=i

Āikjxk(t)

+
N∑
k=1
k �=i

B̄ikjwk(t) = 0,

(21)

where χi (t) = [
x̄Ti (t + 1) x̄Ti (t) wT

i (t)
]T , ζi(t) ∈ Sij, j ∈

Ji, i ∈ N .

Note that

2x̄T ȳ ≤ x̄TM−1x̄ + ȳTMȳ, (22)

where x̄, ȳ ∈ �n and matrixM = MT > 0.
Define the matrix multipliers Gi ∈ �

(
2nxi+2nfi+nwi

)
×

(nxi + nfi), i ∈ N , and the matrices 0 < Hikj < Hik0 ∈
�nxi×nxi , and it follows from (21), (22) and Lemma A1 in
the “Appendix” section that

2
N∑
i=1

χT
i (t)Gi

N∑
k=1
k �=i

Āikjxk(t)

≤
N∑
i=1

N∑
k=1
k �=i

χT
i (t)GiĀikjH−1

ikj (�) χi (t) +
N∑
i=1

N∑
k=1
k �=i

xTk (t)Hikjxk(t)

≤
N∑
i=1

N∑
k=1
k �=i

χT
i (t)GiĀikjH−1

ikj (�) χi (t) +
N∑
i=1

N∑
k=1
k �=i

xTk (t)Hik0xk(t)

=
N∑
i=1

N∑
k=1
k �=i

χT
i (t)GiĀikjH−1

ikj (�) χi (t) +
N∑
i=1

N∑
k=1
k �=i

xTi (t)Hki0xi(t).

(23)

Similarly, by introducing 0 < Mikj < Mik0 ∈ �nwi×nwi , it
yields
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2
N∑
i=1

χT
i (t)Gi

N∑
k=1
k �=i

B̄ikjwk(t)

≤
N∑
i=1

N∑
k=1
k �=i

χT
i (t)GiB̄ikjM−1

ikj (�) χi (t) +
N∑
i=1

N∑
k=1
k �=i

wT
k (t)Mikjwk (t)

≤
N∑
i=1

N∑
k=1
k �=i

χT
i (t)GiB̄ikjM−1

ikj (�) χi (t) +
N∑
i=1

N∑
k=1
k �=i

wT
k (t)Mik0wk (t)

=
N∑
i=1

N∑
k=1
k �=i

χT
i (t)GiB̄ikjM−1

ikj (�) χi (t) +
N∑
i=1

N∑
k=1
k �=i

wT
i (t)Mki0wi (t) .

(24)

Given the following index

J(t) = E

{ N∑
i=1

Ji(t)
}

= E

{ N∑
i=1

∞∑
t=0

[
z̄Ti (t)z̄i(t) − γ 2wT

i (t)wi (t)
]}

.

(25)

It follows from (19)–(21) and (23)–(25) that

J(t) ≤ E {J(t) + V (∞) − V (0)}

= E

⎧⎨
⎩

N∑
i=1

∞∑
t=0

[
�Vi(t) + z̄Ti (t)z̄i(t) − γ 2wT

i (t)wi (t)
]⎫⎬
⎭

≤ E

⎧⎪⎪⎨
⎪⎪⎩

N∑
i=1

∞∑
t=0

χT
i (t)

⎡
⎢⎢⎣	ijs + Sym

{

ij
}+

N∑
k=1
k �=i

GiĀikjH−1
ikj (�)

+
N∑
k=1
k �=i

GiB̄ikjM−1
ikj (�)

⎤
⎥⎥⎦χi (t)

⎫⎪⎪⎬
⎪⎪⎭

=
N∑
i=1

∞∑
t=0

χT
i (t)

⎧⎪⎪⎨
⎪⎪⎩	ijs + Sym

{

ij
}+

N∑
k=1
k �=i

�ikj(1)H
−1
ikj �T

ikj(1)

+ f 2i
N∑
k=1
k �=i

�ikj(2)H
−1
ikj �T

ikj(2) +
N∑
k=1
k �=i

�ikj(3)M
−1
ikj �T

ikj(3)

+ f 2i
N∑
k=1
k �=i

�ikj(4)M
−1
ikj �T

ikj(4) + �(5)�
T
(5)

⎫⎪⎪⎬
⎪⎪⎭χi (t) ,

(26)

where fi = √
ᾱi (1 − ᾱi),

{
	ijs,
ij,�ikj(1),�ikj(2),�ikj(3),

�ikj(4)
}
are given by (18).

By using Schur complement lemma on (17), it is easy to
see from (26) that the inequality (17) implies E {�V (t)} <

0 when wi (t) ≡ 0. Thus, it yields

E {V (t + 1)} < V (0) ≤ (λmax
(
Pij
))
xT (0)x(0), j ∈ Ji, i ∈ N (27)

and

E {V (t + 1)} ≥ (λmin
(
Pij
))
xT (t + 1)x(t + 1), j ∈ Ji, i ∈ N .

(28)

According to Definition 1, it is easy to see that the fil-
tering error system is stochastically stable in the mean
square. Then, considering E {V (t)} > 0 for all t ≥ 0,
under zero-initial conditions it yields

E

{ N∑
i=1

∞∑
t=0

z̄Ti (t)z̄i(t)
}

−
N∑
i=1

∞∑
t=0

γ 2wT
i (t)wi (t) < 0,

(29)

which means
∥∥z̃∥∥

E
< γ

∥∥w̃∥∥2, thus completing this proof.

3.2 Distributed H∞ filtering design
In this subsection, we will consider the distributed H∞
filtering design for the system in (5). Based on Lemma 1,
and by specifying the multiplier Gi, the nonlinear matrix
inequalities are formulated into the linear ones, the corre-
sponding result is summarized as below.

Theorem 1. Given the fuzzy system in (3) and a dis-
tributed filter in (8), the filtering error system in (13) is
stochastically stable with an H∞ performance γ , if there
exist matrices 0 < Pij = PTij ∈ �

(
nxi+nfi

)×(nxi+nfi
)
, j ∈

Ji, i ∈ N , and matrices ĀFij ∈ �nfi×nfi ,
{
B̄Fij, B̄Fij

} ∈
�nfi×nyi , C̄Fij ∈ �nzi×nfi ,Gij(1) ∈ �nxi×nxi ,Gij(2) ∈
�nfi×nfi ,Gij(3) ∈ �nfi×nxi ,Gij(5) ∈ �

(
nxi+nfi+nwi

)×nxi , j ∈
Ji, i ∈ N , and matrices 0 < Hikj < Hik0 ∈ �nxi×nxi , 0 <

Mikj < Mik0 ∈ �nwi×nwi , j ∈ Ji, (i, k) ∈ N , such that for
all (j, s) ∈ �i, j ∈ Ji,m ∈ Ii

(
j
)
, (i, k) ∈ N the following

LMIs hold:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

	ijs + Sym
{

̄im

}
�̄(1) fi�̄(2) �̄(3) fi�̄(4) �(5)

� −Hij 0 0 0 0
� � −Hij 0 0 0
� � � −Mij 0 0
� � � � −Mij 0
� � � � � −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

< 0,

(30)

where
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

	i1 = diag

⎧⎪⎨
⎪⎩Pis

N∑
k=1
k �=i

ĒHki0ĒT − Pij
N∑
k=1
k �=i

Mki0 − γ 2I

⎫⎪⎬
⎪⎭ ,


̄im =
⎡
⎢⎣−Gij(1) −KGij(2) 	

(14)
i2 KĀFij Gij(1)Bim + ᾱiKB̄FijDim

−Gij(3) −Gij(2) 	
(24)
i2 ĀFij Gij(3)Bim + ᾱiB̄FijDim

−Gij(5) 0 Gij(5)Aim 0 Gij(5)Bim

⎤
⎥⎦ ,

	
(14)
i2 = Gij(1)Aim + ᾱiKB̄FijCim,	(24)

i2 = Gij(3)Aim + ᾱiB̄FijCim,

�̄(1) = [�̄i1j(1) · · · �̄ikj(1),k �=i · · · �̄iNj(1)
]︸ ︷︷ ︸

N−1

, �̄ikj(1) =
⎡
⎣Gij(1)Āikm + ᾱiKB̄FikjCkm

Gij(3)Āikm + ᾱiB̄FikjCkm
Gij(5)Āikm

⎤
⎦ ,

�̄(2) = [�̄i1j(2) · · · �̄ikj(2),k �=i · · · �̄iNj(2)
]︸ ︷︷ ︸

N−1

, �̄ikj(2) =
⎡
⎣ KB̄FikjCkm

B̄FikjCkm
0

⎤
⎦ ,

�̄(3) = [�̄i1j(3) · · · �̄ikj(3),k �=i · · · �̄iNj(3)
]︸ ︷︷ ︸

N−1

, �̄ikj(3) =
⎡
⎣ ᾱiKB̄FikjDkm

ᾱiB̄FikjDkm
0

⎤
⎦ ,

�̄(4) = [�̄i1j(4) · · · �̄ikj(4),k �=i · · · �̄iNj(4)
]︸ ︷︷ ︸

N−1

, �̄ikj(4) =
⎡
⎣ KB̄FikjDkm

B̄FikjDkm
0

⎤
⎦ ,

�(5) = [ 0 [ Lim −C̄Fij
]
0
]T , fi = √

ᾱi (1 − ᾱi),

Ē =
[
I
0

]
,K = [ Infi 0nfi×(nxi−nfi)

]T ,

Hij = diag
{
Hi1j · · ·Hikj,k �=i · · ·HiNj

}︸ ︷︷ ︸
N−1

,Mij = diag
{
Mi1j · · ·Mikj,k �=i · · ·MiNj

}︸ ︷︷ ︸
N−1

.

(31)

Furthermore, a distributed piecewise filter in the form of
(8) is given by

AFij = (Gij(2)
)−1 ĀFij,BFij = (Gij(2)

)−1 B̄Fij,

BFikj = (Gij(2)
)−1 B̄Fikj,CFij = C̄Fij, j ∈ Ji, i ∈ N . (32)

Proof. For matrix inequality linearization purpose, the
multipliers Gi, i ∈ N are firstly specified by

Gi =
⎡
⎣

[
Gij(1) KGij(2)
Gij(3) Gij(4)

]
0(nxi+nfi+nwi

)×(nxi+nfi
)
⎤
⎦ , j ∈ Ji, i ∈ N (33)

where K =
[
Infi 0nfi×(nxi−nfi)

]T
,Gij(1) ∈ �nxi×nxi ,Gij(2) ∈

�nfi×nfi ,Gij(3) ∈ �nfi×nxi ,Gij(4) ∈ �nfi×nfi .

Then, similar to [39], defining � := diag
{
Inxi ,

Gij(2)G−1
ij(4)

}
, and performing a congruence transforma-

tion to
[
Gij(1) + GT

ij(1) KGij(2) + GT
ij(3)

� Gij(4) + GT
ij(4)

]
, j ∈ Ji, i ∈ N (34)

by �, it yields
[
Inxi 0
0 Gij(2)G−1

ij(4)

][
Gij(1) + GT

ij(1) KGij(2) + GT
ij(3)

� Gij(4) + GT
ij(4)

][
Inxi 0
0 G−T

ij(4)G
T
ij(2)

]

=
[
Gij(1) + GT

ij(1) KGij(2)G−T
ij(4)G

T
ij(2) + GT

ij(3)G
−T
ij(4)G

T
ij(2)

� Gij(2)G−T
ij(4)G

T
ij(2) + Gij(2)G−1

ij(4)G
T
ij(2)

]

:=
[
Gij(1) + GT

ij(1) KḠij(2) + ḠT
ij(3)

� Ḡij(2) + ḠT
ij(2)

]
, i ∈ N .

(35)

Without loss of generalit, we can specify Gij(4) = Gij(2).
Thus, we can directly specify the multipliers Gi as

Gi =
⎡
⎣

[
Gij(1) KGij(2)
Gij(3) Gij(2)

]
0(nxi+nfi+nwi

)×(nxi+nfi
)
⎤
⎦ , j ∈ Ji, i ∈ N . (36)

It is easy to see that the matrix variable Gij(2), j ∈ Ji is
absorbed by the filter gain variables AFij,BFij,BFikj, j ∈ Ji
when introducing

ĀFij = Gij(2)AFij, B̄Fij = Gij(2)BFij, B̄Fikj = Gij(2)BFikj

(37)

with j ∈ Ji, k �= i, (i, k) ∈ N .
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It is noted that the first block-row of
{
Aij, Āikj,Bij, B̄ikj

}
does not involve in the filter gain variables. Thus, the
multipliers Gi, i ∈ N is finally specified as below,

Gi =
⎡
⎣Gij(1) KGij(2)
Gij(3) Gij(2)
Gij(5) 0

⎤
⎦ , j ∈ Ji, i ∈ N (38)

where Gij(5) ∈ �
(
nxi+nfi+nwi

)×nxi .
Then, substituting (38) into (17), and by extracting the

fuzzy basis functions, the inequality (30) can be obtained.
In addition, the inequality in (17) imply that

Pis + Sym
{[−Gij(1) −KGij(2)

−Gij(3) −Gij(2)

]}
< 0 (39)

with (j, s),∈ �i, j ∈ Ji, i ∈ N .
Due to the fact that Pis > 0, we have Gij(2) + GT

ij(2) > 0,
which means that the matrix variable Gij(2) are nonsingu-
lar. Thus, the filtering gains

{
AFij,BFij,BFikj,CFij

}
can be

obtained by (32) and completing this proof.

4 Simulation examples
In the following, let us consider two examples to illustrate
the result proposed in this paper.

Example 1. Consider a discrete-time large-scale T-S
model with three fuzzy rules as below:
Plant rule Rl

i : IF xi1(t) is F l
i , THEN⎧⎪⎪⎪⎨

⎪⎪⎪⎩
xi (t + 1) = Ailxi (t) +

2∑
k=1
k �=i

Āiklxk(t) + Bilwi (t)

yi(t) = Cilxi(t) + Dilwi (t)
zi(t) = Lilxi(t), l = {1, 2, 3} , i = {1, 2}

where

[A11 A12 A13] =
[

0.98 0.01 0.87 0.02 0.95 0.01
−0.18 0.74 −0.12 0.83 −0.16 0.86

]
,

[B11 B12 B13] =
[
0 0 0
0.28 0.25 0.21

]
,

C11 = [1.03 0] ,C12 = [0.95 0] ,C13 = [0.89 0] ,

D11 = 0.74,D12 = 0.69,D13 = 0.58, L11 = 0.85, L12 = 0.97, L13 = 1.04

for the first subsystem, and

[A21 A22 A23] =
[

0.75 0.02 0.83 0.01 0.92 0.02
−0.20 0.82 −0.15 0.88 −0.17 0.75

]
,

[
B21 B22 B23

]
=
[
0 0 0
0.21 0.28 0.23

]
,

C21 =
[
0.94 0

]
,C22 =

[
0.97 0

]
,C23 =

[
0.86 0

]
,

D21 = 0.49,D22 = 0.65,D23 = 0.58, L21 = 1.05, L22 = 0.95, L23 = 0.92

for the second subsystem.

Figure 2 shows the membership functions. According
to the premise variable space partition, there are three
subspaces for each subsystem:

Si1 = {xi1(t)|ri1 ≤ |xi1(t)| ≤ ri2}
Si2 = {xi1(t)|ri2 < |xi1(t)| ≤ ri3}
Si3 = {xi1(t)|ri3 < |xi1(t)| ≤ ri4} .

It can be observed that Si1 is a crisp region; both Si2
and Si3 are fuzzy regions. The region index set is Ji =
{1, 2, 3}.
Here, we consider the case of a full-order filter with

ai = 0.6. It is noted that the common Lyapunov function
proposed in [40] is not applicable to the distributed H∞
filtering design for this case in this example. However,
by applying Theorem 1, the feasible solutions of γmin =
3.9555 for the full-order filter and γmin = 6.5599 for the
reduced-order filter are obtained, and the corresponding
filter gains are

⎡
⎢⎢⎢⎢⎢⎢⎣

AF11 AF12 AF13

CF11 CF12 CF13

AF21 AF22 AF23

CF21 CF22 CF23

⎤
⎥⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.7667 −0.0097 0.8152 0.0008 0.7634 0.0059

−0.6453 0.5704 −1.1507 0.7841 −0.5374 0.8278

−0.3352 −0.6075 −0.0669 −0.9218 −0.0618 −1.0613

0.1465 0.0021 0.2362 −0.0231 0.3978 −0.0336

−4.8483 0.6215 −5.8832 0.5941 −5.6262 0.4767

3.7046 −0.7545 2.3695 −0.8122 0.0207 −0.9256

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎣ BF11 BF12 BF13

BF121 BF122 BF123

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

−0.2872 −0.2136 −0.2099

−1.4420 −1.6868 −1.9660

−0.0003 −0.0002 −0.0002

−0.0029 −0.0025 −0.0030

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

⎡
⎣ BF21 BF22 BF23

BF211 BF212 BF213

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

−0.6604 −0.9939 −0.9347

−7.1466 −10.5250 −9.6167

−0.0255 −0.0721 −0.0875

−0.4124 −0.9239 −1.0579

⎤
⎥⎥⎥⎥⎥⎥⎦

Fig. 2Membership functions in example 1
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for full-order filter and⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

AF11 AF12 AF13
CF11 CF12 CF13
AF21 AF22 AF23
CF21 CF22 CF23
BF11 BF12 BF13
BF121 BF122 BF123
BF21 BF22 BF23
BF211 BF212 BF213

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.6646 0.7019 0.6069
−1.1355 −1.3025 −7.8639
0.3419 0.2325 0.6842

−2.8731 −6.5894 −3.2918
−0.4212 −0.3742 −0.5079
−0.0007 −0.0009 −0.0014
−0.4754 −0.6358 −0.5075
−0.0001 −0.0003 −0.0004

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

for the reduced-order case.

Example 2. Consider a modified double-inverted pen-
dulum, which is connected by a spring [34]. The motional
equations of the interconnected pendulum are given by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋi1 = xi2
ẋi2 = 1

100Ji ui − kr2
4Ji xi1 +

[
migr
Ji − kr2

4Ji xi2
]
sin(xi1)

+ 1
Ji xi2 +

2∑
k=1
k �=i

3kr2
Jk xk1, i = {1, 2}

where xi1 and xi2 denote the angle from the vertical and
the angular velocity, respectively.
In this simulation, the moments of inertia are J1 = 2 kg

and J2 = 2.5 kg; the masses of two pendulums are cho-
sen as m1 = 2 kg and m2 = 2.5 kg; the constant of
the connecting torsional spring is k = 8 N·m/rad; the
length of the pendulum is r = 1 m; the gravity constant
is g = 9.8 m/s2. Here, the interconnected pendulum is
linearized around the origin, xi1 = (±80◦, 0) and xi1 =
(±88◦, 0); each pendulum is described by the T-S model
with three fuzzy rules. Given u1 = −18x11 − 16x12 and
u2 = −20x21 − 14x22, it can be known that these two
closed-loop T-S fuzzy subsystems are stable. Then, by dis-
cretizing the T-S fuzzy systems with sampling period T =
0.01 s, the discrete-time interconnected T-S fuzzy system
can be obtained as below:

Plant rule Rl
i : IF |xi1(t)| is F l

i , THEN

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
xi (t + 1) = Ailxi (t) +

2∑
k=1
k �=i

Āikxk(t) + Bilwi (t)

yi(t) = Cilxi(t) + Dilwi (t)
zi(t) = Lilxi(t), l = {1, 2, 3} , i = {1, 2}

where

[A11 A12 A13] =
⎡
⎣ 1 0.0120 1 0.0120 1 0.0120

−1.3200 −0.1540 −1.1818 −0.1658 −1.3760 −0.0352

⎤
⎦ ,

Ā12 =
⎡
⎣ 0 0

0.12 0

⎤
⎦ ,B1l =

⎡
⎣ 0

0.5

⎤
⎦ ,C1l =

[
1 0

]
,D1l = 1, L1l =

[
0 1

]

Fig. 3Membership functions in example 2

for the first subsystem and

[A21 A22 A23] =
⎡
⎣ 1 0.0120 1 0.0120 1 0.0120

−1.3760 −0.0352 −1.2378 −0.0447 −1.2485 −0.0448

⎤
⎦ ,

Ā21 =
⎡
⎣ 0 0

0.096 0

⎤
⎦ ,B2l =

⎡
⎣ 0

0.4

⎤
⎦ ,C2l =

[
1 0

]
,D2l = 1, L2l =

[
0 1

]

for the second subsystem.

Figure 3 shows the membership functions. Based on
the premise variable space partition, it can be known that
there exist three subspaces for each subsystem:

Si1 = {xi1(t)|ri1 < |xi1(t)| ≤ ri2}
Si2 = {xi1(t)|ri2 < |xi1(t)| ≤ ri3}
Si3 = {xi1(t)|ri3 < |xi1(t)| < ri4}

Fig. 4 Responses of z1(t) and zF1(t)
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Fig. 5 Responses of z2(t) and zF2(t)

where ri1 = 0, ri2 = 8◦, ri3 = 80◦, and ri4 = 88◦. It is
shown that both Si1 and Si3 are crisp regions and Si2 is a
fuzzy region. The region index set is Ji = {1, 2, 3}.
Now, considering the case of full-order filter with ai =

0.9, the common Lyapunov function proposed in [40] is
not applicable to the distributed H∞ filtering design for
this case in this example. However, by applying Theorem
1, the H∞ filtering performance γmin = 3.3755 is
obtained, and the obtained filter gains are

[AF11 AF12 AF13] =
⎡
⎣ 0.9530 0.0064 0.9645 0.0061 0.9645 0.0060

−0.8230 0.8049 −0.7860 0.7924 −0.7696 0.7620

⎤
⎦ ,

[BF11 BF12 BF13] =
⎡
⎣ −0.0462 −0.0357 −0.0356

−0.6725 −0.7136 −0.7026

⎤
⎦ ,

[BF121 BF122 BF123] =
⎡
⎣ −0.0009 −0.0009 −0.0009

−0.1312 −0.1346 −0.1314

⎤
⎦ ,

[CF11 CF12 CF13] =
[
0.0324 −0.9570 0 −1.0475 −0.0006 −1.0285

]
,

Fig. 6 Data-packet dropout for subsystem 1

Fig. 7 Data-packet dropout for subsystem 2

and

[AF21 AF22 AF23] =
⎡
⎣ 0.9626 0.0062 0.9634 0.0064 0.9634 0.0063

−0.7417 0.8157 −0.6866 0.8275 −0.6732 0.8048

⎤
⎦ ,

[BF21 BF22 BF23] =
⎡
⎣ −0.0360 −0.0361 −0.0361

−0.5731 −0.5792 −0.5732

⎤
⎦ ,

[BF211 BF212 BF213] =
⎡
⎣ −0.0009 −0.0010 −0.0009

−0.1094 −0.1103 −0.1085

⎤
⎦ ,

[CF21 CF22 CF23] =
[
0.0132 −1.0074 0 −1.0111 0.0004 −1.0007

]
.

Given the initial conditions x1(0) =[ 1.3, 0]T , x2(0) =
[ 1.1, 0]T , and assume that the external disturbances sat-
isfy w1(t) = 5e−0.02t sin(t) and w2(t) = 5e−0.02t cos(t), it
is easy to see from Figs. 4 and 5 that the responses of he
time responses of zi(t) and zFi(t), i = {1, 2} converge to
zero. The data-packet dropouts are shown in Figs. 6 and 7,
respectively. Then, it can also be shown in Fig. 8 that the

Fig. 8 Response of H∞ performance
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H∞ performance is satisfactory under zero-initial con-
ditions thus verifying the effectiveness of the distributed
H∞ filtering design.

5 Conclusions
This paper has investigated the distributed H∞ filter-
ing design for discrete-time large-scale T-S fuzzy systems,
which exchange their information through unreliable
communication network. Based on a piecewise Lyapunov
function and some convexifying techniques, less conser-
vative results on the distributed piecewise H∞ filtering
design were derived for the considered system in terms of
LMIs. The effectiveness of the method proposed in this
paper was validated by using two examples.

Appendix
Lemma A1. [41] Given matrix 0 < W = WT ∈ �n×n,

two positive integers d2 and d1 satisfy d2 ≥ d1 ≥ 1. Then,
it yields

⎛
⎝ d2∑
n=d1

xT (n)

⎞
⎠T

W

⎛
⎝ d2∑
n=d1

x (n)

⎞
⎠ ≤ d̄

d2∑
n=d1

xT (n)Wx (n)

where d̄ = d2 − d1 + 1.
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