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Abstract

Compressive sensing generally relies on the �2 norm for data fidelity, whereas in many applications, robust estimators
are needed. Among the scenarios in which robust performance is required, applications where the sampling process
is performed in the presence of impulsive noise, i.e., measurements are corrupted by outliers, are of particular
importance. This article overviews robust nonlinear reconstruction strategies for sparse signals based on replacing the
commonly used �2 norm by M-estimators as data fidelity functions. The derived methods outperform existing
compressed sensing techniques in impulsive environments, while achieving good performance in light-tailed
environments, thus offering a robust framework for CS.
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1 Introduction
The theory of compressive sensing (CS) introduces a sig-
nal acquisition and reconstruction framework that goes
beyond the traditional Nyquist sampling paradigm [1–4].
The fundamental premise in CS is that certain classes of
signals, such as natural images, have a succinct represen-
tation in terms of a sparsity inducing basis, or frame, such
that only a few coefficients are significant and the remain-
ing coefficients are negligibly small. In such cases, the
signal is acquired taking a few linear measurements and
subsequently accurately recovered using nonlinear itera-
tive algorithms [4, 5]. CS has proven particularly effective
in imaging applications due to the inherent sparsity, e.g.,
in medical imaging [6], astronomical imaging [7], radar
imaging [8], and hyperspectral imaging [9].
Since noise is always present in practical acquisition

systems, a range of different algorithms and methods
have been proposed in the literature that enable accu-
rate reconstruction of sparse signals from noisy compres-
sive measurements using the �2 norm as the metric for
the residual error (see [10] for a review of CS recovery
algorithms). However, it is well known that least squares-
based estimators are highly sensitive to outliers present in
the measurement vector, leading to a poor performance
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when the noise does not follow the Gaussian assump-
tion and is, instead, better characterized by heavier-than-
Gaussian-tailed distributions [11–14]. A broad spectrum
of applications exists in which such processes emerge,
including wireless and power line communications, tele-
traffic, hydrology, geology, atmospheric noise compen-
sation, economics, and image and video processing (see
[14–16] and references therein).
As a motivating example, consider a CS system for wire-

less body area networks (WBAN).WBAN allows the tran-
sition from centralized health care services to ubiquitous
and pervasive health monitoring in everyday life. Typical
signals that are monitored by WBAN are electrocardio-
gram (ECG) signals, and CS is a promising framework to
lower WBAN’s energy consumption. However, ECG sig-
nals are typically corrupted by electromyographic noise
which shows an impulsive behavior. Another application
of interest is a nonintrusive load monitoring system that
identifies house appliances and their energy consumption.
A CS system can be used to acquire the power signal
and then a sparse classification system used to classify
the house appliances. However, the power signals exhibit
impulsive behavior due to the switching nature of the
appliances. If the compressive sampling process has infi-
nite or even very large variance, the reconstructed signal
obtained utilizing traditional approaches is far from the
desired original signal. Thus, there are clear motivations
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for developing robust CS techniques that address these
challenging environments.
The need to describe impulsive data, coupled with com-

putational advances that enable efficient processingmeth-
ods based on models more complex than the traditional
Gaussian distribution has thus led to the interest in heavy-
tailed models. Robust statistics, more specifically, the
stability theory of statistical procedures, systematically
investigates the effects of deviation from modeling
assumptions [17–19]. Maximum likelihood (ML) type
estimators, also known as M-estimators, developed in
the theory of robust statistics are of great importance in
robust signal processing techniques [14, 16].M-estimators
are described by a cost function-defined optimization
problem where properties of the cost function (or its first
derivative, the so-called influence function) determine the
estimator robustness [18].
The key idea in M-estimation is that the cost function,

or the influence function, can be chosen in such a way
to provide the estimator desirable properties (in terms
of bias and efficiency) when the data are truly generated
from the assumed model, and reliable albeit not optimal
behavior when the data are generated from another model
that is, in some sense, close to the assumed model.
Over the past decade, there have been several works

addressing the reconstruction of sparse signals whose
measurements are corrupted by outliers or by impulsive
noise [20–55]. Parametric approaches that model the cor-
rupting noise as a linear combination of a sparse vector
of outliers (possibly gross errors) and a dense vector of
small bounded noise have been proposed in the literature.
Popilka et al., [21] were the first to analyze this model and
proposed a reconstruction strategy that estimate first the
sparse error pattern, and then estimate the true signal,
in an iterative process. Related approaches are studied in
[23–32]. These works assume a sparse error and estimate
both signal and error at the same stage using a modified �1
minimization problem. This approach was originally pro-
posed by Wright et al. for the face recognition problem
with image occlusions [22]. A similar model was pro-
posed by Candès et al. in [33] for the recovery of low rank
matrices corrupted by outliers.
Sparse models coupled with sparse reconstruction

algorithms have also been used to address the robust
regression problem where the number of measurements
(observations) is greater than the number of unknowns
(explanatory variables) [34–38]. In the context of error
correction coding, Candès et al. investigated �1 optimiza-
tion approaches to solve the decoding problem when
the received codeword (measurements) is assumed to be
corrupted by gross outliers [39, 40].
Approaches based on M-estimators that replace the �2

data fidelity term by a more robust cost function have
also been proposed. Carrillo et al. propose reconstruction

approaches based on the Lorentzian norm as the data
fidelity term [41, 42]. In addition, Ramirez et al. develop
an iterative algorithm to solve a Lorentzian �0-regularized
cost function using iterative weighted myriad filters [43].
A similar approach is used in [44] by solving an �0-
regularized least absolute deviation (LAD) regression
problem yielding an iterative weighted median algorithm.
The authors of [45] propose an iterative approach based
on a gradient descent median truncated Wirtinger flow
algorithm to solve the phase retrieval problem when the
magnitude measurements are corrupted by outliers.
Nonconvex optimization approaches based on �p

norms as data fidelity functions have been proposed in
[46, 47], while an �p-space greedy algorithm is proposed
in [48]. Greedy algorithms [49, 50] and optimization-
based approaches [51, 52] using the Huber function as the
data fidelity term have also been proposed in the litera-
ture. Bayesian approaches, modeling the corrupting noise
using a heavy-tailed probality distribution, are proposed
in [53, 54]. Robust PCA approaches resilient to outliers are
proposed in [55].
The purpose of this article is to provide an overview

of robust reconstruction strategies for CS when the mea-
surements are corrupted by outliers. We approach the
problem first from a statistical point of view and then
review nonlinear methods that have been proposed in the
literature that are based on robust statistics, specifically
methods that are based on M-estimators. The organiza-
tion of this paper is as follows. A general overview of CS is
introduced in Section 2, and a collection of robust estima-
tors, known as M-estimators, are discussed in Section 3.
We then present a review of nonlinear methods based on
robust estimation in Section 4. Section 5 is devoted to
illustrate the performance of the reviewed methods in the
reconstruction of sparse signals from compressive con-
taminated samples. Concluding remarks are provided in
Section 6.

2 Compressive sensing review
Let x ∈ R

n be a signal that is either s-sparse or compress-
ible in some representation basis � such that x = �α,
where α ∈ R

n is the vector of coefficients having at most
s nonzeros values, i.e., ‖α‖0 ≤ s. Recall that the �p norm
of a vector u ∈ R

n is defined as ‖u‖p = (∑n
i=1 |ui|p

)1/p.
The �0 “norm” is not a norm, since it does not meet the
positive homogeneity and sub-additivity properties, but in
practice simply counts the number of nonzero elements of
a vector. Let � be anm×n sensing matrix that represents
a dimensionality reduction operation since m is taken to
be smaller than n, with rows that form a set of vectors
incoherent with the sparsity representation basis.
The signal x is measured by y = �x. Setting � =

�� , the measurement vector becomes y = �α. In the
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following, we assume, without loss of generality, that � =
I, the canonical basis for R

n, such that x = α. It has
been shown that a convex program (basis pursuit) can
recover the original sparse signal, x, from a small set of
measurements, y if the sensing matrix obeys the restricted
isometry property (RIP) [56], defined as follows.
Definition 1. A matrix � satisfies the restricted isometry
property of order s if there exists a constant δs, defined as
the smallest positive quantity such that

(1 − δs)‖x‖22 ≤ ‖�x‖22 ≤ (1 + δs)‖x‖22
holds for all x ∈ �s, where �s = {x ∈ R

n| ‖x‖0 ≤ s}. A
matrix � is said to satisfy the RIP of order s if δs ∈ (0, 1).
Basically, the RIP dictates that every set of columns of

� with cardinality smaller than s approximately behaves
like an orthonormal system, such that it approximately
preserves the �2-distance between any pair of s-sparse
vectors. It has also been shown that randommatrices with
Gaussian or sub-Gaussian entries meet the RIP with high
probability provided thatm = O(s log(n)) [5, 57].
The RIP has some implications concerning the robust-

ness to noise. In a realistic scenario, the measurements
are corrupted by noise and can be modeled as y =
�x + z, where z is zero-mean additive white noise. It has
been shown that under some characteristics of the noise,
notably finite second order statistics or bounded noise in
the �2 sense, and if the measurement matrix � satisfies
the RIP condition, then there exists a variety of algorithms
that are able to stably recover the sparse signal from noisy
measurements [10]. Among those, basis pursuit denoising
(BPD) relaxes the requirement that the reconstructed sig-
nal exactly explain the measurements, yielding the convex
problem

min
x∈Rn

‖x‖1 subject to ‖y − �x‖2 ≤ ε, (1)

for some small ε > 0. Candès shows in [56] that if ‖y −
�x‖2 ≤ ε and δ2s <

√
2 − 1, then the solution of (1), x̂, is

guaranteed to obey ‖x − x̂‖2 ≤ Cε, where the constant C
depends on δ2s.
Variations of (1) are also found in the literature, such

as the �1-regularized least squares (�1-LS) problem, also
known as the least absolute shrinkage and selection oper-
ator (LASSO) [58],

min
x∈Rn

1
2
‖y − �x‖22 + λ‖x‖1, (2)

where λ is a regularization parameter that balances the
weight between the data fidelity term and the �1 regular-
ization term. The �1-LS problem is sometimes preferred
over BPD because of the availability of efficient methods
to solve (2) [59]. Other sparse reconstruction approaches
including greedy algorithms, which iteratively construct
sparse approximations, can be found in the literature.
Orthogonal matching pursuit (OMP) [60, 61], regularized

OMP [62], and iterative hard thresholding (IHT) [63] are
examples of this class.
The aforementioned methods use the �2 norm as the

data-fitting term, and they perform adequately under the
assumption that the contaminating noise has finite sec-
ond order statistics. However, just as in classical least
squares and mean-square error estimation methods, �2-
based sparse reconstruction methods tend to be very
sensitive to outliers or gross error present in the mea-
surements. Thus, it is natural to draw on the rich theory
of robust linear regression [17–19, 64, 65] as a plausi-
ble approach to address the CS reconstruction problem
when the measurements are contaminated with heavy-
tailed noise. Several key robust estimators are reviewed in
the following section.

3 M-estimators overview
The presence of outliers in CS measurements leads to the
study of robust estimators since the recovered sparse sig-
nal is highly affected by the presence of the large errors in
the data. Robust M-estimators bring substantial benefits
in this scenario because, rather than relying on classical
Gaussian ML estimation, they are based on modeling the
contamination noise of the measurements as heavy-tailed
process.
M-estimators are a generalization of ML estima-

tors and are described by a cost function-defined
optimization problem where properties of the
cost function determine the estimator robustness
[17–19]. In robust estimation theory, two impor-
tant concepts characterize the robustness of an
estimator: the breakdown point and the influence
function.
The break down point is used to characterize quantita-

tive robustness of an estimator. It indicates the maximal
fraction of outliers (highly deviating samples) in the obser-
vations, which an estimator can handle without breaking
down. The influence function describes the bias impact of
infinitesimal contamination at an arbitrary point on the
estimator, standardized by the fraction of contamination.
For M-estimators, the influence function is proportional
to the first derivative of the cost function [18]. Desirable
properties of the influence function are boundedness and
continuity. Boundedness ensures that a small fraction of
contamination or outliers can have only a limited effect on
the estimate, whereas continuitymeans that small changes
in the data lead to small changes in the estimate.
Several robustM-estimators have been studied in the lit-

erature, and the most commonly used methods in CS are
reviewed in the following. For simplicity of the exposition,
the reviewed M-estimators are presented in the location
estimation setting, i.e., the one-dimensional case, though
the cost functions, and their properties, can be extended
to the multidimensional case [14].
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3.1 Median estimator
Consider a set of observations {y1, y2, . . . , yn}, where each
observation follows the linear model yi = α + zi, and
the elements zi are independent samples obeying a zero-
mean Laplacian distribution. This is the classical location
parameter estimation problem, which seeks the best esti-
mate of α from a set of observations {y1, y2, . . . , yn}, where
each observation has a scale parameter σi. The resulting
ML estimate of α is given by

α̂ = argmin
α

n∑

i=1

1
σi

|yi − α|. (3)

Note that the cost function in the problem defined
above is the absolute deviation function which is the one-
dimensonal case of the �1 norm and its influence function,
IF(x) = sign(x), is bounded but discontinuos at the ori-
gin. The solution to (3) is the well-knownweightedmedian
(WM). The WM operator is defined by [66]

α̂ = MEDIAN(w1 � y1,w2 � y2, · · · ,wn � yn), (4)

where wi = 1/σi denotes the weight associated with the
i-th observation sample and the symbol � represents an
operator that replicates wi times the value yi; i.e. wi � yi =

witimes
︷ ︸︸ ︷
yi, yi, · · · , yi. Thus, the WM operator consists of replicat-
ing the ith sample wi times and sorting all the samples
to then find the median value of the entire set. If the
weights are real numbers instead of integers, the thresh-
old decomposition framework can be applied to compute
the weighted median [67].

3.2 �p estimator
Consider a set of observations {y1, y2, . . . , yn}, where each
observation follows the linear model yi = α + zi and the
elements zi are independent and follow the zero-centered
GGD. The probability density function of the GGD is
given by

f (z) = p
2σ�(1/p)

exp
(

−|x|p
σ p

)
, (5)

where �(·) is the gamma function, σ is a scale parame-
ter and p > 0, the so-called shade parameter, controls the
tail decay rate. If each observation has a different scale
parameter σi, the ML estimate of α is given by

α̂ = argmin
α

n∑

i=1

1
σ
p
i

|yi − α|p. (6)

There are two special cases of the GGD family that are
well studied: the Gaussian (p = 2) and Laplacian (p = 1)
distributions, which yield the well-known weighted mean
and weighted median estimators, respectively. Conceptu-
ally, the lower the value of p, the more heavy tailed is
the distribution leading to more impulsive samples. When
p < 2, the GGD exhibits heavier than Gaussian tails

(super-Gaussian) and when 0 < p < 1, the model is very
impulsive. The p �= {1, 2} cases yield the fractional lower
order moment (FLOM) estimation framework [68].
Recall that the �p norm of a vector u ∈ R

m is defined as
‖u‖p = (∑m

i=1 |ui|p
)1/p. Note that the �p norms are con-

vex and everywhere continuous functions when p > 1.
The especial case p = 1 is the �1 norm that is convex
but piece-wise continuous. When 0 < p < 1, the �p
norms are nonconvex and piece-wise continuous. In the
latter case, the �p norms are not really norms in the strict
sense, but quasi-norms, since the sub-additivity property
is not satisfied. The influence function for the �p norms,
IF(x) = sign(x)p|x|p−1, is bounded but discontinuous at
the origin for 0 < p ≤ 1 and continuous everywhere
but not bounded for p > 1. Also note that the influence
function is asymptotically redescending, i.e., IF(x) → 0
as x → ±∞ when 0 < p < 1. Having a redescending
influence function is a desirable property in a robust esti-
mator since large outliers do not influence the output of
the estimate. Thus, the �p norms are optimal under GGD
noise and offer a powerful framework for impulsive noise
applications when 0 < p < 2 [69–71].

3.3 Huber estimator
Consider now a set of observations {y1, y2, . . . , yn}, where
each observation follows the linear model yi = α + zi and
the elements zi are i.i.d. random variables from a contin-
uous GGP symmetric distribution, with scale parameter
σ > 0. A robust estimator that combines the �2 and �1
norms as cost function is defined as [17]

α̂ = argmin
α

n∑

i=1
ρ
(yi − α

σ

)
, (7)

where ρ is a convex and piece-wise continuous function,
named the Huber’s cost function, and it is given by

ρ(e) =
{ 1

2e
2 ; for |e| ≤ c

c|e| − 1
2 c

2 ; for |e| > c. (8)

In Eq. (8), the parameter c is a tuning constant that
influences the degree of robustness of the estimator [50].
The Huber cost function is one of the most popular cost
functions in M-estimators since it combines the sensitiv-
ity properties of the �2 norm and the robustness to outliers
of the �1 norm [17]. Robustness properties of the Huber
estimator are dictated bye the scale parameter σ and the
tuning constant c. Since the Huber cost function is a com-
bination of the �2 and �1 norms, its influence function is
also a combination of the two related influence functions.
Thus, its influence function is bounded and piece-wise
continuous.

3.4 Myriad estimator
Now consider a set of observations {y1, y2, . . . , yn}, where
each observation again follows the linear model yi =
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α + zi, as described in the previous sub-section. However,
the elements zi are now i.i.d. samples obeying the stan-
dard Cauchy distribution. The Cauchy probability density
function is given by

f (z) = σ

π [ σ 2 + z2]
, (9)

where σ is the scale parameter. The ML best estimate of
α from a set of observations {y1, y2, · · · , yn}, where each
observation has a scale parameter σ , is given by

α̂ = argmin
α

n∑

i=1
log

[
σ 2 + (yi − α)2

]
. (10)

The solution for (10) is the myriad estimate. In this
case, instead of using the sample mean or the sample
median, the optimal solution minimizes the sum of loga-
rithmic square deviations, referred as the Least Lorentzian
Squares (LLS) criterion [16]. The influence function of the
myriad estimator is given by IF(x) = 2x/(σ 2 + x2). Note
that this influence function is everywhere continuous,
bounded, and asymptotically redescending. The myriad
estimate is denoted as

α̂ = MYRIAD(σ ; y1, y2, . . . , yn). (11)

Note that the myriad estimate is also the ML esti-
mator when zi follow the Student’s T distribution with
1 degree of freedom. The sample myriad has different
modes of operation that depend on the tuning of the scale
parameter σ , the so-called linearity parameter [72]. When
the noise is Gaussian, for example, values of σ larger
than the sample range, i.e., σ ≥ y(1) − y(0), where y(q)
denotes the sample q-th quantile, can provide the opti-
mal performance associated with the sample mean. On
the other hand, setting σ as half the interquartile range,
i.e., σ = (y(0.75) − y(0.25))/2, considers implicitly half the
samples unreliable, giving resilience to gross errors. For
highly impulsive noise statistics, mode-type estimators
can be achieved by using small values of σ [72]. Differ-
ent approaches to automatically adapt σ under different
noise scenarios [73] and to efficiently compute the myriad
estimate [74, 75] have been proposed.
In the following, the cost function of the myriad estima-

tor, defined in (10), is extended to define a robust metric,
known as the Lorentzian norm, for vectors in R

m. For-
mally, the Lorentzian norm of a vector u ∈ R

m is defined
as

‖u‖LL2,γ =
m∑

i=1
log

(

1 + u2i
γ 2

)

, γ > 0. (12)

The Lorentzian norm (or LL2 norm) is not a norm
in the strict sense, since it does not meet the positive
homogeneity and sub-additivity properties. However, it
defines a robust metric that does not heavily penalize large
deviations, with the robustness depending on the scale

parameter γ , thus making it an appropriate metric for
impulsive environments (optimal in ML sense under the
Cauchy model) [16, 72, 76, 77]. Further justification for
the use of the Lorentzian norm is the existence of logarith-
mic moments for algebraic-tailed distributions, as second
moments are infinite or not defined for such distributions
and therefore not an appropriate measure of the process
strength [13, 16].

3.5 M-generalized Cauchy estimator
Consider a set of observations {y1, y2, . . . , yn}, where each
observation follows the linear model yi = α + zi, and the
elements zi are i.i.d. samples obeying a generalized Cauchy
distribution (GCD). The probability density function of
the GCD is given by

f (z) = aσ(σ p + |z|p)−2/p, (13)

where a = p�(2/p)/2(�(1/p))2. In (13), the scale param-
eter is given by σ , and the tail decay of the distribution
is given by p. For the particular case p = 2, we have
the Cauchy distribution. The ML estimate of the location
parameter for GCD distributed samples is given by [77]:

α̂ = argmin
α

n∑

i=0
log[ σ p + (yi − α)p] . (14)

The particular cases of p = 1 and p = 2 yield the
meridian [78] andmyriad [76] estimators, respectively.

3.6 A few comments on the cost functions
Figure 1 compares the �1 norm, the Huber cost function,
with σ = 1 and c = 0.75, and the Lorentzian norm
with two different values of γ (γ = 1 and γ = 0.1) for
the one-dimensional case. The squared �2 norm is plot-
ted as reference. Compared to the squared �2 norm, the
�1, Huber and Lorentzian functions do not over penal-
ize large deviations, leading to more robust error metrics
when outliers are present. Notably, the Lorentzian norm
and the Huber cost function, for c < 1, are more robust
to outliers since they do not increase their value as fast as
the �1 norm when u → ∞.
In the same manner as the myriad estimator, robustness

properties of the Lorentzian norm are defined by the scale
parameter γ . The Lorentzian norm is convex in the inter-
val −γ ≤ u ≤ γ behaving as an �2 cost function for
small variations compared to γ and log-concave outside
this interval. Thus, small values of γ make the Lorentzian
more resilient to gross errors and large values of γ make
the Lorentzian similar to the squared �2 norm. Robustness
properties of the Huber cost function also depend on the
scale parameter σ and on the parameter c.
Although the Lorentzian norm is a nonconvex func-

tion, it is everywhere continuous and differentiable, which
are desirable properties when used as a cost function
in optimization problems. On the other hand, the �1



Carrillo et al. EURASIP Journal on Advances in Signal Processing  (2016) 2016:108 Page 6 of 17

Fig. 1 Comparison of the �1 (black) norm, the Huber cost function with c = 0.75 (magenta), and the Lorentzian norm with γ = 1 (blue) and γ = 0.1
(green) for the-one dimensional case. The squared �2 norm (red) is plotted as reference

and Huber functions are convex and continuous func-
tions, thus enjoying strong theoretical guarantees when
used in optimization problems. However, the �1 norm is
piece-wise continuous and not differentiable, which rules
out traditional smooth optimization methods based on
derivative information, whereas the Huber function is
everywhere differentiable.
Figure 2 depicts the characteristics of the Lorentzian

cost function (myriad estimator) for two different val-
ues of γ and for the �1 and Huber cost functions, in the
location estimation problem. The observation samples are
located in x = {−1, 0, 1, 10}. Note that for γ = 0.1,
the Lorentzian cost function exhibits four local minima,
whereas for γ = 1, the cost function is smoothed and only
two local minima are present.

4 Review of robust sparse signal reconstruction
methods

Recall that the CS signal estimation problem consists of
reconstructing an s-sparse signal x0 ∈ R

n from a reduced
set of noisy linear projections y ∈ R

m given by

y = �x0 + z, (15)

where z ∈ R
m is the noise vector with i.i.d. compo-

nents following a common distribution fz(z). If the noise
contains outliers, or is of impulsive nature, then it is
better characterized by a distribution with heavier-than-
Gaussian tails. A common model for the noise is to
assume that z = r0 + w, where r0 is modeled as a sparse
error whose locations of nonzero entries are unknown and

whose magnitudes can be arbitrarily large andw is a small
�2-bounded noise (possibly Gaussian). Another common
model is to assume that z follows a heavy-tailed distribu-
tion such as the Laplace distribution or the alpha-stable
distribution. In order to mitigate the effect of the impul-
sive noise in the compressive measurements, a robust
data-fitting term should be used.
In this section, we present a set of formulations and

methods for robust sparse signal reconstruction when the
signals are acquired in the presence of impulsive noise.
The approaches described herein are based on replacing
the �2 norm by the previously described robust metrics for
the data fidelity term.

4.1 �1-basedmethods
If the �2 norm is replaced by the �1 norm in the data-fitting
term, the CS reconstruction problem reduces to solving a
constrained LAD regression problem given by

min
x∈Rn

‖y − �x‖1 subjectto ‖x‖0 ≤ s. (16)

The problem in (16) is optimum under the ML assump-
tion that the noise obeys a Laplacian distribution. The
constraint term imposes sparsity in the estimated signal.
The formulation in (16) can be rewritten as an uncon-
strained regularized problem

min
x∈Rn

‖y − �x‖1 + τ‖x‖0. (17)

Different strategies have been proposed to solve (17).
Among these, a framework based on the coordinate
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Fig. 2 Comparison of the �1 (black) norm, the Huber cost function with c = 0.75 (magenta) and the Lorentzian norm with γ = 1 (blue) and γ = 0.1
(green) for the location estimation problem, with observation samples located in x = {−1, 0, 1, 10}

descent approach is proposed in [44], though the problem
in (17) is combinatorial and computationally expensive.
Therefore, convex relaxations to the �0 constraint have
been proposed. For instance, Wang et al. proposed the
following convex problem [20]

min
x∈Rn

‖y − �x‖1 + τ‖x‖1. (18)

The reconstruction problem is thus formulated as a
LAD �1 regularized problem (�1-LAD) whose theoretical
properties for statistical regression are studied in [20]. The
works in [23–28] study theoretical recovery conditions for
the following equivalent convex problem

min
x∈Rn,r∈Rm

τ‖x‖1 + ‖r‖1 subject to y = �x + r, (19)

where r is a slack variable that represents the cor-
rupting vector, i.e., z = r0, where r0 is a sparse
vector with unknown nonzero locations and possibly
large magnitudes. The parameter τ controls the bal-
ance between the two �1 terms in (19). If a large
value of τ is used, then the problem can recover a
dense error for a sufficiently sparse signal. On the
other hand, if a small value of τ is chosen, then only
a small fraction of corrupted measurements can be
corrected.
Approaches that model the corrupting noise as z =

r0 + w, where r0 is assumed sparse and w is a small
�2-bounded noise, are also studied [26–30]. These works
study theoretical recovery conditions of the following
convex program

min
x∈Rn,r∈Rm

τ‖x‖1 + ‖r‖1 subject to ‖y − �x − r‖2 ≤ ε,

(20)

where ε is an bound on the �2 norm of w.
Recovery guarantees based on the RIP of the extended

matrix [� I] were reported in [23]. These recovery guar-
antees are particularly useful when � is, for example, i.i.d.
Gaussian. Ngunyen and Tran reported results based on a
structured model of the matrix � [28]. They assume that
� is formed by selecting rows from an orthogonal matrix
with a low incoherence parameter μ, which is the mini-
mum value such that |�ij|2 ≤ μ/n for any i, j. Under these
assumptions, they showed that (20) can recover both x0
and r0 with high probability ifm ≥ Cμ2‖x0‖0(log n)2 and
‖r0‖0 ≤ γm, γ ∈ (0, 1), which are nearly optimal condi-
tions for the number of measurements and the sparsity of
the error vector, i.e., the number of gross errors that can
be corrected. The following theorem, shown by Li [27],
presents stable recovery guarantees under a probabilistic
model.
Theorem 1. ([27]) Let � ∈ R

m×n be a sensing matrix
whose entries are i.i.d. Gaussian random variables with
zero mean and variance 1/m and set τ = √

log(n/m) + 1.
Then, if ‖w‖2 ≤ ε, ‖x0‖0 ≤ γm/(log(n/m) + 1) and
‖r0‖0 ≤ γm, γ ∈ (0, 1), the solution to the convex problem
in (20), (x̂, r̂), satisfies

‖x0 − x̂‖2 + ‖r0 − r̂‖2 ≤ Kε (21)

with probability at least 1−C exp (−cm), where K, C, and
c are numerical constants.
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The results in Theorem 1 show that the signal can be
stably recovered if the number of gross errors is up to
a fixed fraction of the number of measurements. The
bounds on the number of measurements are nearly opti-
mal compared to the standard CS problem. Deterministic
recovery conditions based on the coherence of the matrix
� and the number of nonzero entries of x and r were
resported in [26, 30]. These coherence-based results do
not assume any particular model for the matrix �.
Ngunyen and Tran proposed the extended Lasso (or

robust Lasso, R-Lasso) estimator that solves the following
convex problem [29]

min
x∈Rn,r∈Rm

1
2
‖y − �x − r‖22 + τx‖x‖1 + τr‖r‖1, (22)

where τx and τr are regularization parameters. Recovery
guarantees based on a extended restricted eigenvalue con-
dition of the matrix � and bounds for the regularization
parameters τx and τr are studied in [29]. Note that the
problems in (20) and (22) are convex and can be effi-
ciently solved using standard optimization algorithms to
solve the �1-LS and BPD problems (see [59, 79]) by using
the extended model �̃ =[� I] and x̃ =[ xT , rT ]T . In the
following, we describe several approaches for solving (17)
and (18).

�1-based coordinate descent algorithm The problem in
(17) is combinatorial and nonsmooth, thus a greedy strat-
egy based on the coordinate descent algorithm and the
weighted median estimator is proposed in [44]. In this
scheme, each element of the sparse vector x is estimated
at each step, while keeping the other elements of the vec-
tor fixed. The solution for the one-dimensional problem is
then given by

x̃j = MEDIAN
{

|φi,j| � yi − ∑n
k=1,k �=j φi,kxk
φi,j

∣∣∣∣

m

i=1

}

.

(23)

The sparsity constraint given by the �0-regularization
norm is included in the solution by computing the
hard thresholding operator after computing the weighted
median estimate. Thus, the solution is

x̂j =
{
x̃j ; if ‖rj‖1 > ‖rj − φjx̃j‖1 + τ

0 ; otherwise,

where rj = y − ∑n
k=1,k �=j φkxk is the j-th residual term

that remains after removing the contribution of all the
components of the estimated vector except the j-th com-
ponent, and φk denotes the k-th column vector of the
measurement matrix. The coordinate-descent approach is
computationally expensive because the estimation of the
sparse vector requires cycling through all the components
at each iteration of the algorithm.

�1-based alternating direction method The problems
posed in (18) or (19) are convex but nonsmooth. How-
ever, they can be solved using the alternating direction
method of multipliers (ADMM) [79, 80]. ADMM solves
the extended �1 problem (19) by finding a saddle point of
the augmented Lagrangian function

τ‖x‖1+‖r‖1+zT (�x+r−y)+ β

2
‖�x+r−y‖22, (24)

where z is the Langrange multiplier’s vector and β > 0 is
a penalty constant.
The following iterative algorithm is derived in [80] to

find a solution for (19):

r(k+1) = Shrink(z(k)/β − �x(k) + y, 1/β)

x(k+1) = Shrink(x(k) − μg(k),μτ/β)

z(k+1) = z(k) − νβ(�x(k+1) + r(k+1) − y), (25)

where g(k) = �T (z(k)/β + �x(k) + r(k+1) − y) is
the gradient of the differentiable part of the augmented
Lagrangian function with respect to x and Shrink(·, ρ)

denotes the shrinkage operator defined as Shrink(a, ρ)i =
sgn(ai)max(|ai| − ρ, 0). The parameters μ and ν are step
sizes. Convergence conditions for μ and ν and strategies
to select β are detailed in [80].

4.2 �p-based methods
If the corrupting noise has heavier tails than the Laplacian
distribution, the �p norm, with 0 < p < 1, can be used
as the data-fitting term yielding the following recovery
optimization problem:

min
x∈Rn

‖y − �x‖pp + τ‖x‖1. (26)

The problem in (26) is optimal under theML criteria for
GGD noise and robust to very impulsive noise. Numeri-
cal methods have been proposed to efficiently solve (26)
for the 0 < p < 2 case [47]. The algorithm is based
on incorporating the proximity operator of the �p norm
into the framework of ADMM. For the nonconvex case
(0 < p < 1), a smoothing strategy has been employed to
derive a convergent algorithm. Stability results similar to
those derived in [41] are derived in [47] based on the RIP
of �.
Filipovic studied the following related problem [46]

min
x∈Rn,r∈Rm

τ‖x‖pp + ‖r‖pp subject to y = �x + r, (27)

where the �1 norm is replaced by the �p norm as sparsity
promoting function and r is a slack variable that repre-
sents the corrupting sparse vector. The following theorem
presents theoretical recovery conditions based on the RIP
of the extended matrix [� I].
Theorem 2. ([46]) Consider the extended sensing matrix
�̃ =[� I]. Denote by K1 = ‖x0‖0 and K2 = ‖r0‖0. Let
a1 ≤ 1 and a2 ≤ 1 be constants such that a1K1 and a2K2
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are integers and define a = min(a1, a2). Let c ≤ 1 and b be
constants such that

b = a
1
p− 1

2

2
1
p c2

> 1.

If

1
τ

∈
[
1
cp

(
a1K1
a2K2

)1− p
2
, cp

(
a1K1
a2K2

)1− p
2
]

and �̃ satisfies

δa1K1+a2K2 + b2δ(a1+1)K1+(a2+1)K2 < b2 − 1,

then the unique minimizer of (27) yields exactly x0 and r0.
Greedy methods that use the �p norm as data fidelity

term are also studied. Zeng et al. proposed robust versions
of MP and OMP, coined �p-MP and �p-OMP, respectively,
based on the notion of �p-space correlation, with 0 < p <

2, which is robust to outliers [48]. The �p-correlation is
defined as follows. Let a,b ∈ R

m with finite �p norm. Then
the �p-correlation, with 0 < p < 2, is defined as

cp(a,b) = 1 − minα∈R ‖b − αa‖pp
‖b‖pp

. (28)

The function ‖b−αa‖pp is the �p norm of the fitting error
of the univariate linear regressionmodel b = αa+zwhere
z denotes the error vector. If there exist an α such that
cp(a,b) = 1, then a and b are collinear. On the other hand,
if cp(a,b) = 0 then a and b are said to be orthogonal [48].

4.3 Huber loss-basedmethods
Consider now that data-fitting term in the CS reconstruc-
tion problem uses the Huber cost function that combines
the �2 and �1 norms. Then, a sparse signal can be esti-
mated by solving the following constrained problem [50]

min
x∈Rn,σ∈R+

σ

m∑

i=1
ρ
(yi − φT

i x
σ

)
+(m−s)ασ s.t. ‖x‖0 ≤ s,

(29)

where ρ is the piece-wise continuous and convex func-
tion defined in Eq. (8), φi denotes the column vector
obtained by transposing the i-th row of �, and α > 0
is a scaling factor. Note that the problem in (29) is com-
binatorial and that both x and the scale parameter σ

are simultaneously estimated. Ollila et al. [50] derived an
iterative hard thresholding algorithm coined Huber itera-
tive hard thresholding (HIHT) to solve the problem (29).
A detailed analysis of the selection of the parameters α

and c is presented in [50]. Also note that this framework
can be extended to any robust cost function that meets
some regularity conditions, e.g., the Tukey’s bi-weight
function [49].

Convex optimization approaches have also been pro-
posed by Pham et al. [51, 52]. In these works, the sparse
signal is estimated by solving the following convex uncon-
strained problem

min
x∈Rn

σ

m∑

i=1
ρ

(
yi − φT

i x
σ

)

+ λ‖x‖1, (30)

where σ is estimated beforehand and λ is a regularization
parameter that controls the sparsity level of the solution.
Efficient algorithms to solve (30) based on the fast iter-
ative shrinkage algorithm (FISTA) and ADMM and the
adequate selection of the parameter λ are presented in
[51, 52].

4.4 Lorentzian-basedmethods
For a more general type of heavy-tailed noise, the recon-
struction of sparse signals can be formulated using the
Lorentzian norm as a fitting term. The formulations and
algorithms described next are based on the Lorentzian
norm as a robust error metric, which is appropriate for
many impulsive environments.

Lorentzian-based basis pursuit Using the strong theo-
retical guarantees of �1 minimization for sparse recovery
in CS, Carrillo et al. studied the following nonconvex con-
strained optimization problem to estimate a sparse signal
from the noisy measurements [41]

min
x∈Rn

‖x‖1 subject to ‖y − �x‖LL2,γ ≤ ρ. (31)

The following theorem presents an upper bound for the
reconstruction error of the proposed estimator in (31).
Theorem 3. ([41]) Let � ∈ R

m×n be a sensing matrix
such that δ2s <

√
2 − 1. Then for any signal x0 such that

|supp(x0)| ≤ s, and observation noise z with ‖z‖LL2,γ ≤ ρ,
the solution to (31), x∗, obeys the following bound

‖x0 − x∗‖2 ≤ Csγ
√
m(eρ − 1), (32)

where the constant Cs depends only on δ2s.
Theorem 3 shows that the solution to (31) is a sparse

signal with an �2 error that is dependent on logarithmic
moments. Note that the dependence on the noise logarith-
micmoment, rather than its second order moment, makes
the formulation in (31) robust and stable to algebraic-
tailed and impulsively corrupted samples. The optimiza-
tion problem in (31) is referred to as Lorentzian BP (LBP).
The scale parameter γ controls the robustness of the
norm and ρ the radius of the LL2 ball thus defining the
feasible set. The scale parameter is estimated as γ =
(y(0.875) − y(0.125))/2, where y(q) denotes the q-th quantile
of the corrupted measurement vector y [41]. The reader is
referred to [41] for further details on strategies to estimate
γ and ρ based on the Cauchy model.
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The LBP problem is hard to solve since it has a nons-
mooth convex objective function and a nonconvex, non-
inear constraint. A sequential quadratic programming
(SQP) method with a smooth approximation of the �1
norm is used in [41] to numerically solve the problem
in (31). However, a less expensive approach is to solve a
sequence of unconstrained problems of the form

min
x∈Rn

‖y − �x‖LL2,γ + λ‖x‖1, (33)

where λ is a regularization parameter that is changed in a
decreasing manner at every iteration following an homo-
topy approach. The solution of the previous problem is
used as starting point for the next problem. Since the
Lorentzian norm is differentiable (though not Lipschitz
differentiable), a nonconvex proximal-gradient algorithm
[81] can be used to efficiently solve (33).

Lorentzian-based iterative hard thresholding algo-
rithm Even though Lorentzian BP provides a robust CS
framework in heavy-tailed environments, as explained
above, numerical algorithms to solve the proposed opti-
mization problem are not efficient [41]. Therefore, Car-
rillo and Barner proposed a Lorentzian-based iterative
hard thresholding (IHT) algorithm [42]. In order to esti-
mate x0 from y, the following optimization problem is
proposed:

min
x∈Rn

‖y − �x‖LL2,γ subject to ‖x‖0 ≤ s. (34)

The problem in (34) is nonconvex and combinatorial.
Therefore, the authors derive a greedy algorithm to esti-
mate x0 based on the gradient projection algorithm [42].
The proposed strategy is formulated as follows. Let x(t)

denote the solution at iteration time t and set x(0) to the
zero vector. At each iteration t, the algorithm makes the
update

x(t+1) = Hs
(
x(t) − μt�

TWt(�x(t) − y)
)
, (35)

where Hs(a) is the nonlinear operator that sets all but the
largest (in magnitude) s elements of a to zero, μt is a step
size, andWt is anm×m diagonal matrix with each element
defined as

Wt(i, i) = γ 2

γ 2 + (yi − φT
i x(t))2

, i = 1, . . . ,m,

where φi denotes the column vector obtained by transpos-
ing the i-th row of �.
The algorithm defined by the update in (35) is coined

Lorentzian iterative hard thresholding (LIHT). Note that
Wt(i, i) ≤ 1, thus, the weights diminish the effect of gross
errors by assigning a small weight (close to zero) for large
deviations compared to γ , and a weight near one for devi-
ations close to zero. In fact, if Wt is the identity matrix,

the algorithm reduces to the �2-based IHT [63]. The algo-
rithm is a fast and simple method that only requires the
application of � and �T at each iteration.
Although the algorithm is not guaranteed to converge to

a global minimum of (34), it can be shown that LIHT con-
verges to a local minimum [42]. In the following, we show
that LIHT has theoretical stability guarantees similar to
those of the �2-based IHT. For simplicity of the analysis,
we set μt = 1 and assume that ‖�‖ ≤ 1, where ‖ · ‖
denotes the spectral norm of a matrix.
Theorem 4. ([42]) Let x0 ∈ R

n and define S = supp(x0),
|S| ≤ s. Suppose � ∈ R

m×n meets the RIP of order 3s with
δ3s < 1/

√
32. Assume x(0) = 0. Then, if ‖z‖LL2,γ ≤ τ , the

reconstruction error of the LIHT algorithm at iteration t is
bounded by

‖x0 − x(t)‖2 ≤ αt‖x0‖2 + βγ
√
m(eτ − 1), (36)

where α = √
8δ3s and β = √

1 + δ2s(1 − αt)(1 − α)−1.
The results in Theorem 4 can be easily extended to

compressible signals using Lemma 6.1 in [82]. The scale
parameter γ is estimated from y in the same manner
described previosly for LBP. The step size μt is adapted at
every iteration using a line search scheme with backtrack-
ing. See [42] for details.

Lorentzian-based coordinate descent algorithm In the
context of CS random projections contaminated with
Cauchy distributed noise, a suitable formulation for the
reconstruction of sparse signals is

min
x∈Rn

‖y − �x‖LL2,γ + τ‖x‖0 (37)

where τ is a regularization parameter that balances the
influence of the Lorentzian norm as fitting-term and the
sparsity-inducing term (�0-term) on the optimal solution.
The coordinate-descent approach updates the estimate of
each element of the sparse vector x, while keeping the oth-
ers fixed. Without loss of generality, the solution for the
one-dimensional version of (37) is given by the following
theorem.
Theorem 5. ([43]) Let the function Q(zj; xj), with zj =
[ z1,j, . . . , zm,j], be the Lorentzian norm, for the one-
dimensional case, defined as

Q(zj; xj) =
m∑

i=1
log

[
κ2 + Wi,j(zi,j − xj)2

]
(38)

where κ is a linearity parameter and Wi,j = κ2

η2i,j
are the

weights having the parameter ηi,j given by ηi,j =
∑m

i=1,i�=j |yi|
φi,j

.
The elements zi,j correspond to the i-th observation sample
weighted by the element (i, j) of the sampling matrix, i.e.,
zi,j = yi

φi,j
. The solution to the �0-Regularized Lorentzian

problem in (37) is given by
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Fig. 3 Sparse signal reconstruction example from α-stable corrupted measurements (s = 10,m = 100, n = 400, and α = 1). a True signal. b Clean
measurements. c Noisy measurements. d Reconstructed signal using �1-LS (SER = −6.5 dB). e Reconstructed signal using �1-CD (SER = 28.2 dB). f
Reconstructed signal using L-CD (SER = 25.1 dB). g Reconstructed signal using LBP (SER = 24.0 dB). h Reconstructed signal using LIHT
(SER = 24.0 dB). i Reconstructed signal using R-Lasso (SER = 8.9 dB). j Reconstructed signal using �1-LAD (SER = 16.9 dB). k Reconstructed signal
using Huber-IHT (SER = 25.1 dB). l Reconstructed signal using �1-OMP (SER = 24.1 dB)
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x̂j =
{
x̃j ; if Q(zj; 0) > Q(zj; x̃j) + τ

0 ; otherwise,

where x̃j = argminxj Q(zj; xj) and τ is the regularization
parameter that governs the sparsity of the solution.
Since this method requires the estimation of one coordi-

nate at a time per iteration, the method is computationally
expensive. A modified version, that accelerates the recon-
struction of sparse signals by determining which coordi-
nates are allowed to be estimated at each iteration, was
proposed in [83].

5 Illustrative numerical examples
In this section, we present numerical experiments that
illustrate the robustness and effectiveness of the reviewed
methods, for the recovery of a sparse signal from noisy
compressive samples. In particular, we compare the per-
formance of the following robust methods: �1-based coor-
dinate descent (�1-CD) [44], the �1-LAD method solved
by ADMM, Lorentzian-based basis pursuit (LBP) [41],
Lorentzian-based iterative hard thresholding (LITH) [42],
Lorentzian-based coordinate descent (L-CD) [43], the
robust lasso (R-Lasso) method [29], the Huber iterative
hard thresholding (HIHT) method [50], and the �1-OMP
method [48]. In order to evaluate the susceptiveness to
outliers of traditional CS methods, we also include the
performance of the �1-LS method [58].
First, all methods are tested in the reconstruction

of a synthetic 10-sparse signal in the canonical basis,
with length n = 400. The nonzero coefficients have
equal amplitude, equiprobable sign, and randomly chosen
position. Gaussian sensing matrices are employed with
m = 100, and the measurements are then contaminated
with α-stable noise (with α = 1). Figure 3a shows the true
signal and Fig. 3b, c shows the clean and contaminated
measurements, respectively.

Figure 3d–l depicts the reconstructed signal obtained
with all nine methods. Performance is measured using the
signal-to-error ratio (SER), defined by

SER(dB) = 10 log10

{ ∑n
i=0 x2i∑n

i=0(xi − x̂i)2

}

. (39)

For the proposed experiment (see Fig. 3), all methods
perform relatively well at reconstructing the sparse signal
from a small number of random measurements, except
the �2-based �1-LS method. It is clear that the traditional
�1-LS method for CS fails at estimating the sparse signal
when gross errors are present in the compressed mea-
surements. R-Lasso and �1-LAD are slightly more robust
than �1-LS because the true support is correctly estimated
although some components outside the true support also
have strong amplitude. On the other hand, the coordinate
descent approaches �1-CD and L-CD are greedy methods
that correctly identify the true support with correct ampli-
tudes. A few components appear at wrong coordinates but
with small amplitude values. LIHT, LBP, HIHT, and �1-
OMPmethods can also correctly identify the components
but the amplitudes are not completely correct. A summary
of the reconstruction of the sparse one-dimensional signal
for all methods is given in the third column of Table 1.
The second experiment explores the behavior of all nine

methods in the reconstruction of a sparse signal from
measurements acquired in different impulsive environ-
ments. We compare all methods in the reconstruction of
a sparse signal having the same characteristics as in the
first experiment, i.e., s = 10,m = 100, n = 400. How-
ever, now the random projections are contaminated with
α-stable noise, with the tail parameter, α, varying from 0.2
to 2, i.e., from very impulsive to the Gaussian case. The
scale parameter of the noise is set to σ = 0.01 for all cases.
The results are depicted in Fig. 4. All results are averaged
over 100 realizations of the sensing matrix, noise, and the
sparse signals.

Table 1 Summary of sparse reconstruction methods

Method Optimization problem SER for signal [dB] SER for image [dB] Time [s]

LBP ‖y − �x‖LL2,γ + λ‖x‖1 24.0 20.7 10.58

LIHT ‖y − �x‖LL2,γ s.t. ‖x‖0 ≤ s 24.0 19.4 2.13

R-Lasso 1
2‖y − �x − r‖22 + τx‖x‖1 + τr‖r‖1 8.9 18.1 7.23

L-CD ‖y − �x‖LL2,γ + τ‖x‖0 25.1 19.2 6522.7

�1-CD ‖y − �x‖1 + τ‖x‖0 28.2 20.3 3814.2

�1-LS 1
2‖y − �x‖22 + λ‖x‖1 –6.5 7.3 4.73

�1-LAD ‖y − �x‖1 + τ‖x‖1 16.9 19.6 7.05

HIHT
∑M

i=1 ρ
( yi−φT

i x
σ

)
s.t. ‖x‖0 ≤ s 25.1 19.4 90.78

�1-OMP ‖y − �x‖1 s.t. ‖x‖0 ≤ s 24.1 – –

First column acronym for the method. Second column optimization problem. Third column SER in dB obtained in the reconstruction of a sparse signal. Fourth column SER in dB
obtained in the reconstruction of the cameraman image. Fifth column execution time required to reconstruct the cameraman image
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Fig. 4 Sparse signals reconstruction from α-stable corrupted measurements, for α varying from 0.2 to 2 (s = 10,m = 100, n = 400)

It can again be noticed that the �1-LS and �1-OMP
methods fail at reconstructing the signals in very impul-
sive noise (for α < 1). As the α tail parameter increases,
these methods improves the average SER, giving the best
result for the Gaussian case. The �1-OMP method yields
faithful reconstructions for α > 1.2. The robust-lasso (R-
Lasso) is able to reconstruct sparse signals when the noise

tail parameter is larger than 0.8. For very impulse noise
(α < 0.8), the reconstruction SER is highly degraded. All
other robust methods are able to reconstruct the sparse
signals, even in noise environments with tail parameters
of α > 0.4. Figure 4 shows that the robust methods, not
only work well in impulsive environments but also when
the noise is Gaussian.

Fig. 5 Example of a 256 × 256 image sampled by a random DCT ensemble withm = 32718. The measurements are corrupted by α-stable noise
with α = 1 and σ = 0.01. Top clean measurements. Bottom corrupted measurements
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Fig. 6 Cameraman image reconstruction (with zoomed of the bottom right area) example from Cauchy corrupted measurements. a Original image.
b Reconstructed image using �1-LS (SER = 7.3 dB). c Reconstructed image using �1-LAD (SER = 19.6 dB). d Reconstructed image using R-Lasso
(SER = 18.1 dB). e Reconstructed image using LBP (SER = 20.7 dB). f Reconstructed image using LIHT (SER = 19.4 dB). g Reconstructed image using
�1-CD (SER = 20.3 dB). h Reconstructed image using L-CD (SER = 19.2 dB). i Reconstructed image using Huber-IHT (SER = 19.4 dB)

The last experiment shows the performance of the
reviewed methods in the reconstruction of the camera-
man image of size 256 × 256 from a set contaminated
measurements. We take m = 32, 768 measurements,
i.e., 50 % undersampling, acquired using a random DCT
ensemble, and we used the Daubechies db4 wavelet
as sparsity representation basis. The measurements are

contaminated with α-stable noise, having tail parameter
α = 1 and scale parameter σ = 0.01. The �1-OMP
method is not included in this experiment due to its high
computational cost when dealing with compressible high
dimensional signals.
In Fig. 5, the top shows the clean random measure-

ments obtained with the DCT ensemble and the bottom
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shows the measurements contaminated with heavy-tailed
noise. Results of the image reconstruction are depicted in
Fig. 6. Figure 6a shows the original image, and Fig. 6b–i
shows the reconstructions for eight methods: �1-LS, �1-
LAD via ADMM, R-Lasso, LBP, LIHT, �1-CD, L-CD, and
HIHT. Note that the �1-LS generates several artifacts, and
the image is not correctly reconstructed. The �1-LAD via
ADMM, �1-CD, and LBP methods generate images with
better quality than R-Lasso, LIHT, L-CD, and HIHT such
that even small details are preserved. A summary of the
performance of the methods for this experiment is given
in terms of SER (in dB) and execution times (in s), in
columns 4 and 5 of Table 1, respectively.
Note that the convex methods, namely, �1-LAD and R-

Lasso, are fast and offer a good computational efficiency
since there have been a lot of recent efforts in solving
large-scale convex problems [84]. Also, these methods
enjoy the rich theoretical guarantees for convex problems.
The rest of the methods are based either on noncon-
vex cost functions or nonconvex constraint sets, thus
only convergence to a local minimum can be guaranteed.
Also note that all methods, except the coordinate descent
methods, �1-CD and L-CD, and the �1-OMP method,
do not need to explicitly form the sensing matrix � but
only need functions that implement the matrix-vector
multiplication by � and �T at each iteration. Thus, if
fast implementations are available for such functions, the
computational complexity of the algorithms can be largely
reduced. On the other hand, the coordinate descent meth-
ods are not computationally efficient because only one
coordinate is estimated at each iteration and an explicit
representation of the matrix � is needed. However, these
methods offer scalability when the sensing matrix is very
large and can only be accessed one row per iteration.
Also, fast methods have been proposed where only those
coordinates with larger influence in the residuals are esti-
mated at each iteration [83]. The �1-OMP method is
not computationally efficient for high dimensional sig-
nals because it needs an explicit representation of the
matrix � in order to perform the �1 correlation with
every column of the sensing matrix at each iteration of
the algorithm. Recall that computing an �1 correlation
between two vectors involves solving an scalar regression
problem.
Regarding implementation issues, most methods have

free parameters to tune in order to yield a good perfor-
mance. The greedy methods, such as LIHT, HIHT, and �1-
OMP, are sensitive to know the correct sparsity level a pri-
ori. The other methods do not require prior assumptions
of the degree of sparsity. The Lorentzian-based methods,
namely LBP and LIHT, are sensitive to finding a good ini-
tial estimate of the scale parameter whereas the HIHT
method estimates both the signal and the scale parameter
of the cost function. The �1-CD method depends a lot on

the number of iterations and a rate decay parameter that
has to be fixed beforehand. The HIHT method relies on a
good tuning of the c constant to get a good performance.

6 Conclusions
We presented a review of robust sparse reconstruction
strategies in CS when the compressive measurements are
corrupted by outliers or impulsive noise. The reviewed
methods are based on employing M-estimators as data
fitting terms and include greedy and optimization-based
approaches to solve the inverse problems. The robust
methods are shown to outperform existing CS techniques
(that traditionally use �2 norms for data fitting) when
the measurements have gross errors, while having similar
performance in light-tailed environments.
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