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Abstract

There is no doubt that big data are now rapidly expanding in all science and engineering domains. While the
potential of these massive data is undoubtedly significant, fully making sense of them requires new ways of
thinking and novel learning techniques to address the various challenges. In this paper, we present a literature
survey of the latest advances in researches on machine learning for big data processing. First, we review the
machine learning techniques and highlight some promising learning methods in recent studies, such as
representation learning, deep learning, distributed and parallel learning, transfer learning, active learning, and
kernel-based learning. Next, we focus on the analysis and discussions about the challenges and possible solutions
of machine learning for big data. Following that, we investigate the close connections of machine learning with
signal processing techniques for big data processing. Finally, we outline several open issues and research trends.
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1 Review
1.1 Introduction
It is obvious that we are living in a data deluge era, evi-
denced by the phenomenon that enormous amount of
data have been being continually generated at unprece-
dented and ever increasing scales. Large-scale data sets
are collected and studied in numerous domains, from
engineering sciences to social networks, commerce,
biomolecular research, and security [1]. Particularly, digital
data, generated from a variety of digital devices, are growing
at astonishing rates. According to [2], in 2011, digital infor-
mation has grown nine times in volume in just 5 years and
its amount in the world will reach 35 trillion gigabytes by
2020 [3]. Therefore, the term “Big Data” was coined to cap-
ture the profound meaning of this data explosion trend.
To clarify what the big data refers to, several good sur-

veys have been presented recently and each of them
views the big data from different perspectives, including
challenges and opportunities [4], background and re-
search status [5], and analytics platforms [6]. Among
these surveys, a comprehensive overview of the big data
from three different angles, i.e., innovation, competition,
and productivity, was presented by the McKinsey Global

Institute (MGI) [7]. Besides describing the fundamental
techniques and technologies of big data, a number of
more recent studies have investigated big data under
particular context. For example, [8, 9] gave a brief review
of the features of big data from Internet of Things (IoT).
Some authors also analyzed the new characteristics of big
data in wireless networks, e.g., in terms of 5G [10]. In [11,
12], the authors proposed various big data processing
models and algorithms from the data mining perspective.
Over the past decade, machine learning techniques

have been widely adopted in a number of massive and
complex data-intensive fields such as medicine, astron-
omy, biology, and so on, for these techniques provide
possible solutions to mine the information hidden in the
data. Nevertheless, as the time for big data is coming,
the collection of data sets is so large and complex that it
is difficult to deal with using traditional learning
methods since the established process of learning from
conventional datasets was not designed to and will not
work well with high volumes of data. For instance, most
traditional machine learning algorithms are designed for
data that would be completely loaded into memory [13],
which does not hold any more in the context of big data.
Therefore, although learning from these numerous data
is expected to bring significant science and engineering* Correspondence: dingguoru@gmail.com
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advances along with improvements in quality of our life
[14], it brings tremendous challenges at the same time.
The goal of this paper is twofold. One is mainly to dis-

cuss several important issues related to learning from
massive amounts of data and highlight current research
efforts and the challenges to big data, as well as the
future trends. The other is to analyze the connections of
machine learning with modern signal processing (SP)
techniques for big data processing from different
perspectives. The main contributions of this paper are
summarized as follows:

� We first give a brief review of the traditional
machine learning techniques, followed by several
advanced learning methods in recent researches that
are either promising or much needed for solving the
big data problems.

� We then present a systematic analysis of the
challenges and possible solutions for learning with
big data, which are in terms of the five big data
characteristics such as volume, variety, velocity,
veracity, and value.

� We next discuss the great ties of machine
learning with SP techniques for the big data
processing.

� We finally provide several open issues and research
trends.

The remainder of the paper, as the roadmap given
in Fig. 1 shows, is organized as follows. In Section 1.2,
we start with a review of some essential and relevant
concepts about machine learning, followed by some
current advanced learning techniques. Section 1.3
provides a comprehensive survey of challenges bring-
ing by big data for machine learning, mainly from five
aspects. The relationships between machine learning
and signal processing techniques for big data process-
ing are presented in Section 1.4. Section 1.5 gives
some open issues and research trends. Conclusions
are drawn in Section 2.

1.2 Brief review of machine learning techniques
In this section, we first present some essential concepts
and classification of machine learning and then highlight
a list of advanced learning techniques.

1.2.1 Definition and classification of machine learning
Machine leaning is a field of research that formally fo-
cuses on the theory, performance, and properties of
learning systems and algorithms. It is a highly interdis-
ciplinary field building upon ideas from many different
kinds of fields such as artificial intelligence, optimization
theory, information theory, statistics, cognitive science,
optimal control, and many other disciplines of science,
engineering, and mathematics [15–18]. Because of its
implementation in a wide range of applications, machine
learning has covered almost every scientific domain,
which has brought great impact on the science and soci-
ety [19]. It has been used on a variety of problems, in-
cluding recommendation engines, recognition systems,
informatics and data mining, and autonomous control
systems [20].
Generally, the field of machine learning is divided into

three subdomains: supervised learning, unsupervised
learning, and reinforcement learning [21]. Briefly, super-
vised learning requires training with labeled data which
has inputs and desired outputs. In contrast with the
supervised learning, unsupervised learning does not re-
quire labeled training data and the environment only
provides inputs without desired targets. Reinforcement
learning enables learning from feedback received
through interactions with an external environment.
Based on these three essential learning paradigms, a lot
of theory mechanisms and application services have
been proposed for dealing with data tasks [22–24]. For
example, in [22], Google applies machine learning algo-
rithms to massive chunks of messy data obtained from
the Internet for Google’s translator, Google’s street view,
Android’s voice recognition, and image search engine. A
simple comparison of these three machine learning tech-
nologies from different perspectives is given in Table 1
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to outline the machine learning technologies for data
processing. The “Data Processing Tasks” column of the
table gives the problems that need to be solved and the
“Learning Algorithms” column describes the methods
that may be used. In summary, from data processing
perspective, supervised learning and unsupervised learn-
ing mainly focus on data analysis while reinforcement
learning is preferred for decision-making problems. An-
other point is that most traditional machine-learning-
based systems are designed with the assumption that all
the collected data would be completely loaded into
memory for centralized processing. However, as the data
keeps getting bigger and bigger, the existing machine
learning techniques encounter great difficulties when
they are required to handle the unprecedented volume
of data. Nowadays, there is a great need to develop effi-
cient and intelligent learning methods to cope with fu-
ture data processing demands.

1.2.2 Advanced learning methods
In this subsection, we introduce a few recent learning
methods that may be either promising or much needed
for solving the big data problems. The outstanding char-
acteristic of these methods is to focus on the idea of
learning, rather than just a single algorithm.

1. Representation Learning: Datasets with high-
dimensional features have become increasingly
common nowadays, which challenge the current
learning algorithms to extract and organize the
discriminative information from the data. Fortunately,
representation learning [25, 26], a promising solution
to learn the meaningful and useful representations
of the data that make it easier to extract useful
information when building classifiers or other

predictors, has been presented and achieved impressive
performance on many dimensionality reduction tasks
[27]. Representation learning aims to achieve that a
reasonably sized learned representation can capture a
huge number of possible input configurations,
which can greatly facilitate improvements in both
computational efficiency and statistical efficiency [25].
There are mainly three subtopics on representation
learning: feature selection, feature extraction, and
distance metric learning [27]. In order to give
impetus to the multidomain learning ability of
representation learning, automatic representation
learning [28], biased representation learning [26],
cross-domain representation learning [27], and some
other related techniques [29] have been proposed in
recent years. The rapid increase in the scientific activity
on representation learning has been accompanied and
nourished by a remarkable string of empirical successes
in real-world applications, such as speech recognition,
natural language processing, and intelligent vehicle
systems [30–32].

2. Deep learning: Nowadays, there is no doubt that
deep learning is one of the hottest research trends in
machine learning field. In contrast to most
traditional learning techniques, which are considered
using shallow-structured learning architectures, deep
learning mainly uses supervised and/or unsupervised
strategies in deep architectures to automatically learn
hierarchical representations [33]. Deep architectures
can often capture more complicated, hierarchically
launched statistical patterns of inputs for achieving to
be adaptive to new areas than traditional learning
methods and often outperform state of the art
achieved by hand-made features [34]. Deep belief
networks (DBNs) [33, 35] and convolutional neural

Table 1 Comparison of machine learning technologies

Learning types Data processing tasks Distinction norm Learning algorithms Representative references

Supervised learning Classification/Regression/Estimation Computational classifiers Support vector machine [120]

Statistical classifiers Naïve Bayes [15]

Hidden Markov model [121]

Bayesian networks [122]

Connectionist classifiers Neural networks [123]

Unsupervised learning Clustering/Prediction Parametric K-means [124]

Gaussian mixture model [125]

Nonparametric Dirichlet process mixture model [125]

X-means [124]

Reinforcement learning Decision-making Model-free Q-learning [126]

R-learning [127]

Model-based TD learning [128]

Sarsa learning [129]
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networks (CNNs) [36, 37] are two mainstream deep
learning approaches and research directions proposed
over the past decade, which have been well established
in the deep learning field and shown great promise for
future work [13].
Due to the state-of-the-art performance of deep
learning, it has attracted much attention from the
academic community in recent years such as speech
recognition, computer vision, language processing,
and information retrieval [33, 38–40]. As the data
keeps getting bigger, deep learning is coming to play a
pivotal role in providing predictive analytics solutions
for large-scale data sets, particularly with the
increased processing power and the advances in
graphics processors [13]. For example, IBM’s
brain-like computer [22] and Microsoft’s real-time
language translation in Bing voice search [41]
have used techniques like deep learning to
leverage big data for competitive advantage.

3. Distributed and parallel learning: There is often
exciting information hidden in the unprecedented
volumes of data. Learning from these massive data is
expected to bring significant science and engineering
advances which can facilitate the development of
more intelligent systems. However, a bottleneck
preventing such a big blessing is the inability of
learning algorithms to use all the data to learn
within a reasonable time. In this context, distributed
learning seems to be a promising research since
allocating the learning process among several
workstations is a natural way of scaling up learning
algorithms [42]. Different from the classical learning
framework, in which one requires the collection of
that data in a database for central processing, in the
framework of distributed learning, the learning is
carried out in a distributed manner [43].
In the past years, several popular distributed
machine learning algorithms have been proposed,
including decision rules [44], stacked generalization
[45], meta-learning [46], and distributed boosting
[47]. With the advantage of distributed computing for
managing big volumes of data, distributed learning
avoids the necessity of gathering data into a single
workstation for central processing, saving time and
energy. It is expected that more widespread
applications of the distributed learning are on the way
[42]. Similar to distributed learning, another popular
learning technique for scaling up traditional learning
algorithms is parallel machine learning [48]. With the
power of multicore processors and cloud computing
platforms, parallel and distributed computing systems
have recently become widely accessible [42]. A more
detailed description about distributed and parallel
learning can be found in [49].

4. Transfer learning: A major assumption in many
traditional machine learning algorithms is that the
training and test data are drawn from the same
feature space and have the same distribution.
However, with the data explosion from variety of
sources, great heterogeneity of the collected data
destroys the hypothesis. To tackle this issue, transfer
learning has been proposed to allow the domains,
tasks, and distributions to be different, which can
extract knowledge from one or more source tasks
and apply the knowledge to a target task [50, 51].
The advantage of transfer learning is that it can
intelligently apply knowledge learned previously to
solve new problems faster.
Based on different situations between the source and
target domains and tasks, transfer learning is
categorized into three subsettings: inductive transfer
learning, transductive transfer learning, and
unsupervised transfer learning [51]. In terms of
inductive transfer learning, the source and target
tasks are different, no matter when the source and
target domains are the same or not. Transductive
transfer learning, in contrast, the target domain is
different from the source domain, while the source
and target tasks are the same. Finally, in the
unsupervised transfer learning setting, the target
task is different from but related to the source task.
Furthermore, approaches to transfer learning in the
above three different settings can be classified into
four contexts based on “What to transfer,” such as
the instance transfer approach, the feature
representation transfer approach, the parameter
transfer approach, and the relational knowledge
transfer approach [51–54]. Recently, transfer
learning techniques have been applied successfully in
many real-world data processing applications, such
as cross-domain text classification, constructing
informative priors, and large-scale document
classification [55–57].

5. Active learning: In many real-world applications, we
have to face such a situation: data may be abundant
but labels are scarce or expensive to obtain. Frequently,
learning from massive amounts of unlabeled data is
difficult and time-consuming. Active learning attempts
to address this issue by selecting a subset of most
critical instances for labeling [58]. In this way, the active
learner aims to achieve high accuracy using as few
labeled instances as possible, thereby minimizing the
cost of obtaining labeled data [59]. It can obtain
satisfactory classification performance with fewer
labeled samples via query strategies than those of
conventional passive learning [60].
There are three main active learning scenarios,
comprising membership query synthesis, stream-based
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selective sampling and pool-based sampling [59].
Popular active learning approaches can be found in
[61]. They have been studied extensively in the field of
machine learning and applied to many data processing
problems such as image classification and biological
DNA identification [61, 62].

6. Kernel-based learning: Over the last decade, kernel-
based learning has established itself as a very powerful
technique to increase the computational capability
based on a breakthrough in the design of efficient
nonlinear learning algorithms [63]. The outstanding
advantage of kernel methods is their elegant property
of implicitly mapping samples from the original space
into a potentially infinite-dimensional feature space, in
which inner products can be calculated directly via a
kernel function [64]. For example, in kernel-based
learning theory, data x in the input space X is projected
onto a potentially much higher dimensional feature
space ℱ via a nonlinear mapping Φ as follows:

Φ : X→ℱ ; x↦Φ xð Þ ð1Þ
In this context, for a given learning problem, one
now works with the mapped data Φ(x)∈ℱ instead
of x∈X [63]. The data in the input space can be
projected onto different feature spaces with different
mappings. The diversity of feature spaces gives us
more choices to gain better performance, while in
practice, the choice itself of a proper mapping for
any given real-world problem may generally be
nontrivial. Fortunately, the kernel trick provides an
elegant mathematical means to construct powerful
nonlinear variants of most well-known statistical
linear techniques, without knowing the mapping
explicitly. Indeed, one only needs to replace the inner
product operator of a linear technique with an
appropriate kernel function k (i.e., a positive
semi-definite symmetric function), which arises as a
similarity measure that can be thought as an inner
product between pairs of data in the feature space.
Here, the original nonlinear problem can be
transformed into a linear formulation in a higher
dimensional space ℱ with an appropriate kernel k [65]:

k x; x′
� � ¼ Φ xð Þ; Φ x′

� �� �
ℱ ; ∀x; x

′∈X ð2Þ
The most widely used kernel functions include
Gaussian kernels and Polynomial kernels. These
kernels implicitly map the data onto high-
dimensional spaces, even infinite-dimensional spaces
[63]. Kernel functions provide the nonlinear means to
infuse correlation or side information in big data, which
can obtain significant performance improvement over
their linear counterparts at the price of generally higher
computational complexity. Moreover, for a specific

problem, the selection of the best kernel function is
still an open issue, although ample experimental
evidence in the literature supports that the popular
kernel functions such as Gaussian kernels and
polynomial kernels perform well in most cases.
At the root of the success of kernel-based learning,
the combination of high expressive power with the
possibility to perform the numerous analyses has been
developed in many challenging applications [65], e.g.,
online classification [66], convexly constrained
parameter/function estimation [67], beamforming
problems [68], and adaptive multiregression [69].
One of the most popular surveys about introducing
kernel-based learning algorithms is [70], in which an
introduction of the exciting field of kernel-based
learning methods and applications was given.

1.3 The critical issues of machine learning for big data
In spite of the recent achievement in machine learning
is great as mentioned in Section 1.2, with the emergence
of big data, much more needs to be done to address
many significant challenges posted by big data. In this
section, we present a discussion about the critical issues
of machine learning techniques for big data from five
different perspectives, as described in Fig. 2, including
learning for large scale of data, learning for different
types of data, learning for high speed of streaming data,
learning for uncertain and incomplete data, and learn-
ing for extracting valuable information from massive
amounts of data. Also, corresponding possible remedies
to surmount the obstacles in recent researches are in-
troduced in the discussion.

1.3.1 Critical issue one: learning for large scale of data
1.3.1.1 Critical issue It is obvious that data volume is
the primary attribute of big data, which presents a great
challenge for machine learning. Taking only the digital data
as an instance, every day, Google alone needs to process
about 24 petabytes (petabyte = 210 × 210 × 210 × 210 × 210

bytes) of data [71]. Moreover, if we further take into consid-
eration other data sources, the data scale will become much
bigger. Under current development trends, data stored and
analyzed by big organizations will undoubtedly reach the
petabyte to exabyte (exabyte = 210petabytes) magnitude
soon [6].

1.3.1.2 Possible remedies There is no doubt that we are
now swimming in an expanding sea of data that is too volu-
minous to train a machine learning algorithm with a central
processor and storage. Instead, distributed frameworks with
parallel computing are preferred. Alternating direction
method of multipliers (ADMM) [72, 73] serving as a prom-
ising computing framework to develop distributed, scalable,
online convex optimization algorithms is well suited to
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accomplish parallel and distributed large-scale data process-
ing. The key merits of ADMM is its ability to split or de-
couple multiple variables in optimization problems, which
enables one to find a solution to a large-scale global
optimization problem by coordinating solutions to smaller
sub-problems. Generally, ADMM is convergent for convex
optimization, but it is lack of convergence and theoretical
performance guarantees for nonconvex optimization. How-
ever, vast experimental evidence in the literature supports
empirical convergence and good performance of ADMM
[74]. A wide variety of applications of ADMM to machine
learning problems for large-scale datasets have been dis-
cussed in [74].
In addition to distributed theoretical framework for ma-

chine learning to mitigate the challenges related to high
volumes, some practicable parallel programming methods
are also proposed and applied to learning algorithms to
deal with large-scale data sets. MapReduce [75, 76], a
powerful programming framework, enables the automatic
paralleling and distribution of computation applications
on large clusters of commodity machines. What is more,
MapReduce can also provide great fault tolerance ability,
which is important for tackling the large data sets. The
core idea of MapReduce is to divide massive data into
small chunks firstly, then, deal with these chunks in paral-
lel and in a distributed manner to generate intermediate
results. By aggregating all the intermediate results, the
final result is derived. A general means of program-
ming machine learning algorithms on multicore with
the advantage of MapReduce has been investigated in
[77]. Cloud-computing-assisted learning method is an-
other impressive progress which has been made for
data systems to deal with the volume challenge of big
data. Cloud computing [78, 79] has already demon-
strated admirable elasticity that bears the hope of
realizing the needed scalability for machine learning
algorithms. It can enhance computing and storage
capacity through cloud infrastructure. In this context,
distributed GraphLab, a framework for machine
learning in the cloud, has been proposed in [80].

1.3.2 Critical issue two: learning for different types of data
1.3.2.1 Critical issue The enormous variety of data is the
second dimension that makes big data both interesting and
challenging. This is resulted from the phenomenon that
data generally come from various sources and are of differ-
ent types. Structured, semi-structured, and even entirely
unstructured data sources stimulate the generation of het-
erogeneous, high-dimensional, and nonlinear data with dif-
ferent representation forms. Learning with such a dataset,
the great challenge is perceivable and the degree of com-
plexity is not even imaginable before we deeply get there.

1.3.2.2 Possible remedies In terms of heterogeneous data,
data integration [81, 82], which aims to combine data res-
iding at different sources and provide the user with a uni-
fied view of these data, is a key method. An effect solution
to address the data integration problem is to learn good
data representations from each individual data source and
then to integrate the learned features at different levels [13].
Thus, representation learning is preferred in this issue. In
[83], the authors proposed a data fusion theory based on
statistical learning for the two-dimensional spectrum
heterogeneous data. In addition, deep learning methods
have also been shown to be very effective in integrating data
from different sources. For example, Srivastava and
Salakhutdinov [84] developed a novel application of deep
learning algorithms to learn a unified representation by in-
tegrating real-valued dense image data and text data.
Another challenge associated with high variety is that the

data are often high dimensional and nonlinear, such as glo-
bal climate patterns, stellar spectra, and human gene distri-
butions. Clearly, to deal with high-dimensional data,
dimensionality reduction is an effective solution through
finding meaningful low-dimensional structures hidden in
their high-dimensional observations. Common approaches
are to employ feature selection or extraction to reduce the
data dimensions. For example, Sun et al. [85] proposed a
local-learning-based feature selection algorithm for high-
dimensional data analysis. The existing typical machine
learning algorithms for data dimensionality reduction
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Fig. 2 The critical issues of machine learning for big data

Qiu et al. EURASIP Journal on Advances in Signal Processing  (2016) 2016:67 Page 6 of 16



include principal component analysis (PCA), linear discrim-
inant analysis (LDA), locally linear embedding(LLE), and
laplacian Eigenmaps [86]. Most recently, low-rank matrix
plays a more and more central role in large-scale data ana-
lysis and dimensionality reduction [8, 87]. The problem of
recovering a low-rank matrix is a fundamental problem
with applications in machine learning [88]. Here, we pro-
vide a simple example of using low-rank matrix recovery al-
gorithms for high-dimensional data processing. Let us
assume that we are given a large data matrix N and know
that it may be decomposed as N =M +Λ, where M has low
rank and Λ is a noise matrix. Due to the low-dimensional
column or row space of M, not even their dimensions are
not known, it is necessary to recover the matrix M from
the data matrix N and the problem can be formulated as
classical PCA [8, 89]:

min
Mf g Mk k�

s:t: N−Mk kF≤ε
ð3Þ

where ε is a noise related parameter, ‖ ⋅ ‖* and ‖ ⋅ ‖F is de-
fined by the nuclear norm and the Frobenious norm of a
matrix, respectively. The problem formulated in (3) shows
the fundamental task of the research on matrix recovery for
high-dimensional data processing, which can be efficiently
solved by some existing algorithms including augmented La-
grange multipliers (ALM) algorithm and accelerated prox-
imal gradient (APG) algorithm [90]. As for nonlinear
properties of data related to high variety, kernel-based learn-
ing methods can provide commendable solutions which
have been discussed in Section 1.2.2; thus, the repetitious
details will not be given here. Of course, in terms of chal-
lenges brought by different types, transfer learning is also a
very good choice owning to its powerful knowledge transfer
ability which enables multidomain learning to be possible.

1.3.3 Critical issue three: learning for high speed of
streaming data
1.3.3.1 Critical issue For big data, speed or velocity
really matters, which is another emerging challenge for
learning. In many real-world applications, we have to
finish a task within a certain period of time; otherwise,
the processing results become less valuable or even
worthless, such as earthquake prediction, stock market
prediction and agent-based autonomous exchange (buy-
ing/selling) systems, and so on. In these time-sensitive
cases, the potential value of data depends on data fresh-
ness that needs to be processed in a real-time manner.

1.3.3.2 Possible remedies One promising solution for
learning from such high speed of data is online learning ap-
proaches. Online learning [91–94] is a well-established
learning paradigm whose strategy is learning one instance

at a time, instead of in an offline or batch learning fashion,
which needs to collect the full information of training data.
This sequential learning mechanism works well for big data
as current machines cannot hold the entire dataset in
memory. To speed up learning, recently, a novel learning
algorithm for single hidden-layer feed forward neural net-
works (SLFNs) named extreme learning machine (ELM)
[95] was proposed. Compared with some other traditional
learning algorithms, ELM provides extremely faster learn-
ing speed, better generalization performance, and with least
human intervention [96]. Thus, ELM has strong advantages
in dealing with high velocity of data.
Another challenging issue associated with the high vel-

ocity is that data are often nonstationary [13], i.e., data dis-
tribution is changing over time, which needs the learning
algorithms to learn the data as a stream. To tackle this
problem, the potential superiority of streaming processing
theory and technology [97] have been found out compared
with batch-processing paradigm, as they aim to analyze
data as soon as possible to derive its results. Representative
streaming processing systems include Borealis [98], S4 [99],
Kafka [100], and many other recent architectures proposed
to provide real-time analytics over big data [101, 102]. A
scalable machine learning online service with the power of
streaming processing for big data real-time analysis is intro-
duced in [103]. In addition, the professor G. B. Giannakis
have paid more attention to the real-time processing of
streaming data by using machine learning techniques in re-
cent studies; more details can be referred to in [87, 104].

1.3.4 Critical issue four: learning for uncertain and
incomplete data
1.3.4.1 Critical issue In the past, machine learning algo-
rithms were typically fed with relatively accurate data from
well-known and quite limited sources, so the learning re-
sults tend to be unerring, too; thus, veracity has never
been a serious issue for concern. However, with the sheer
size of data available today, the precision and trust of the
source data quickly become an issue, due to the data
sources are often of many different origins and data qual-
ity is not all verifiable. Therefore, we include veracity as
the fourth critical issue for learning with big data to
emphasize the importance of addressing and managing
the uncertainty and incompleteness on data quality.

1.3.4.2 Possible remedies Uncertain data are a special
type of data reality where data readings and collections
are no longer deterministic but are subject to some ran-
dom or probability distributions. In many applications,
data uncertainty is common. For example, in wireless
networks, some spectrum data are inherently uncertain
resulted from ubiquitous noise, fading, and shadowing
and the technology barrier of the GPS sensor equipment
also limits the accuracy of the data to certain levels. For
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uncertain data, the major challenge is that the data fea-
ture or attribute is captured not by a single point value
but represented as sample distributions [11]. A simple
way to handle data uncertainty is to apply summary statis-
tics such as means and variances to abstract sample distri-
butions. Another approach is to utilize the complete
information carried by the probability distributions to con-
struct a decision tree, which is called distribution-based ap-
proach in [105]. In [105], the authors firstly discussed the
sources of data uncertainty and gave some examples and
then devised an algorithm for building decision trees from
uncertain data using the distribution-based approach. At
last, a theoretical foundation was established on which
pruning techniques were derived which can significantly
improve the computational efficiency of the distribution-
based algorithms for uncertain data.
The incomplete data problem, in which certain data

field values or features are missing, exists in a wide
range of domains with the emerging big data, which may
be caused by different realities, such as data device mal-
function. Learning from these imperfect data is a chal-
lenging task, due to most existing machine learning
algorithms that cannot be directly applied. Taking classi-
fier learning as an example, dealing with incomplete data
is an important issue, since data incompleteness not only
impacts interpretations of the data or the models created
from the data but may also affect the prediction accur-
acy of learned classifiers. To tackle the challenges associ-
ated with data incompleteness, Chen and Lin [13]
investigated to apply the advanced deep learning
methods to handle noisy data and tolerate some messi-
ness. Furthermore, integrating the matrix completion
technologies into machine learning to solve the problem
of incomplete data is also a very promising direction
[106]. In the following, we provide a case of using matrix
completion for incomplete data processing. In this case,
it is assumed that a noise matrix Ỹ is defined by

PΩ
~Y

� � ¼ PΩ AþZð Þ ð4Þ
where A is a sampled set of entries we would like to
know as precisely as possible, Z is a noise term which
may be stochastic or deterministic, Ω is the set of indi-
ces of the acquired entries, and PΩ is the orthogonal
projection onto the linear subspace of matrices sup-
ported on Ω [8]. To recover the unknown matrix, the
problem can be formulated as [8]:

min Mf g Ak k�
s:t: PΩ A−Yð Þk kF≤ε

ð5Þ

To efficiently solve the problem (5), existing algo-
rithms have been explained in [90] in detail. Further-
more, in terms of the abnormal data, the authors in
[107] also investigated to use the statistical learning

theory of sparse matrix with data cleansing for the ro-
bust spectrum sensing.

1.3.5 Critical issue five: learning for data with low value
density and meaning diversity
1.3.5.1 Critical issue In fact, by exploiting a variety of
learning methods to analyze big datasets, the final pur-
pose is to extract valuable information from massive
amounts of data in the form of deep insight or commer-
cial benefits. Therefore, value is also characterized as a
salient feature of big data [2, 6]. However, to derive sig-
nificant value from high volumes of data with a low
value density is not straightforward. For example, the
police often need to look through some surveillance vid-
eos to handle criminal cases. Unfortunately, a few valu-
able data frames are frequently hidden in a large amount
of video sources.

1.3.5.2 Possible remedies To handle this challenge,
knowledge discovery in databases (KDD) and data
mining technologies [9, 11, 108] come into play, for
these technologies provide possible solutions to find
out the required information hidden in the massive
data. In [9], the authors reviewed studies on applying
data mining and KDD technologies to the IoT.
Particularly, utilizing clustering, classification, and fre-
quent patterns technologies to mine value from
massive data in IoT, from the perspective of infra-
structures and from the perspective of services were
discussed in detail. In [11], Wu et al. characterized
the features of the big data revolution and proposed
big data processing methods with machine learning
and data mining algorithms.
Another challenging problem associated with the value

of big data is the diversity of data meaning, i.e., the eco-
nomic value of different data varies significantly, even
the same data have different value if considering from
different perspectives or contexts. Therefore, some new
cognition-assisted learning technologies should be devel-
oped to make current learning systems more flexible
and intelligent. The most dramatic example of such de-
vices is IBM’s “Watson” [109], constructed with several
subsystems that use different machine learning strategies
with the great power of cognitive technologies to analyze
the questions and arrive at the most likely answer. With
the scientists’ ingenuity, it is possible for this system to
excel at a game which requires both encyclopedic
knowledge and lightning-quick recall. Some humanlike
characteristics—learning, adapting, interacting, and un-
derstanding enable Watson to be smarter and gain more
computing power to deal with complexity and big data.
It is expected that the era of cognitive computing will
come [109].
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1.3.6 Discussions
In summary, the five aspects mentioned above reflect the
primary characteristics of big data, which refers to volume,
variety, velocity, veracity, and value [2, 4–6, 13]. The five
salient features bring different challenges for machine
learning techniques, respectively. To surmount these ob-
stacles, machine learning in the context of big data is sig-
nificantly different from the traditional learning methods,
as discussed above, some scalable, multidomain, parallel,
flexible, and intelligent learning methods are preferred.
What is more, several enabling technologies are needed to
be integrated into the learning progress to improve the ef-
fectiveness of learning. A hierarchical framework is de-
scribed in Fig. 3 to summarize the efficient machine
learning for big data processing.
In fact, for big data processing, most machine learning

techniques are not universal, that is to say, we often need
to use specific learning methods according to different
data. For example, in terms of high-dimensional datasets,
representation learning seems to be a promising solution,
which can learn the meaningful representations of the

data that make it easier to extract useful information for
achieving impressive performance on many dimensional-
ity reduction tasks. While for large volumes of data, dis-
tributed and parallel learning methods have stronger
advantages. If the data needed to be processed are drawn
from different feature spaces and have different distribu-
tions, transfer learning will be a good choice which can in-
telligently apply knowledge learned previously to solve
new problems faster. Frequently, in the context of big
data, we have to face such a situation: data may be abun-
dant but labels are scarce or expensive to obtain. To tackle
this issue, active learning can achieve high accuracy using
as few labeled instances as possible. In addition, nonlinear
data processing is also another thorny problem, at this
moment, kernel-based learning will be here with its
powerful computational capability. Of course, if we want
to deal with some data in a timely or (nearly) real-time
manner, online learning and extreme learning machine
can give us more help.
Therefore, such a context is needed to be clear, in

other words, what are the data tasks, data analysis or

Big data
challenges

Machine learning
methods base

ValueVo
lum

e

V
ariety

V
el
oc
ity

Veracity
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Volume large scale
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heterogeneous , high-
dimensional, nonlinear

Velocity
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Value

real time, streams, high
speed

uncertain and
incomplete

low value density,
diverse data meaning

Feature selection
Feature extraction
Dimensionality reduction

Representation learning

Nonlinear data processing
High-dimensional mapping
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Extremely fast learning
speed
Good generalization
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Less human intervention

Extreme learning machine

Knowledge transfer
Multi-domain learning

Transfer learning

Learning deep architectures

Deep learning

Query strategies and
resampling
Selectively labelling patterns

Active learning

Parallel and distributed
computing
Scalable learning methods

Distributed and parallel
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Powerful storage
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ability
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Parallel programing
platforms or
distributed file system
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Uncertain and
incomplete data
processing

Matrix recovery
or completion

Fig. 3 Hierarchical framework of efficient machine learning for big data processing
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decision making?; what are the data types, video data or
text data?; what are the data characteristics, high volume
or high velocity?; and so on. In terms of different data
tasks, types, and characteristics, the required learning
techniques are different, even a machine learning
methods base is needed for big data processing. The
learning systems can fast refer to the algorithm base to
handle data. What is more, in order to improve the ef-
fectiveness of data processing, the combination of
machine learning with some other techniques have been
proposed in recent years. For example, in [80], the au-
thors presented a cloud-assisted learning framework to
enhance store and computing abilities. A general means
of programming machine learning algorithms on multi-
core with the advantage of MapReduce were investigated
to enable the parallel and distributed processing to be
possible [77]. IBM’s brain-like computer, Watson, ap-
plied cognition techniques to machine learning field to
make learning systems more intelligent [109]. Such en-
abling technologies have brought great benefits for ma-
chine learning, especially for large data processing,
which are more worthy of study.

1.4 Connection of machine learning with SP techniques
for big data
There is no doubt that SP is of uttermost relevance to
timely big data applications such as real-time medical
imaging, sentiment analysis from online social media,
smart cities, and so on [110]. The interest in big-data-
related research from the SP community is evident from
the increasing number of papers submitted on this topic
to SP-oriented journals, workshops, and conferences. In
this section, we mainly discuss the close connections of
machine learning with SP techniques for big data pro-
cessing. Specifically, in Section 1.4.1, we analyze the
existing studies on SP for big data from four different
perspectives. Several representative literatures are pre-
sented. In Section 1.4.2, we provide a review of the latest
research progress which is based on these typical works.

1.4.1 An overview of representative work
In this section, we analyze the relationships between ma-
chine learning and SP techniques for big data processing
from four perspectives: (1) statistical learning for big
data analysis, (2) convex optimization for big data ana-
lytics, (3) stochastic approximation for big data analytics,
and (4) outlying sequence detection for big data. The
diagram is summarized in Fig. 4. Several typical research
papers are presented, which delineate the theoretical and
algorithmic underpinnings together with the relevance
of SP tools to the big data and also show the challenges
and opportunities for SP research on large-scale data
analytics.

� Statistical learning for big data analysis: There is no
doubt this is an era of data deluge where learning
from these large volumes of data by central
processors and storage units seems infeasible.
Therefore, the SP and statistical learning tools have to
be re-examined. It is preferable to perform learning in
real time for the advent of streaming data sources,
typically without a chance to revisit past entries. In
[14], the authors mainly focused on the modeling and
optimization for big data analysis by using statistical
learning tools. We can conclude from [14] that, from
the SP and learning perspective, big data themes in
terms of tasks, challenges, models, and optimization
can be revealed as follows. SP-relevant big data tasks
mainly comprise massive scale, outliers and missing
values, real-time constraints, and cloud storage. There
are great big data challenges we have to face, such as
prediction and forecasting, cleansing and imputation,
dimensionality reduction, regression, classification,
and clustering. In terms of these tasks and challenges,
outstanding models and optimization with the SP and
learning techniques for big data include parallel and
decentralized, time or data adaptive, robust, succinct,
and sparse technologies.

� Convex optimization for big data analytics: While
the importance of convex formulations and
optimization has increased dramatically in the last
decade and these formulations have been employed
in a wide variety of signal processing applications,
due to the data size of optimization problems that
are too large to process locally in the context of big
data, thus convex optimization needs reinvent itself.
Cevher et al. [111] reviewed recent advances in
convex optimization algorithms tailored for big data,
having as ultimate goal to markedly reduce the
computational, storage, and communication
bottlenecks. For example, given a big data
optimization problem formulated as

F� ¼ min
x

F xð Þ ¼ f xð Þ þ g xð Þ; x ∈ℝpf g ð6Þ

where f and g are convex functions. To obtain an
optimal solution x* of (6) and the required
assumptions on f and g, in this article, the authors
presented three efficient big data approximation
techniques, including first-order methods,
randomization and parallel and distributed computa-
tion. They mainly referred to the scalable, random-
ized, and parallel algorithms for big data analytics. In
addition, for the optimization problem in (6),
ADMM can provide a simple distributed algorithm
to solve its composite form, by leveraging powerful
augmented Lagrangian and dual decomposition
techniques. Although there are two caveats for
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ADMM, i.e., one is that closed-form solutions do not
always exist and the other is that no convergence
guarantees for more than two optimization objective
terms, there are several recent solutions to address
the two drawbacks, such as proximal gradient
methods and parallel computing [111]. Specifically,
from machine learning perspective, those bright
techniques like scalable, parallel, and distributed
mechanisms are also necessitated, and some
applications of employing the recent convex
optimization algorithms in learning methods such as
support vector machines and graph learning have
been appeared in recent years.

� Stochastic approximation for big data analytics:
Although many of online learning approaches were
developed within the machine-learning discipline,
they had strong connections with workhorse SP
techniques. Reference [110] is a lecture note which
presented recent advances in online learning for big
data analytics, where the authors highlighted the
relations and differences between online learning
methods and some prominent statistical SP tools such
as stochastic approximation (SA) and stochastic
gradient (SG) algorithms. Through perusing [110], we
can know that, on the one hand, the seminal works on
SA, such as by Robbins–Monro and Widrow
algorithms, and the workhorse behind several classical
SP tools, such as LMS and RLS algorithms, carried rich
potential in modern learning tasks for big data
analytics. On the other hand, it was also demonstrated
that online learning schemes together with random
sampling or data sketching methods were expected to
play instrumental roles in solving large-scale

optimization tasks. In summary, the recent advances in
online learning methods and several SP techniques
mentioned in this lecture note have the unique and
complementary strengths with each other.

� Outlying sequence detection for big data: As the data
scale grows, so does the chance to involve outlying
observations, which in turn motivates the demand
for outlier-resilient learning algorithms scaling to
large-scale application settings. In this context,
data-driven outlying sequence detection algorithms
have been proposed by some researchers. In [112],
the authors investigated the robust sequential
detection schemes for big data. In contrast to the
aforementioned three articles [14, 110, 111] that
mostly focus on big data analysis, this article paid
more attention to the decision mechanisms. Outlier
detection has immediate application in a broad
range of contexts, particularly, for machine learning
techniques, effective decision on the observations with
categorizing them as normal or outlying are important
for the improvement of learning performance. As
mentioned in [112], the class of supervised outlier
detection had been studied extensively under neural
networks, naïve Bayes, and support vector machines.

1.4.2 The latest research progress
These representative literatures discussed in Section 1.4.1
provide us a lot of heuristic analysis on both machine
learning and SP techniques for big data. Based on the
ideas proposed in these works, many new studies are in-
creasing continuously. In this section, we provide a re-
view of the latest research progress which is based on
these typical works mentioned above.

[14]
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Online learning
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Kernel-based learning
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learning for
big data
analysis

Principal component
analysis (PCA)
Dictionary learning (DL)
Compressive sampling
(CS)
Subspace clustering

References Machine Learning Techniques SP TechniquesBig Data Themes

Convex
optimization
for big data
analytics

Graph learning
Large scale learning[111]

First-order methods
Randomization
Parallel and distributed
computation

Stochastic
approximation
for big data
analytics

Outlying
sequence

detection for
big data

Online learning

Stochastic approximation
(SA)
Stochastic gradient (SG)
Least mean-squares (LMS)
Recursive least-
squares(RLS)

Neural networks
Naïve Bayes
Support vector machines

Sequential data-adaptive
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mainly focus on
data analysis

major concern
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mechanism

Fig. 4 Connection of machine learning with SP techniques for big data from different perspectives
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� The latest progress based on [14]: Based on the
statistical learning tools for big data analysis
proposed by Slavakis et al. in [14], a lot of new study
work has emerged. For example, in [113], two
distributed learning algorithms for training random
vector functional-link (RVFL) networks through
interconnected nodes were presented, where
training data were distributed under a decentralized
information structure. To tackle the huge-scale convex
and nonconvex big data optimization problems, a novel
parallel, hybrid random/deterministic decomposition
scheme with the power of dictionary learning was
investigated in [114]. In [87], the authors developed a
low-complexity, real-time online algorithm for
decomposing low-rank tensors with missing entries to
deal with the incomplete streaming data, and the
performance of the proposed subspace learning was
also validated. All these new work presents the
application of machine learning and SP technologies in
processing big data well.

� The latest progress based on [111]: A broad class of
machine learning and SP problems can be formally
stated as optimization problem. Based on the idea of
convex optimization for big data analytics in [111], a
randomized primal-dual algorithm was proposed in
[115] for composite optimization, which could be
used in the framework of large-scale machine
learning applications. In addition, a consensus-based
decentralized algorithm for a class of nonconvex
optimization problems was investigated in [116],
with the application to dictionary learning.

� The latest progress based on [110]: Several classical
SP tools such as the stochastic approximation
methods, have carried rich potential for solving
large-scale learning tasks under low computational
expense. The SP and online learning techniques for
big data analytics described in [110] provides a good
research direction for future work. Based on this, in
[117], the authors developed online algorithms for
large-scale regressions with application to streaming
big data. In addition, Slavakis and Giannakis further
used accelerated stochastic approximation method
with online and modular learning algorithms to deal
with a large class of nonconvex data models [118].

� The latest progress based on [112]: The outlying
sequence detection approach proposed in [112]
provides a desirable solution to some big data
application problems. In [119], the authors mainly
investigated the big data analytics over the
communication system with discussions about
statistical analysis and machine learning techniques.
The authors pointed out that one of the critically
associated challenges ahead was how to detect
outliers in the context of big data. It so happened

that the theoretic methodology described in [112]
gave the answers.

To sum up, it can be seen from the above presented
articles in Section 1.4.1 and Section 1.4.2 that the con-
nection of machine learning with modern SP techniques
is very strong. SP techniques are originally developed to
analyze and handle discrete and continuous signals
through using a set of methods from electrical engineer-
ing and applied mathematics. In contrast, machine
learning research mainly focuses on the design and de-
velopment of algorithms which allow computers to
evolve behavior based on empirical data, whose major
concern is to recognize complex patterns and make in-
telligent decisions based on data by automatically learn-
ing. Both the machine learning and SP techniques have
the unique and complementary strengths for big data
processing. Furthermore, combining SP and machine
learning techniques to explore the emerging field of big
data are expected to have a bright future. Quoting a sen-
tence from [110], “Consequently, ample opportunities
arise for the SP community to contribute in this growing
and inherently cross-disciplinary field, spanning multiple
areas across science and engineering”.

1.5 Research trends and open issues
While significant progress has been made in the last dec-
ade toward achieving the ultimate goal of making sense of
big data by machine learning techniques, the consensus is
that we are still not quite there. The efficient preprocess-
ing mechanisms to make the learning system capable of
dealing with big data and effective learning technologies
to find out the rules to describe the data are still of urgent
need. Therefore, some of the open issues and possible re-
search trends are given in Fig. 5.

1. Data meaning perspective: Due to the fact that,
nowadays, most data are dispersed to different
regions, systems, or applications, the “meaning” of
the collected data from various sources may not be
exactly the same, which may significantly impact the
quality of the machine learning results. Although the
previous mentioned techniques such as transfer
learning with the power of knowledge transfer and
the cognition-assisted learning methods provide
some possible solutions to this problem, it is obvious
that they are absolutely not catholicons owing to the
limitations of these techniques for achieving
context-aware. Ontology, semantic web, and other
related technologies seem to be preferred on this
issue. Based on ontology modeling and semantic
derivation, some valuable patterns or rules can be
discovered as knowledge as well, which is a necessity
for learning systems to be, or appear to be intelligent.
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But the problem that arises now is, although the
ontology and semantic web technologies can
benefit the big data analysis, these two technologies are
not mature enough, thus how to employ them in
machine learning methods to process big data will be a
meaningful research.

2. Pattern training perspective: In general, for most
machine learning techniques, the more the training
patterns are, the higher the accuracy rate of learning
results is. However, a dilemma we have to face is
that, on the one hand, the labeled patterns play a
pivotal role for the learning algorithms; but on the
other hand, labeling patterns is often expensive in
terms of the computation time or cost, particularly for
the large-scale streaming data, which is intractable.
How many patterns are needed to train the classifier
depends to a large extent on the desire to achieve a
balance between cost and accuracy. Therefore, the
so-called overfitting is another critical open issue.

3. Technique integration perspective: Once mentioning
big data processing, we always like to put data mining,
KDD, SP, cloud computing, and machine learning
techniques together, partially because these issues and
their products may play principal roles for extracting
valuable information from massive data, and partially
because they have strong ties with each other. It is
important to note that each approach has its own
merits and faults. That is to say, to get more values
out of the big data, a composite model is more
needed. As a result, how to integrate several
related techniques with machine learning will also
become a further research trend.

4. Privacy and security perspective: The concern of
data privacy has become extremely serious with
using data mining and machine learning
technologies to analyze personal information in
order to produce relevant or accurate results. For
example, in order to increase the volume and
revenue of sales, some companies today try to
collect as many personal data of consumers as
possible from various kinds of sources or devices
and then use data mining and machine learning
methods to find highly interconnected
information which is conducive to make
marketing tactics. However, if all pieces of the
information about a person were dug out through
the mining and learning technologies and put
together, any privacy about that individual
instantly would disappear, which will make most
people uncomfortable, and even frightened. Thus,
an efficient and effective method needs to preserve
the performance of mining and learning while
protecting the personal information. Hence, how to
make use of data mining and machine learning
techniques for big data processing with guaranties of
privacy and security is very worthy of study.

5. Realization and application perspective: The
ultimate goal of groping for various learning
methods to handle big data is to provide better
environment for people; thus, more attention should
be focused on building the bridge from theory to
practice. For instance, how and where might the
theoretical studies in big data machine learning
research actually be applied?

Research
trends and
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How to avoid the overfitting during the process of
training patterns?

Pattern Training
Perspective

Technique Integration
Perspective

Privacy and Security
Perspective

Realization and Application
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How to integrate other related techniques with machine
learning for big data processing?

How to make machine learning more intelligent to
achieve context-aware?

How to make use of machine learning techniques for big
data processing with guaranties of privacy and security?

How and where might the theoretical studies in big data
machine learning research actually be applied?

Fig. 5 Research trends and open issues
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2 Conclusions
Big data are now rapidly expanding in all science and
engineering domains. Learning from these massive data
is expected to bring significant opportunities and trans-
formative potential for various sectors. However, most
traditional machine learning techniques are not inher-
ently efficient or scalable enough to handle the data with
the characteristics of large volume, different types, high
speed, uncertainty and incompleteness, and low value
density. In response, machine learning needs to reinvent
itself for big data processing. This paper began with a
brief review of conventional machine learning algo-
rithms, followed by several current advanced learning
methods. Then, a discussion about the challenges of
learning with big data and the corresponding possible
solutions in recent researches was given. In addition, the
connection of machine learning with modern signal pro-
cessing technologies was analyzed through studying sev-
eral latest representative research papers. To stimulate
more interests for the audience of the paper, at last,
open issues and research trends were presented.
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