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Abstract

Nyquist folding receiver (NYFR) is a novel ultra-wideband receiver architecture which can realize wideband receiving
with a small amount of equipment. Linear frequency modulated/binary phase shift keying (LFM/BPSK) hybrid
modulated signal is a novel kind of low probability interception signal with wide bandwidth. The NYFR is an
effective architecture to intercept the LFM/BPSK signal and the LFM/BPSK signal intercepted by the NYFR will
add the local oscillator modulation. A parameter estimation algorithm for the NYFR output signal is proposed.
According to the NYFR prior information, the chirp singular value ratio spectrum is proposed to estimate the
chirp rate. Then, based on the output self-characteristic, matching component function is designed to estimate Nyquist
zone (NZ) index. Finally, matching code and subspace method are employed to estimate the phase change points and
code length. Compared with the existing methods, the proposed algorithm has a better performance. It also
has no need to construct a multi-channel structure, which means the computational complexity for the NZ
index estimation is small. The simulation results demonstrate the efficacy of the proposed algorithm.

Keywords: Nyquist folding receiver, LFM/BPSK hybrid modulated signal, Parameter estimation, Signal
characteristics

Abbreviations: ADC, Analog to digital converter; BPSK, Binary phase shift keying; CSVR, Chirp singular value
decomposition ratio; FA, Frequency agile; LFM, Linear frequency modulation; LOS, Local oscillator; LPI, Low probability
interception; MCRLB, Modified Cramer Rao lower bound; NRMSE, Normalized root mean square error; NYFR, Nyquist
folding receiver; NZ, Nyquist zone; RF, Radio frequency; SFM, Sinusoidal frequency modulation; SNYFR, Synchronous
NYFR; SVD, Singular value decomposition; ZAM, Zhao, Atlas, and Marks; ZCR, Zero crossing rising

1 Introduction
Currently, the electromagnetic environment is becoming
increasingly complex and many modern radar signals
have very high carrier frequencies or wide operating
bandwidths [1, 2]. In order to intercept the modern
radar signals, some receiver architectures have been
proposed in the past few decades [3, 4]. The wideband
non-cooperative receivers should have the capability of
wideband receiving. A typical wideband receiver is the
channelization structure, which adopts a set of analog
band-pass filters to reduce the bandwidth of each chan-
nel and samples each channel with a low-speed analog
to digital converter (ADC) using filter bank [4].

However, this kind of structure needs a huge amount of
equipment. For the purpose of realizing wideband moni-
toring with a small amount of equipment, the Nyquist
folding receiver (NYFR) architecture is proposed and it
can realize wideband monitoring using one ADC [5, 6].
The NYFR modulates the received analog signal in the
front-end of the receiver, maps the Nyquist zone (NZ)
information to the modulation bandwidth of the signal,
and then samples the modulated signal.
Based on the NYFR structure, the output signal pro-

cessing using wavelet transform has been studied [7].
Then, some new NYFR architectures using different
local oscillator (LOS) modulation types have been pro-
posed. Synchronous NYFR (SNYFR) structure using
simplified LOS has been proposed and its output can be
processed more easily because of the synchronous LOS
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[8]. Other LOS modulation types such as binary phase
shift keying (BPSK) LOS and noise sequences are pro-
posed [9, 10], which can improve the performance of
NYFR because the bandwidths of these LOS modula-
tions remain unchanged.
The NYFR can realize wideband receiving with a small

amount of equipment, but the information of LOS
modulation will be added on its output [8], and its out-
put will be more complex compared with the conven-
tional receiver. Some conventional radar signals such as
linear frequency modulation (LFM) signal and frequency
agile (FA) signal intercepted by the NYFR have been in-
vestigated, and the parameter estimation methods using
multi-channel structure have been proposed [8, 11].
Meanwhile, many low probability interception (LPI)

radar waveforms have been designed. Linear frequency
modulated/binary phase shift keying (LFM/BPSK) hybrid
modulated signal is a novel kind of LPI radar signal.
It has a double spread spectrum and has been applied
in some radar and fuse systems [2]. For the parameter
estimation of LFM/BPSK signal intercepted by the
conventional receiver, an algorithm based on Zhao,
Atlas, and Marks (ZAM) transformation has been
studied [12]. However, for the parameter estimation
of LFM/BPSK signal intercepted by the NYFR, there
has been no public report.
Therefore, considering the increasing complexity of

radar waveform and the growing demand of wideband
receiving, it is necessary to study the parameter estima-
tion of LFM/BPSK signal intercepted by the NYFR. The
LFM/BPSK signal intercepted by the NYFR is a typical
non-stationary signal. For a non-stationary signal, a
common processing idea is the time-frequency analysis.
However, many time-frequency methods can achieve op-
timal results only for the particular modulation types
[13]. Because the LFM/BPSK signal intercepted by the
NYFR contains the LOS modulation, it may be difficult
to find a time-frequency kernel which is optimal for the
NYFR output directly. In this paper, we will study this
problem in another way and make full use of the NYFR
prior information which is neglected in [8] and [11]. We
will model the LFM/BPSK signal intercepted by the
NYFR based on the signal self-characteristic and the

NYFR prior information, and propose a parameter esti-
mation algorithm which has different estimation steps
compared with the existing NYFR output parameter
estimation algorithm [8, 11].
This paper is organized as follows: Section 2 inves-

tigates the NYFR architecture and the LFM/BPSK
hybrid modulated signal intercepted by the NYFR.
Section 3 gives the parameter estimation methods for
each modulations of the NYFR output. Section 4 is
the algorithm steps for the parameter estimation of
the NYFR output. Section 5 gives the simulation
results and the corresponding analyses, and we con-
clude in Section 6.

2 NYFR architecture and NYFR output signal
analysis
2.1 NYFR architecture
The NYFR architecture [5] is shown in Fig. 1.
In Fig. 1, The NYFR uses zero crossing rising (ZCR)

voltage time to control the radio frequency (RF) sample
clock and generate the RF LOS p(t) which is a non-
uniform sampling LOS with a certain modulation type.
As long as the modulation information of the LOS
remains unchanged, we can simplify the LOS as [8]

p tð Þ ¼
X∞
k¼−∞

δ m tð Þ−2πkð Þ ð1Þ

where m(t) = 2πfst + θLOS(t) + φLOS, k is an integer, fs is
the LOS carrier frequency which equals the value of NZ
bandwidth when the input signal is complex, define (−fs/
2, fs/2) as the 0th NZ, hence, (kfs − fs/2, kfs + fs/2) is the
kth NZ, θLOS(t) is the LOS modulation, and φLOS is the
LOS initial phase.
Firstly, the input analog signal x(t) is filtered by a pre-

select filter H(f ). Then, x(t) is mixed by the non-uniform
LOS and we have xs(t) = xH(t)p(t), where xH(t) is the out-
put of the pre-select filter. The non-uniform sampled sig-
nal xs(t) is filtered by an interpolation filter H0(f ) with pass
band (−fs/2, fs/2) and we obtain xout(t) which contains the
LOS modulation information as the output of the NYFR
[5]. Finally, xout(t) is sampled by the ADC whose sampling
rate is fADC to get the discrete NYFR output.

Fig. 1 NYFR architecture
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The input signal can be recovered by xout(t) and the
NZ information [6]. Figure 2 illustrates the spectrum of
the input signal x(t) and the spectrum of the non-
uniform signal xs(t) which contains the NZ information.
The NYFR output is equal to the spectrum of xs(t) in
the 0th NZ after Xs(f ) is filtered by H0(f ).

2.2 LFM/BPSK signal intercepted by the NYFR
Let us denote the LFM/BPSK hybrid modulated signal
as the NYFR input and it can be expressed as [2]

x tð Þ ¼ Aej2πf ctþjπμ0t
2þjϕ tð Þþjφ0 ð2Þ

where t ∈ [0,T), T is the signal duration, fc is the sig-
nal carrier frequency, μ0 is the chirp rate, ϕ(t) is the
BPSK modulation and its value is 0 or π, and φ0 is
the initial phase.
According to [5], sinusoidal frequency modulation

(SFM) is selected as the NYFR LOS modulation,
which means m(t) = 2πfst +mf sin(2πfsint) + φLOS in (1),
where mf is the modulation coefficient, fsin is the
modulation frequency, and φLOS is the LOS initial
phase. Considering the LFM/BPSK signal in (2), the
output signal of the interpolation filter H0(f ) in Fig. 1
can be expressed as [8]

xout tð Þ
¼ Aej2π f c−kNZf sð Þtþjπμ0t

2þjϕ tð Þ−jkNZmf sin 2πf sintð Þ þ jφ0−jkNZφLOS þ w tð Þ
ð3Þ

where kNZ is the NZ index which can indicate the ori-
ginal carrier frequency of the input signal [5], t ∈ [0,T), T
is the signal duration, and w(t) is the additive white
Gaussian noise [8].
From (3), the NYFR output signal contains three modu-

lations (i.e., LFM/BPSK/SFM), and it turns to be more
complex compared with the input signal (i.e., LFM/BPSK).

Nevertheless, for the SFM modulation part in (3), the only
unknown parameter is the NZ index kNZ. For the LFM/
BPSK signal intercepted by a non-cooperative radar signal
receiver, the main parameters that need to be estimated
are the chirp rate, the carrier frequency, and the code
length. Besides, the code length can be calculated by the
positions of the phase change points. Thus, the chirp rate,
the NZ index, the carrier frequency, and the code length
in (3) are the parameters needed to be estimated in this
paper. To simplify the following derivation, the initial
phase in (3) is omitted.
The ADC sampling rate fADC in Fig. 1 satisfies the

Nyquist sampling theorem and the sampling interval is
TADC = 1/fADC, the number of the total sampling points
can be computed as N = fADCT. Hence, the discrete ex-
pression of (3) is

xout nTADCð Þ
¼ Aej2π f c−kNZf sð Þ nTADCð Þþjπμ0 nTADCð Þ2þjϕ nTADCð Þ−jkNZmf sin 2πf sin nTADCð Þð Þ

þw nTADCð Þ
ð4Þ

where n = 0,⋯N − 1.

3 NYFR output signal parameter estimation
For the NYFR output signal in (4), it contains three
modulations (i.e., LFM, BPSK, and SFM). Normally, the
time-frequency transform is employed to extract the sig-
nal characteristics for a non-stationary signal. Because
the NYFR output in our paper contains three modula-
tions, some time-frequency transform methods cannot
achieve an optimal result. For instance, the modulations
of BPSK and SFM in the NYFR output signal cannot be
extracted properly by using fractional Fourier transform
[14] which is suitable for the LFM modulation. Mean-
while, ZAM works well for the BPSK modulation [12],
but it is poor for the LFM modulation [13]. In addition,
the time-frequency representation of (4) is no longer a
straight line, which may lead to the polynomial curve fit-
ting method [12] failing to estimate the chirp rate.
Therefore, it may be difficult to find a time-frequency
kernel which is optimal for the three modulations simul-
taneously. In this paper, we will focus on the self-
characteristic and the prior information of the NYFR
output signal to estimate the parameters in (4) instead
of the time-frequency transformation method.

3.1 Chirp rate estimation based on CSVR spectrum
As to the NYFR output signal parameter estimation
steps, the existing algorithm constructs a multi-channel
architecture to remove the LOS modulation by estimat-
ing the NZ index through extracting frequency domain
feature for each channel firstly and then estimates other
parameters using conventional methods [8, 11]. This

Fig. 2 Spectra of the NYFR input signal and the non-uniform
sampled signal
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algorithm regards the LOS modulation information as a
redundant part and neglects the known information in
it, which means the periodic characteristic of the LOS
modulation. In addition, the accuracy of chirp rate esti-
mation using the existing method will be affected by the
NZ index estimation result. In order to improve the
chirp rate estimation performance, we will estimate the
chirp rate directly by using the LOS periodic informa-
tion instead of estimating the NZ index firstly.
The square processing is applied to the data in (4) to elim-

inate the BPSK modulation, which means ejϕ nTADCð Þ� �2 ¼ 1.
The carrier frequency in (4) can be written as f0 = fc − kNZfs
and we have

xsq nTADCð Þ
¼ A2ej2π2f 0 nTADCð Þþjπ2μ0 nTADCð Þ2−j2kNZmf sin 2πf sin nTADCð Þð Þ

þw′ nTADCð Þ
ð5Þ

where w′(nTADC) = 2xout(nTADC)w(nTADC) + w2(nTADC)
is the noise after the square processing. To simplify the
following discussion, the noise part is omitted.
Because the SFM modulation part mf sin(2πfsint) in (5) is

known, the LOS modulation period can be calculated as 1/
fsin and the number of points in one LOS modulation period
is Nc = fADC/fsin. In addition, for the NYFR structure, fsin and
fADC are the prior parameters, thus we can set Nc = fADC/
fsin ∈Z

+, and Mc = floor(N/Nc), where floor(⋅) means choos-
ing the integer part of N/Nc, Mc ∈Z

+, and Mc <Nc. The
above setting implies the number of signal points we use in
this section is McNc, and if the input data length N >McNc,
we select McNc points and omit the remaining points. Ac-
cording to the LOS periodic characteristic, we can model
the data in (5) as anMc×Nc matrix

Xc ¼
xsq 0ð Þ ⋯ xsq Nc−1ð Þ
xsq Ncð Þ ⋯ xsq 2Nc−1ð Þ

⋮ ⋱ ⋮
xsq Mc−1ð ÞNcð Þ⋯ xsq McNc−1ð Þ

2
664

3
775 ð6Þ

The relationship between the elements in the pth row
and the qth row in Xc can be calculated as

In addition, because Nc = fADC/fsin, (7) can be written as

xsq pNc þ nð Þ
xsq qNcþnð Þ ¼ ej2π2f 0 pNc−qNcð ÞTADCþjπ2μ0½ pNc þ nð Þ2T 2

ADC

− qNc þ nð Þ2T2
ADC� þ j2kNZmf ½ sin 2πf sinnTADC þ 2πqð Þ

− sin 2πf sinnTADC þ 2πpð Þ�

¼ ej2π2f 0 pNc−qNcð ÞTADC þjπ2μ0½ pNc þ nð Þ2T2
ADC

− qNc þ nð Þ2T2
ADC�

ð8Þ
From (8), it can be observed when (8) has no LFM

modulation part, the quotient of the elements in the pth
row and the qth row will be a constant. Therefore, we
can construct a matrix

SLFM μð Þ ¼
sLFM 0ð Þ ⋯ sLFM Nc−1ð Þ
sLFM Ncð Þ ⋯ sLFM 2Nc−1ð Þ

⋮ ⋱ ⋮
sLFM Mc−1ð ÞNcð Þ⋯ sLFM McNc−1ð Þ

2
664

3
775

ð9Þ
where sLFM nð Þ ¼ e−jπ2μ nTADCð Þ2 , μ is an argument. Then, we have

Y μð Þ ¼ SLFM μð Þ � Xc ð10Þ
where * is the Hadamard product. When μ = μ0, Y(μ0) =
SLFM(μ0) Xc will become an SFM signal matrix and we
call SLFM(μ0) as the matching matrix.
Once the constructed matrix SLFM(μ) meets the

matching matrix, (10) will be a matrix whose row ele-
ments are equal to the data in one LOS modulation
period. Then the singular value decomposition (SVD) of
(10) can be computed as Y μð Þ ¼ UYΣYVH

Y [15], where
ΣY is an Mc ×Nc diagonal matrix and we call it as the
singular values matrix, the singular values are λ1; λ2;⋯;

λMc and λ1≥λ2≥⋯≥λMc . Based on the SVD ratio (SVR)
spectrum [15, 16] and the LOS periodic characteristic,
we define the chirp SVR (CSVR) spectrum as

P μð Þ ¼ λ21
λres

ð11Þ

where λres ¼ λ22þ⋯þλ2Mc
Mc−1

.
Considering the noise-free situation, when μ = μ0, the

first singular value λ1 in ΣY will achieve its maximum
and the rest singular values are 0. We call λ1 is the
principle singular value and other singular values are the
non-principle singular values. While μ ≠ μ0, the periodic

xsq pNc þ nð Þ
xsq qNcþnð Þ ¼ A2ej2π2f 0 pNcþnð ÞTADCð Þþjπ2μ0 pNcþnð ÞTADCð Þ2−j2kNZmf sin 2πf sin pNc þ nð ÞTADCð Þð Þ

A2ej2π2f 0 qNcþnð ÞTADCð Þþjπ2μ0 qNcþnð ÞTADCð Þ2−j2kNZmf sin 2πf sin qNc þ nð ÞTADCð Þð Þ

¼ e
j2π2f 0 pNc−qNcð ÞTADC þ jπ2μ0 pNc þ nð Þ2T 2

ADC− qNc þ nð Þ2T 2
ADC

� �þ j2kNZmf sin 2πf sin qNc þ nð ÞTADCð Þ½ �− sin 2πf sin pNc þ nð ÞTADCð Þ½ �f g

ð7Þ
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characteristic of the LOS in each row of Y(μ) will be dis-
turbed by the LFM modulation, and consequently, the
non-principle singular values of Y(μ) will be non-zero ac-
cording to the energy conservation theory [16]. Therefore,
we can search the peak of CSVR spectrum in (11) whose
argument is the chirp rate and the estimated chirp rate is

μ̂0 ¼ arg
μ

max P μð Þ½ �f g

One issue to note is that when μ is close to μ0, Y(μ)
will approximate an SFM signal. In order to keep the
non-periodic characteristic of LFM signal in Y(μ) when
μ ≠ μ0, we need to guarantee that the bandwidth of LFM
signal in Y(μ) is wide enough. Because the chirp rate is
unknown, the longer of the signal length we use will bring
the wider of the LFM signal bandwidth, which means we
can get a better resolution capability for the CSVR
spectrum if we use more signal data. Because we can ob-
tain μ0 by scanning different values of μ and the interval
value of μ is not limited by the data length in (5), we say
the CSVR spectrum has the property of super resolution.
Considering the situation that the data in (5) contain

noise, the singular values of Y(μ) will be affected by it.
When μ = μ0, the non-principle singular values of Y(μ)
will be non-zero, and when μ ≠ μ0, the non-principle sin-
gular values will also be affected by noise. Therefore, the
purpose that we use λres in (11) rather than λ22 in [16] is
to reduce the noise effect to the non-principle singular
values through average operation.
Let us analyze the complexity of CSVR spectrum. Let

Nsearch be the number of the chirp rate scanning points.
For each scanning point, the flop count [17] for Hadamard
product is McNc. Because the CSVR spectrum only requires
the singular values of Y(μ) and the singular vector matrix
UY and VY need not be computed, the flop count for com-
puting ΣY is 2McN2

c þ 2N3
c [17]. The flop count for average

operation is Mc and the computational complexity of peak
search is Nsearch. Thus, for the proposed method, the total
number of flops is N search 2McN2

c þ 2N3
c þMcNc þMc

� �
and the computational complexity of peak search is Nsearch.
In addition, some fast SVD methods [18, 19] may enhance
the computational speed.
Then, let us compare the computational complexity of

chirp rate estimation using an existing method [8]. Firstly,
the existing method requires constructing L channels and
the flop count for constructing the channel needs NL mul-
tiplications. Then, for each channel, it needs fast Fourier
transform whose flop number is N

2 log2 Nð Þ , instantaneous
auto-correlation whose flop number is N, and peak search
whose computational complexity is N. The computational
complexity of maximum peak finding for the L channels is
L and the SFM demodulation for the input signal requires
N multiplications. Finally, the computational complexity

of chirp rate estimation step requires N
2 log2 Nð Þ þ N

flops and N search. Thus, for the existing method, the
total number of flops is L N þ N

2 log2 Nð Þ� �þ N þ N
2 log2

Nð Þ þ N and the computational complexity of peak
search is LN + L +N.
Although the computational complexity of proposed

method is larger than the existing method, the estimation
accuracy of the proposed method will be better than the
existing method because of the super resolution property.
In addition, because the chirp rate is estimated directly in
the proposed method, its estimation performance will not
be affected by the NZ index estimation result. In contrast,
the existing chirp rate estimation method using multi-
channel structure needs NZ index estimation result and
its performance will be affected by it.

3.2 NZ index estimation based on matching component
function
Once the chirp rate has been obtained, the NYFR output
hybrid modulated signal can be simplified via the de-chirp
method. In order to estimate the carrier frequency, we need
to get the NZ index first. The de-chirp signal is assumed as

sdechirp nTADCð Þ ¼ e−jπ2μ̂0 nTADCð Þ2 , n = {0, 1,⋯,McNc − 1}
and we use the data in (5) with the same length to operate
the de-chirp process. Omit the noise part and we have

xde nTADCð Þ
¼ xsq nTADCð Þsdechirp nTADCð Þ
¼ A2ej2π2f 0 nTADCð Þþjπ2 μ0−μ̂0ð Þ nTADCð Þ2−j2kNZmf sin 2πf sin nTADCð Þð Þ

Because the CSVR spectrum has super resolution
capability, the transfer error of chirp rate is small and
xde(nTADC) can be written as

xde nTADCð Þ ¼ A2ej2π2f 0 nTADCð Þ−j2kNZmf sin 2πf sin nTADCð Þð Þ

xde(nTADC) is an SFM signal and the unknown parame-
ters are the NZ index kNZ and carrier frequency f0. For
the NZ index estimation, the multi-channel structure is
a common method [8, 11]. This method requires Fourier
transform and peak search in frequency domain for each
channel. It regards the SFM modulation part as a redun-
dancy and neglects the self-characteristic of SFM signal.
Here, we will use the self-characteristic of SFM signal
and propose an NZ index estimation method using
matching component.
According to the LOS prior information, construct a signal

sSFM nTADC; kð Þ ¼ ej2kmf sin 2πf sin nTADCð Þð Þ ð12Þ

where the argument k ∈ {0, 1,⋯, L − 1} and n = {0, 1,⋯,
McNc − 1}. For xde(nTADC), we have
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yde nTADC; kð Þ ¼ sSFM nTADC; kð Þxde nTADCð Þ
¼ A2ej2π2f 0 nTADCð Þþj2 k−kNZð Þmf sin 2πf sin nTADCð Þð Þ

To simplify the following derivation, denote n = nTADC
and the instantaneous auto-correlation of yde(nTADC, k) is

R n; kð Þ ¼ yde n; kð Þyde� nþ τ; kð Þ
¼ A4e−j2π2f 0τej2 k−kNZð Þmf ½ sin 2πf sinnð Þ

− cos 2πf sinnð Þ sin 2πf sinτð Þ− sin 2πf sinnð Þ cos 2πf sinτð Þ�

ð13Þ

Define the matching component function as

PNZ kð Þ ¼
XNcMc−1−τ

n¼0

R n; kð Þ
�����

����� ð14Þ

According to the self-characteristic of SFM signal, we

have ejk sin 2πf 0nð Þ ¼
X∞
m¼−∞

Jm kð Þejm2πf 0n , where Jm(⋅) is the

Bessel function with m order. Based on (13), (14) can be
expressed as

PNZ kð Þ

¼
A4e−j2π2f 0τ

XNcMc−1−τ

n¼0

X∞
m1¼−∞

Jm1
k−kNZð Þmf 1− cos 2πf sinτð Þð Þ� �

ejm12πf sinn
X∞

m2¼−∞

Jm2 kNZ−kð Þmf sin 2πf sinτð Þ� �
ejm22πf sinne

jm2

π

2

�����������

�����������

¼

A4
X∞

m1¼−∞

Jm1
k−kNZð Þmf 1− cos 2πf sinτð Þð Þ� �

X∞
m2¼−∞

Jm2 kNZ−kð Þmf sin 2πf sinτð Þ� �
e
jm2

π

2

XNcMc−1

n¼0

ej2πf sin m1þm2ð Þn

���������������

���������������
ð15Þ

In (15), when m1 +m2 = 0, we haveXNcMc−1−τ

n¼0

ej2πf sin m1þm2ð Þn ¼ NcMc−τ , and when m1 +m2 ≠ 0,

considering m1 +m2 ∈Z
+, n = nTADC, and Mc ∈Z

+, we haveXNcMc−1−τ

n¼0

ej2πf sin m1þm2ð Þn
�����

����� ¼ 0. Hence, (15) can be written as

PNZ kð Þ ¼ A4 NcMc−τð Þ
X∞

m1¼−∞

Jm1 k−kNZð Þmf 1− cos 2πf sinτð Þð Þ� �
J−m1

�����
kNZ−kð Þmf sin 2πf sinτð Þ� �

e−jm1
π
2j . On the basis of the property

of Bessel function
Jm −kð Þ ¼ −1ð ÞmJm kð Þ
J−m kð Þ ¼ −Jm kð Þ; m is odd
J−m kð Þ ¼ Jm kð Þ; m is even

8<
: , we have

PNZ kð Þ ¼ A4 NcMc−τð Þ
�����
X∞

m1¼−∞

fJ2m1 k−kNZð Þmf 1− cos 2πf sinτð Þð Þ� �
J2m1 k−kNZð Þmf sin 2πf sinτð Þ� �

e−jm1πþJ2m1

þ1 k−kNZð Þmf 1− cos 2πf sinτð Þð Þ� �
J2m1

þ1 k−kNZð Þmf sin 2πf sinτð Þ� �
e
−j 2m1þ1ð Þ

π

2
������
ð16Þ

when k = kNZ, (16) can be expressed as

PNZ kNZð Þ ¼ A4 NcMc−τð Þ
X∞

m1¼−∞

Jm1 0ð Þ
�����

�����
¼ A4 NcMc−τð Þ ð17Þ

when k ≠ kNZ, because the modulation coefficient can be
set as |mf| ≥ 1, we have Jm1 k−kNZð Þmf 1− cos 2πf sinτð Þð Þ� ��� ��
≪1 and Jm1 k−kNZð Þmf sin 2πf sinτð Þ� ��� ��≪1. Thus, (16) can
be written as

PNZ kð Þ≪A4 NcMc−τð Þ ð18Þ

From (17) and (18), when k = kNZ, the matching com-
ponent function PNZ(k) will achieve its maximum and
we call the constructed signal sSFM(nTADC, kNZ) as the
matching component. The peak of PNZ(k) indicates the
NZ index estimation result.
It should be noted that in order to avoid Jm(⋅)≡0 in

(16), we should make sure 1 − cos(2πfsinτ) ≠ 0 and
sin(2πfsinτ) ≠ 0 in (16). Therefore, we need to guarantee
2πfsinTADCτ ≠ 2πz, z ∈ Z, which means τ ≠ zfADC/fsin. Ap-
parently, we should also avoid τ→ zfADC/fsin to prevent
1 − cos(2πfsinτ)→ 0 and sin(2πfsinτ)→ 0, where→means
going close to. This is the selection criterion for the
value of shift length τ. Because the LOS modulation fre-
quency fsin and the sampling frequency fADC are known,
the shift length τ can be set as τ ≠ zfADC/fsin and it
should be far away from zfADC/fsin, z ∈ Z to satisfy the
above requirements.
Furthermore, let us consider the modulation coefficient

mf in (16). As we analyzed before, when k ≠ kNZ, we
have Jm1 k−kNZð Þmf 1− cos 2πf sinτð Þð Þ� ��� ��≪1 and

Jm1 k−kNZð Þmf sin 2πf sinτð Þ� ��� ��≪1 in (16). However, if |mf|
is very small, according to the characteristic of Bessel func-
tion, we have Jm1 k−kNZð Þmf 1− cos 2πf sinτð Þð Þ� ��� ��→1 and

Jm1 k−kNZð Þmf sin 2πf sinτð Þ� ��� ��→1. Hence, (18) may not be
guaranteed. Therefore, in order to guarantee that the
matching component function has a good performance, we
should make sure that |mf| is not too small. This is the rea-
son we set |mf| ≥ 1 above.
From the peak search of PNZ(k), k ∈ {0, 1,⋯, L − 1}, the

NZ index can be estimated as
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k̂NZ ¼ arg
k

max PNZ kð Þ½ �f g

The flop count of the proposed method for instantan-
eous auto-correlation and summation are McNc and
McNc − τ, respectively. In addition, the NZ index estima-
tion needs to search L points to find the peak. Hence,
for the proposed method, the total number of flops is
2McNc +McNc − τ and the computational complexity of
peak search is L.
As to the method in [8], from the analysis in Section 3.1,

the total number of flops is L N þ N
2 log2 Nð Þ� �

and the
computational complexity of peak search is LN + L. Be-
cause McNc ≤N and L≪N, the proposed method has a
smaller computational complexity.
According to the LOS information and the estimated

NZ index k̂NZ , the LOS modulation in (11) can be
demodulated and (11) will become a single carrier signal.
Using Fourier transform to estimate the carrier fre-

quency and we can obtain the result 2f̂ 0. Hence, the car-
rier frequency of the input LFM/BPSK signal can be

calculated as f̂ c ¼ f̂ 0 þ k̂NZf s.

3.3 Phase change point estimation based on matching
code and subspace
For the BPSK modulation, we not only need to estimate
the code length, but also want to obtain the position of
each phase change point. This section will present a
phase change point estimation method for the BPSK
modulation with high accuracy using matching code and
subspace orthogonal property.

The chirp rate μ̂0 and the NZ index k̂NZ have been
already estimated. Let us reconsider the data in (4) and
construct a signal

xre nTADCð Þ ¼ Ae−jπμ̂0 nTADCð Þ2þjk̂NZmf sin 2πf sin nTADCð Þð Þ

For (4), we have

xB nTADCð Þ ¼ xout nTADCð Þxre nTADCð Þ
¼ Aej2πf 0 nTADCð Þþjϕ nTADCð Þþj2πΔμ0 nTADCð Þ2

þw
0
nTADCð Þ

ð19Þ

where Δμ0 ¼ μ0−μ̂0 is the transfer error and w′(nTADC)
is the noise part. Because the NZ index estimation result
is an integer, we can assume k̂NZ ¼ kNZ and it has no
transfer error. Since the carrier frequency f̂ c of the
NYFR input signal has been obtained, the estimation
of the carrier frequency in (19) can be computed as
f̂ 0 ¼ f̂ c−k̂NZf s.
Generally, we can denote xB(n) = xB(nTADC). We re-

define n = 1,⋯N and omit the initial phase. The data in

(19) can be separated into several segments and the
length of each segment is Ns which is shorter than the
points of one code length. The method in [20] can be
employed to obtain the coarse estimation of the code
length and determine the segment length Ns. However,
this method can only give the code length estimation
and it has no capability to give the position of each
phase change point. The number of the data segments
can be calculated as Num = floor(N/Ns). We redefine
p = 0, 1,…, Num − 1 and the signal data in the (p + 1)th
segment can be written as

xNs nð Þ ¼ ½xB nþ pNs þ 1ð Þ; xB nþ pNs þ 2ð Þ;…;
xB nþ pNs þ Nsð Þ�T

¼ ejϕ nþpNsþ1ð Þej2πf 0 nþpNsþ1ð ÞþjπΔμ0 nþpNsþ1ð Þ2 ;…;
ejϕ nþpNsþNsð Þej2πf 0 nþpNsþNsð ÞþjπΔμ0 nþpNsþNsð Þ2

� 	T
þ w

0
nþ pNs þ 1ð Þ;…;w

0
nþ pNs þ Nsð Þ� �T

Rewrite xNs nð Þ and we have

xNs nð Þ ¼
ejϕ nþpNsþ1ð Þ 0 … 0

0 ejϕ nþpNsþ2ð Þ… 0
⋮ ⋮ ⋱ ⋮
0 0 … ejϕ nþpNsþNsð Þ

2
664

3
775

ej2πf 0 nþpNsþ1ð ÞþjπΔμ0 nþpNsþ1ð Þ2

ej2πf 0 nþpNsþ2ð ÞþjπΔμ0 nþpNsþ2ð Þ2

⋮
ej2πf 0 nþpNsþNs−1ð ÞþjπΔμ0 nþpNsþNsð Þ2

2
664

3
775þ w

0

¼ DB

ej2πf 0 nþpNsþ1ð ÞþjπΔμ0 nþpNsþ1ð Þ2

ej2πf 0 nþpNsþ2ð ÞþjπΔμ0 nþpNsþ2ð Þ2

⋮
ej2πf 0 nþpNsþNsð ÞþjπΔμ0 nþpNsþNsð Þ2

2
664

3
775þ w

0

ð20Þ

where DB is the BPSK modulation matrix. If there is no
phase change point in the BPSK modulation matrix, DB

will become a unit matrix. In this paper, we mark the
unit matrix as I.
A BPSK modulation matrix D ksð Þ ¼ diag

ejθ1 ; ejθ2 ;…; ejθi ;…; ejθNs
� �

can be constructed, where i

= 1,…, Ns and θi ¼ 0 i < ks
π i≥ks



, 1 ≤ ks ≤Ns, which im-

plies that the phase change point in D(ks) will be pre-
sented point by point at i = ks with the moving of ks. To
estimate the phase change point in one segment, two
situations should be taken into consideration:

(1)The data in one segment contain one phase change
point, which means DB in (20) contains one phase
change point.
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Under this circumstance, the position of the phase
change point in DB is assumed as kphase, 1 < kphase
<Ns. When ks = kphase in D(ks), D(kphase)DB = ± I and
we call D(ks) is the matching code of DB. Meanwhile,
when ks ≠ kphase, we have D(kphase)DB ≠ ± I.

(2)The data in one segment have no phase change
point, which means DB has no phase change point.

Under this condition, when ks = 1 or ks =Ns, we have
D(ks)DB = ± I, which implies D(ks) will match DB when
ks is at the edge of the data segment. When ks = kphase =
1 or ks = kphase =Ns, we also mark D(ks) as the matching
code D(kphase).
Therefore, combining (20) and D(kphase) yield

D kphase
� �

xNs nð Þ ¼ �
ej2πf 0 nþpNsþ1ð ÞþjπΔμ0 nþpNsþ1ð Þ2

ej2πf 0 nþpNsþ2ð ÞþjπΔμ0 nþpNsþ2ð Þ2

⋮

ej2πf 0 nþpNsþNsð ÞþjπΔμ0 nþpNsþNsð Þ2

2
6664

3
7775þ w″

where w″ is the noise part. The above equation can be
rewritten as

D kphase
� �

xNs nð Þ ¼ DΔμ0
A f 0ð Þej2πf 0 nþpNsþ1ð Þ

þ w″ ð21Þ

where the chirp rate transfer error matrix is

DΔμ0
¼ diag½ejπΔμ0 nþpNsþ1ð Þ2 ; ejπΔμ0 nþpNsþ2ð Þ2 ;…;

ejπΔμ0 nþpNsþNsð Þ2�
and the driving vector is

A f 0ð Þ ¼ � 1; ej2πf 0 ;…; ej2πf 0 Ns−1ð Þ
h iT

Because the carrier frequency f̂ 0 has been already esti-

mated, we can construct a signal sf̂ 0 nð Þ ¼ ej2πf̂ 0n whose

data length is Ns. Then, we have

sf̂ 0 nð Þ ¼ sf̂ 0 nþ 1ð Þ; sf̂ 0 nþ 2ð Þ;…; sf̂ 0 nþ Nsð Þ
h iT

¼ 1; ej2πf̂ 0 ;…; ej2πf̂ 0 Ns−1ð Þ
h iT

ej2πf̂ 0 nþ1ð Þ

ð22Þ

The auto-correlation of sf̂ 0 nð Þ is Rss ¼ E sf̂ 0 nð ÞsH
f̂ 0

nð Þ
h i

and the rank of Rss is rank(Rss) = 1. Hence, the noise
subspace of Rss can be computed and it can be denoted
as G.
Firstly, let us consider (21) is noise free. According to

the noise subspace G from sf̂ 0 nð Þ, we get

D kphase
� �

xNs nð Þ� �H
G ¼ e−j2πf 0 nþpNsþ1ð ÞAH f 0ð ÞDH

Δμ0
G

ð23Þ
The result of (23) will be affected by the chirp rate

transfer error Δμ0 and the carrier frequency transfer

error f 0−f̂ 0 . If Δμ0 = 0 and f 0 ¼ f̂ 0 , we have DH
Δμ0

¼ I

and AH(f0)G = 0, where I is an Ns ×Ns unit matrix and 0
is a 1 × (Ns − 1) zero vector. Thus, the result of (23) can
be calculated as

D kphase
� �

xNs nð Þ� �HG ¼ e−j2πf 0 nþpNsþ1ð ÞAH f 0ð ÞG¼0

ð24Þ
Then, we can define the phase search pseudo-

spectrum as

Phase ksð Þ ¼ 1

D ksð ÞxNs nð Þ½ �HGGH D ksð ÞxNs nð Þ½ � ð25Þ

where 1 ≤ ks ≤Ns.
When ks = kphase (i.e., D(ks) matches DB), (25) will

achieve its maximum and the corresponding peak pos-

ition k̂ s can be calculated by

k̂ s ¼ arg
ks

max
1

D ksð ÞxNs nð Þ½ �HGGH D ksð ÞxNs nð Þ½ �

( )

ð26Þ

When Phase(ks) reaches its maximum, D k̂ s

� �
will

become the matching code and the corresponding point

k̂ s is the estimated position of the phase change point in
one data segment. If the data in one segment have no
phase change point, Phase(ks) will show a peak at the
first or the last point of the data segment from the ana-
lysis of situation (2).
According to (24) and (25), if the transfer errors of

chirp rate and carrier frequency are 0, the width of the
peak in (25) will be one point. Thus, the phase search
pseudo-spectrum can obtain an accurate estimation re-
sult and its peak width is independent of the data seg-
ment length comparing with the wavelet transform
method whose peak width is decided by the length of
the scale [19].
However, if the chirp rate transfer error Δμ0 is not 0,

the transfer error matrix of chirp rate will be no longer a
unit matrix. With the increasing of Δμ0, DΔμ0

will be far
away from a unit matrix. Meanwhile, (24) will also be
far away from 0 and the width of the peak in (25) will
be expanded. In addition, if the carrier frequency
transfer error is not 0, the orthogonal relation between
AH(f0) and G in (24) will not be satisfied. Thus, the
width of the peak in (25) will also be expanded. In
summary, the transfer error from chirp rate and
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carrier frequency will deteriorate the accuracy of
phase change point estimation.
Fortunately, because the CSVR spectrum is a super

resolution method, the chirp rate transfer error Δμ0→ 0.
In addition, because the NZ index estimation result is an

integer and it has no transfer error, we have f̂ 0→f 0 .
Hence, (24) can be written as

D kphase
� �

xNs nð Þ� �H
G→0 ð27Þ

Then, let us consider the signal xNw nð Þ containing
noise. According to (23) and (27), if D(ks) matches DB,
we get

D kphase
� �

xNs nð Þ� �H
G→0þ w″HG

If D(ks) does not match DB, we have

D ksð ÞxNs nð Þ½ �HG→xHNs
nð ÞDH ksð ÞGþ w″HG

Thus, under the condition of noised signal, the phase
search pseudo-spectrum in (25) can still achieve its peak
when D(ks) matches DB.
After the peak search process is completed in one data

segment, there is one issue to be considered. The pos-
ition of the phase change point kphase may locate at the
first or the last point of the data segment. This situation
is shown in Fig. 3.
For this condition, the following process can handle

this issue.
For the (p + 1)th data segment, when the phase search

pseudo-spectrum shows a peak at k̂ s ¼ pNs þ 1 or k̂ s

¼ pNs þ Ns , we can assume c is a small integer, c > 1,
and reselect the data from pNs + 1 + c to pNs +Ns + c.
The reselected data can be written as

~xNs nð Þ ¼ �
xB nþ pNs þ 1þ cð Þ; xB nþ pNs þ 2þ cð Þ;…;

xB nþ pNs þ Ns þ cð Þ�T
ð28Þ

The result of (26) can be recalculated using the data
from (28). The peak position of the phase search
pseudo-spectrum using the data in (28) is denoted as

k̂ s agð Þ and we have

k̂ s agð Þ ¼ arg
ks

max
1

D ksð Þ~xNs nð Þ½ �HGGH D ksð Þ~xNs nð Þ½ �

( )

ð29Þ

This process is illustrated in Fig. 4.
If the reselected data segment shows a peak at the first

point (i.e., k̂ s agð Þ ¼ 1), let k̂ s agð Þ ¼ Ns , which means if the
data in (28) have no phase change point, the position of
the peak is always at the end of this segment.

If the distance between k̂ s agð Þ and the last point of the
reselected data segment is not equal to c, we regard that
the last point of the (p + 1)th data segment is not the
phase change point. Otherwise, the last point of the (p +
1)th data segment covers the phase change point. For
the first point of the next data segment, if the distance

between k̂ s agð Þ and the last point of the reselected data
segment is not equal to c − 1, we regard that the first
point of the (p + 2)th data segment is not the phase
change point. Otherwise, the first point of the (p + 2)th
data segment covers the phase change point.
Finally, let us compare the computational complexity

of our method with the method using the Haar wavelet
transform [21]. We focus on the data in one segment.
The number of the points in one segment is still as-
sumed as Ns. Besides, we also assume that the wavelet
scale contains Ns points. Because the noise subspace in
(25) is fixed, we consider the computational complexity
of matrix multiplication in one data segment. Thus, the
computational complexity of the proposed method
needs Ns[Ns + 4Ns(Ns − 1) + 2(Ns − 1)] number of flops in
one data segment. For the method in [21], the computa-
tional complexity needs 2N2

s number of flops for one
wavelet scale. Although the proposed method requires a
larger computational complexity, its estimation result
can achieve a higher accuracy. Since the phase change
point in one data segment has been estimated, the next
section will give the code length estimation process.

4 Algorithm steps
For the LFM/BPSK hybrid modulated signal intercepted
by the NYFR in (4), the proposed parameter estimation
algorithm steps are as follows:

Fig. 3 Phase change point locates at the edge of the data segment Fig. 4 Reselection and recalculation process
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1) For the NYFR output signal in (4), the square
method is employed and the signal data whose
length is McNc points are selected as shown in (5).
Model the data in (5) as the matrix Xc which is
shown in (6) based on the periodic characteristic of
the LOS modulation and construct the LFM
matching matrix SLFM(μ) expressed in (9). Estimate
the chirp rate μ̂0 by computing the CSVR spectrum
based on (11);

2) The de-chirp process using μ̂0 can be operated to
eliminate the LFM modulation of the signal in (5).
Construct the matching component as shown in
(12). Based on the matching component function
PNZ(k) in (14), the NZ index estimation result k̂NZ

can be obtained. According to the LOS information
and k̂NZ, the NYFR output carrier frequency f̂ 0 and
the input hybrid modulated signal carrier frequency
fc can be estimated;

3) Construct the signal in (22) using f̂ 0 and calculate
its noise subspace G. Demodulate the signal in (4)
using the estimated μ̂0 and k̂NZ. The data in (20)
can be obtained by dividing the demodulated signal
into Num segments and set p = 0.

4) For the data from pNs + 1 to pNs +Ns in the (p + 1)th
data segment, calculate the phase search pseudo-
spectrum in (25) using G and the constructed D(ks).
Find the peak position k̂ s;p in the (p + 1)th data
segment. If k̂ s;p∈ pNs þ 1; pNs þ Nsð Þ, k̂ s;p∈Zþ, record
k̂ s;p. If k̂ s;p ¼ pNs þ 1 or k̂ s;p ¼ pNs þ Ns, reselect
the data from pNs + 1 + c to pNs +Ns + c and find the
corresponding peak position k̂

agð Þ
s;p according to the

reselected data and (29). Decide whether the edge
of the (p + 1)th data segment covers the phase
change point and record k̂

agð Þ
s;p . If the edge covers

the phase change point, record k̂ s;p ¼ pNs þ Ns or
k̂ s;pþ1 ¼ pþ 1ð ÞNs þ 1; otherwise, set k̂ s;p as a null
value. Then, p = p + 1. If p < Num − 1, continue
this step and process the next data segment;

5) Finish the phase change point estimation of the
Num data segments and obtain k̂ s;p and k̂

agð Þ
s;p , p = 0,

…, Num − 1, where k̂ s;p is the phase change point
estimation in the (p + 1)th data segment and k̂

agð Þ
s;p

is the recorded position of the phase change point
estimation result using the reselected data of the
(p + 1)th segment. In order to make full use of the
estimation results, use k̂ s;p and k̂

agð Þ
s;p , p = 1,…, Num

− 1, to modify the false phase change points which
are caused by the noise. For the recorded k̂

agð Þ
s;p , if

k̂ s;pþ1∈ pNs þ 1; pNs þ 1þ cð Þ and Ns−cþ k̂ s;pþ1≠
k̂

agð Þ
s;p , k̂ s;pþ1 is regarded as a false position and mark

it as a null value. Finally, we obtain all the phase
change points in the LFM/BPSK signal;

6) Omit the estimation result of the first data segment
and the number of the rest estimated phase change

points is Num − 1. Find the nearest two k̂ s;p which
are not null and mark them as k̂ s;p1 and k̂ s;p2 , where
p2 > p1. Thus the code length of the hybrid modulated
signal is LB ¼ p2−p1ð ÞNs þ k̂ s;p2−k̂ s;p1 .

5 Simulation results
In this section, numerical simulations are conducted to
demonstrate the merits of the proposed scheme. SFM
signal is adopted as the LOS modulation for the NYFR,
and the LOS modulation can be expressed as m(t) = 2πfst
+mf sin(2πfsint) + φLOS, where the LOS carrier frequency fs
is 1 GHz, the LOS modulation coefficient mf is 4, the LOS
modulation frequency fsin is 10 MHz, the LOS initial
phase φLOS is 0, and the number of the monitored Nyquist
zones is 10.

The hybrid modulated LFM/BPSK signal is s tð Þ ¼ A

ej2πf ctþjπμ0t
2þjϕ tð Þþjφ0 , where the carrier frequency fc is

4.1 GHz, the chirp rate μ0 is 50 MHz/μs, the BPSK
modulation ϕ(t) is [-1 -1 1-1 -1 1 1-1 1 1], the signal
amplitude A is 1, the signal initial phase φ0 is 0, the sig-
nal length is 1 μs, and the ADC sampling rate fADC is
2 GHz.

5.1 Chirp rate estimation simulation
The CSVR spectrum of the NYFR output signal based
on Section 3.1 is given. Here, we set the signal-to-noise
ratio (SNR) as 7 dB and the scanning chirp rate reso-
lution is 0.01 MHz/μs. Considering the LOS parameters,
we have Nc = fADC/fsin = 200 and Mc =N/Nc = 10. Hence,
the signal can be modeled as a 200 × 10 matrix and the
CSVR spectrum is shown in Fig. 5.
From Fig. 5, when the scanning chirp rate is equal to

50 MHz/μs, the CSVR spectrum meets its maximum,
which agrees the analysis of (10). In addition, when the
scanning chirp rate is far from the signal chirp rate, the
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Fig. 5 CSVR spectrum of NYFR output signal
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non-periodic LFM component will affect the singular
values. Hence, the non-principle singular values will in-
crease and λres in (11) will rise up. Moreover, according
to the energy conservation theory, the principle singular
value λ1 will decrease. Thus, the amplitude of CSVR
spectrum will drop with the increasing distance between
the scanning chirp rate and the signal chirp rate.
Figure 6 illustrates the normalized root mean square

error (NRMSE) of chirp rate estimation using CSVR
spectrum with different signal lengths. The signal
lengths are 1 and 0.5 μs, respectively, and other parame-
ters remain unchanged. The number of Monte Carlo
experiments is 200.
In Fig. 6, the NRMSE of chirp rate estimation using

1-μs signal length is less than 10− 2 when the SNR is
greater than 0 dB, which shows a better performance
compared with the signal whose length is 0.5 μs. The
reason is the bandwidth of LFM component with 1-
μs length is wider and its resolution capability is bet-
ter. This simulation result proves the discussion in
Section 3.1.

5.2 NZ index estimation simulation
The NZ index estimation result based on the matching
component function in Section 3.2 is given in Fig. 7. The
SNR is still set as 7 dB. Because the number of Nyquist
zones has been set as 10, the argument in PNZ(k) can be
set as k = 0, 1,⋯, 9. According to the known fsin =
10MHz and fADC = 2GHz, the shift length τ can be set as
100 points in (13).
Considering the simulation parameters, the real NZ

index should be kNZ = round(4.1GHz/1GHz) = 4. From
Fig. 7, it is shown when k = 4, PNZ(k) achieves its
maximum. Apparently, the proposed method can obtain
the correct NZ index.

Let us focus on the amplitude value of the peak in
Fig. 7. Because the selected signal length in our simula-
tion is McNc = 2000, the shift length is τ = 100 and the
signal amplitude is A = 1, the theoretical value of PNZ(k)
can be computed as PNZ(kNZ) = A4(NcMc − τ) = 1900
when k = kNZ = 4 from (17). Meanwhile, the peak value
of the simulation result in Fig. 7 is 1914 and we have
1914 ≈ PNZ(kNZ). Hence, this simulation proves the
correctness of (17). In addition, comparing frequency
domain peak search for each channel in [8], the pro-
posed method only needs one-dimensional search for
the matching component function and the computa-
tional complexity of our method is small. Once the chirp
rate and the NZ index are estimated, we can estimate
the carrier frequency according to Section 3.2.
Besides, in order to examine the shift length selection

criterion in Section 3.2, we set different shift length
values to show how the shift length affects the correct
ratio of NZ index. The values of shift length τ are set as
100, 150, 180, and 200 points, respectively. Other pa-
rameters remain unchanged. Figure 8 gives the correct
ratio of NZ index using a different shift length.
From Fig. 8, the estimation correct ratio of NZ index

has the best performance when the shift length τ = 100,
which implies the distance between τ and fADC/fsin = 200
is the largest. When the distance between τ and fADC/fsin
is smaller, the correct ratio of NZ index will decrease.
Particularly, when τ = fADC/fsin = 200, the Bessel function
in (16) will become Jm(⋅)≡0 and the matching compo-
nent function will lose its capability. This simulation
proves our discussion about the shift length selection
criterion in Section 3.2.
Furthermore, to show the effect of modulation coef-

ficient mf to the matching component function, differ-
ent modulation coefficients are used to estimate the
NZ index. The values of modulation coefficient mf
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are set as 0.1, 0.5, 1, 4, and 10, respectively. Other
parameters remain unchanged. Figure 9 presents the
correct ratio of NZ index using different modulation
coefficient.
From Fig. 9, the correct ratio of NZ index with mf =

0.1 is less than 90 % when the SNR <3 dB. Meanwhile,
the results with other modulation coefficients have bet-
ter performances and their correct ratios are greater
than 90 % when the SNR >−3 dB. The reason of this
phenomenon is that the value of the Bessel function in
(16) will approach to 1 when |mf|→ 0 and the relation-
ship in (18) cannot be guaranteed. When |mf| > 0, the re-
lationship in (18) can be guaranteed, which implies the
NZ index estimation performances (except mf = 0.1) are
better and tend to be the same. This simulation proves
the discussion about the modulation coefficient selection
criterion in Section 3.2.

5.3 Phase change point and code length estimation
simulation
Figures 10 and 11 illustrate the normalized phase search
pseudo-spectra with phase change point and without
phase change point in one segment. The SNR is still
7 dB and the segment length in Section 3.3 is Ns = 80.
Figure 10 represents the eighth segment and Fig. 11 is
the ninth segment. According to the simulation parame-
ters, the code length of BPSK is 200 points.

From Fig. 10, when k̂ s ¼ 40, the phase search pseudo-
spectrum Phase(ks) reaches its maximum and this peak
corresponds to the phase change point of the third and
the fourth codes in [-1 -1 1-1 -1 1 1-1 1 1], which means
the position of the phase change point is (p − 1) ×Ns +
ks = (8 − 1) × 80 + 40 = 600. From Fig. 11, Phase(ks) shows
a peak at the first point when the data segment has no
phase change point. The data in the ninth segment corres-
pond to the signal points from 640 to 720, and obviously,
there is no phase change point in such data segment. After
we present the phase search pseudo-spectrum in one
segment, Fig. 12 gives the estimated phase change point

position k̂ s;p of the NYFR output signal in each data
segment. The number of the data segments in Fig. 12 is
Num − 1 = floor(2000/80) − 1 = 24.
The horizontal axis in Fig. 12 indicates the data segment

number and the vertical axis represents the position of
each phase change point. When the value of vertical axis
is 0, it means there is no phase change point in that seg-
ment. In Fig. 12, five phase change points have been esti-
mated and the position of each phase change point can be
calculated based on the segment length and the vertical
axis values. In addition, from the 5th and 20th segments,
we can see the edges of these data segments cover the
phase change points. However, our method can still esti-
mate these covered phase change points.
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5.4 Parameter estimation performance
At last, let us consider the performance of the proposed
method. Although there is no public report for the par-
ameter estimation algorithm of the LFM/BPSK signal
intercepted by the NYFR, we still can employ the algo-
rithm using multi-channel structure in [8] and the
method in [21] as the comparisons. The shift length τ is
100 points and the LOS modulation coefficient mf is 4.
The correct ratio of NZ index, the NRMSEs of chirp
rate, and carrier frequency and the correct ratio of code
length are given, respectively. The SNR is set from −5 to
15 dB, and 500 Monte Carlo trials are used for each
SNR value.
Figure 13 compares the NZ index correct ratio of the

proposed method with that of the method in [8]. The
proposed method performs better than the method in
[8] when SNR <0 dB, because the method in [8] esti-
mates the NZ index using the amplitude value in fre-
quency domain which is sensitive to the noise.
Figure 14 illustrates the NRMSEs of chirp rate and

carrier frequency estimation results using the proposed
method, the method in [8], and the modified Cramer
Rao lower bound (MCRLB) [22], respectively. As indicated
in the result, when SNR >−2 dB, the chirp rate estimation
of our method can achieve NRMSE <0.01. However, the
chirp rate estimation method in [8] yields large estimation
errors when SNR <0 dB due to the NZ index estimation
transfer error. In detail, when SNR <0 dB in Fig. 13, the
correct ratio of NZ index of [8] is smaller than 90 % and
the NZ index transfer error will lead to a poor chirp rate
estimation performance, which can be seen from Fig. 14.
In contrast, the proposed method estimates chirp rate dir-
ectly and its performance will not be affected by the NZ
estimation result. In addition, because the CSVR spectrum
is a super resolution method, the proposed method is
closer to the MCRLB.

Figure 14 also reveals that the proposed method per-
forms better than the method in [8] in estimating the
carrier frequency when 2 dB > SNR > −2 dB, because the
proposed method has a better NZ index estimation
performance. When the SNR is greater than 2 dB, the
performances of both methods are almost the same due
to the same carrier frequency estimation process (i.e.,
Fourier transform).
Figure 15 presents the correct ratio of code length es-

timation using the proposed method and the method in
[21]. Here, the correct ratio of code length means when
the code length estimation result strictly equals (1 × 10−
6/10) × fADC = 200 points, we regard that the estimation
result is correct. From Fig. 15, the proposed method out-
performs the method in [21] and the correct ratio of the
proposed method is greater than 90 % when SNR >2 dB,
because the peak width of phase search pseudo-
spectrum is narrower.
In summary, for the LFM/BPSK hybrid modulated sig-

nal intercepted by the NYFR, the proposed method can
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obtain accurate estimation performances for the chirp
rate, the carrier frequency, the NZ index, the code
length, and the phase change points when SNR is greater
than 2 dB.

6 Conclusions
On the basis of the NYFR prior information and signal
self-characteristic, the parameter estimation algorithm of
LFM/BPSK hybrid modulated signal intercepted by the
NYFR has been proposed. We make full use of the LOS
prior information to model the NYFR output signal and
propose the CSVR spectrum to estimate the chirp rate
directly. Then, according to the self-characteristic of the
SFM modulation, the matching component function has
been designed to estimate the NZ index and the carrier
frequency. Finally, the matching code and subspace or-
thogonal property have been employed to obtain the
position of each phase change point and the code length.
Furthermore, we also analyze the parameter selection
criteria and the computational complexity for each step.

Comparing the existing NYFR output signal parameter
estimation algorithm, the proposed algorithm avoids
constructing multi-channel architecture and estimating
the NZ index firstly. Meanwhile, the proposed scheme
can achieve a higher accuracy compared with the exist-
ing parameter estimation methods. The simulation re-
sults show the proposed scheme demonstrates a good
performance and prove our analyses. Besides, the esti-
mation methods in Sections 3.1 and 3.2 can be used to
estimate the parameters of LFM signal intercepted by
the NYFR in one NZ as well.
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