
EURASIP Journal on Advances
in Signal Processing

Pu et al. EURASIP Journal on Advances in Signal
Processing  (2016) 2016:110 
DOI 10.1186/s13634-016-0407-2

RESEARCH Open Access

A residual range cell migration correction
algorithm for bistatic forward-looking SAR
Wei Pu*, Yulin Huang, Junjie Wu, Jianyu Yang and Wenchao Li

Abstract

For bistatic forward-looking synthetic aperture radar (BFSAR), images are often blurred by uncompensated radar
motion errors. To get refocused images, autofocus is a useful postprocessing technique. However, a severe drawback
of the autofocus algorithms is that they are only capable of removing one-dimensional azimuth phase errors. In
BFSAR, motion errors and approximations of imaging algorithms introduce residual range cell migration (RCM) on
BFSAR data as well. When residual RCM is within a range resolution cell, it can be neglected. However, the residual
migration, which exceeds a range cell, is increasingly encountered as resolution becomes finer and finer. A novel
residual RCM correction method is proposed in this paper. By fitting the low-frequency phase difference of adjacent
azimuth cells, residual RCM of each azimuth cell can be corrected precisely and effectively. Simulations and real data
experiments are carried out to validate the effectiveness of the proposed method.

Keywords: Bistatic forward-looking synthetic aperture radar (BFSAR), Residual range cell migration (RCM),
Low-frequency fitting

1 Introduction
Forward-looking imaging is highly desirable in some
applications, such as airplane navigation and landing.
Due to the ability to obtain high-resolution image of the
forward-looking terrain, bistatic synthetic aperture radar
(SAR) is drawing more andmore attention in recent years.
However, the moving platforms introduce relative motion
between radars and observed scene, which induces range
cell migration (RCM) to bistatic forward-looking SAR
data. The procedure of RCM correction is essential for the
frequency domain imaging algorithms.
Usually, RCM cannot be corrected completely in prac-

tical application. The reason is that there are some resid-
ual components, namely residual RCM. And the residual
RCM is introduced by motion errors [1]. In the pre-
sumption that residual RCM is within a range resolution
cell, residual RCM can be neglected [2, 3], and motion
errors can be compensated by autofocus methods com-
pletely. Generally speaking, residual RCM is relatively
small and can be neglected in monostatic SAR, while the
unique characteristics of BFSAR makes the residual RCM
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exceeding range resolution cell inevitable. On the one
hand, the separated platforms of BFSAR induce motion
errors much larger than the errors in monostatic SAR
raw data. On the other hand, the higher order terms of
range migration are always neglected in BFSAR imaging
algorithms. However, the impacts of these higher order
terms become serious when the squint angle gets larger
and the resolution gets higher. In this situation, resid-
ual RCM correction becomes a necessary procedure for
BFSAR imaging. In principle, it is possible to compute
the residual RCM from orbit and attitude data provided
by an ancillary instrument such as inertial measurement
units (IMU) and global positioning system (GPS). Nev-
ertheless, measurement uncertainties on the data would
limit the accuracy, and the data remains unknown for
some unmanned aerial vehicles without ancillary instru-
ment. Thus, residual RCM correction based on SAR data
is indispensable.
To correct residual RCM based on SAR data, three alter-

native strategies are available. (1) Estimate the azimuth
phase error term firstly, and then calculate the resid-
ual RCM from the estimated azimuth phase error [4].
In [4], the range compressed data is processed to a new
coarser range resolution so that the presumption of aut-
ofocus is met. Therefore, the azimuth phase errors can
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be obtained using autofocus method from the new range
compressed data and then the residual RCM can be cal-
culated and compensated. However, as the azimuth phase
errors are estimated in coarse resolution, the estimation
precision of azimuth phase errors and residual RCM can-
not satisfy the demands of high-resolution BFSAR. (2)
Estimate residual RCM by making use of the relation-
ship between azimuth phase errors and residual RCM.
Mao et al. [3] deduces an accurate analytical relation-
ship between azimuth phase errors and residual RCM in
spotlight SAR. Using this relationship, a 2-D autofocus
method, which can compensate the azimuth phase errors
and residual RCM simultaneously, is proposed. Neverthe-
less, this relationship is valid just in the case of spotlight
SAR data, so that applicability of this method is limited.
(3) Estimate the residual RCM independently. The resid-
ual RCM correction method proposed in [5] is based on
range alignment algorithm which is utilized in transla-
tional motion compensation on inverse SAR (ISAR)[6, 7].
However, parametric model of the range displacement in
[6] restricts the estimation accuracy, and the interpolation
procedure in [7] requires exhaustive computation.
In [8], a novel residual RCM correction algorithm based

on low-frequency fitting is proposed for monostatic SAR
to correct the motion-induced errors. In this paper, this
residual RCM correction algorithm is greatly improved to
cope with BFSAR data. By estimating the residual RCM
utilizing the least-squares method in the low-frequency
area and compensating the displacement in frequency
domain, a sub-pixel level correction result can be achieved
in this proposed method. Compared with previous works
on residual RCM correction of SAR data, the proposed
method can realize residual RCM correction with accu-
racy of sub-pixel level but requiring neither interpolation
nor parametric model. Compared with [8], the novelty of
the proposed method in this paper includes two parts.
Firstly, a phase difference denoising procedure is added
to make the proposed method more robust and can be
adapted to the practical condition. Secondly, the one iso-
lated dominant target assumption is not indeed needed
for the proposed method, which makes the proposed
method can be widely used in most practical condition.
Furthermore, the range curvature term and even higher
order terms, which is the unique problem in BFSAR, also
can be solved by the proposed method. Simulation and
real BFSAR data-processing results are presented to verify
the effectiveness of the proposed method.

2 Problem formulation
The geometric model in Fig. 1 provides the basis for
BFSAR imaging. In the ideal condition, the transmitter
and receiver are moving along parallel tracks with equal
velocity. The squint angles φT and φR and initial ranges
RTcen and RRcen shown in Fig. 1 are measured at the

Fig. 1 Geometric model of BFSAR

composite beam center crossing time of the reference
target P.
Assume that linear frequency modulated (LFM) pulses

are transmitted by the radar. The demodulated signal from
the reference target in the presence of motion errors can
be adequately described by

s(τ , t) = rect
[

τ − R̄(t)/c
Tr

]
rect

(
t
Ta

)

× exp
{

−jπKr

[
τ − R̄(t)

c

]2}

× exp
{
−j2π

R̄(t)
λ

}
(1)

where Kr is the transmitted chirp rate, Tr is the timewidth
of the LFM pulse, and Ta is the synthetic aperture time.
The range time is given by τ , and t denotes the cross-
range time, λ is the wavelength, and c is the speed of
propagation.
In (1), R̄(t) is the instantaneous two-way range of refer-

ence target P in the presence of motion errors. R̄(t) can be
formulated as

R̄(t) = R(t) + δR(t) (2)

where δR(t) denotes the instantaneous range displace-
ment induced by motion errors, and R(t) represents the
nominal instantaneous two-way range.

R(t) =
√
R2
Tcen + (Vt)2 − 2RTcenVt cosφT

+
√
R2
Rcen + (Vt)2 − 2RRcenVt cosφR (3)
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Expand (3) at t = 0 to its Taylor series and R(t) can be
rewritten as

R(t) = RTcen + RRcen

− (V cosφR + V cosφT ) t

+
(
V 2sin2φR
2RRcen

+ V 2sin2φT
2RTcen

)
t2 + · · · (4)

The linear and quadratic terms in (4) are called the
range walk and range curvature, respectively. In BFSAR,
the total range cell migration (RCM) is dominated by
the range walk component [9]. Usually, linear RCM cor-
rection (LRCMC) procedures in azimuthal time domain
like squint minimization [10] and keystone transform
[11] are utilized to correct the range walk. After range
compression and LRCMC, a coarse range focusing signal
s′(τ , t) is obtained.

s′(τ , t) = sin c
[
τ − RTcen + RRcen

c
− �R(t)

c

]

rect
(

t
Ta

)
exp

[
−j

2π
λ
R̄(t)

]
(5)

where �R(t) in the range profile is

�R(t) = δR(t) +
(
V 2sin2φR
2RRcen

+ V 2sin2φT
2RTcen

)
t2 + · · ·

(6)

In (5), the displacement �R(t)/c in the range profile is
residual RCM. To illustrate the influence of residual RCM,
the simple sketch map of residual RCM is shown in Fig. 2.

In Fig. 2, the solid line denotes the migration trajectory
of a prominent scatter after range compression and range
cell migration.
The nonlinear migration trajectory in Fig. 2 is intro-

duced by residual RCM. When the residual RCM exceeds
a range resolution, 2-D defocus will emerge in the final
image. The reason is that the energy of target scatter dif-
fuses in several range cells and induces image defocus in
range direction. Besides, the general presumption of aut-
ofocus is not valid, and there is considerable challenge for
autofocus methods. When the autofocus procedures are
performed in the azimuth direction, the azimuth signal
is assumed to be a LMF signal. While in the condi-
tion that the residual RCM exceeds a range resolution,
the energy of one target scatter diffuses in several range
cells. Thus, the azimuth signal in a given range bin is
not a complete LFM signal any more. Autofocus meth-
ods can not be correctly utilized as for a incomplete
LFM signal. Hence, autofocus techniques are not effec-
tive if the residual errors are larger than range cell. And
therefore, the image results defocus in azimuth direction
as well.
Therefore, in order to obtain high-resolution BFSAR

image, residual RCM correction is essential.

3 Residual RCM correction
In this section, a novel residual RCM correctionmethod is
proposed. Residual RCM of each azimuth cell is corrected
one by one. Here, the residual RCM correctionmethod for
one azimuth cell is presented in the rest of this section.

3.1 Row correlation analysis
Let fm[ n] and fm+1[ n] denote the adjacent azimuth cells
of BFSAR data as shown in Fig. 2, where m = 1, 2, · · · ,M

Fig. 2 Illustration of residual RCM
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indexes the transmitted pulses and n = 1, 2, · · · ,N stands
for the samples taken from each pulses, M is the azimuth
sample number, and N is the range sample number.
According to (5), fm[ n] and fm+1[ n] can be written as

fm[ n]= A sin c
(
n − R0

c
− �Rm

c

)
exp

(
−j

2π R̄m
λ

)

(7)

fm+1[ n]= A sin c
(
n − R0

c
− �Rm+1

c

)

exp
(

−j
2π R̄m+1

λ

)
(8)

where R̄m and �Rm denote the slant range and range dis-
placement measured at themth transmitted pulse, respec-
tively; R̄m+1 and �Rm+1 denote the slant range and range
displacement measured at the (m+1)th transmitted pulse,
respectively.
From (7) and (8), the relationship between the adjacent

azimuth cells fm[ n] and fm+1[ n] can be deduced.

∣∣fm+1[ n]
∣∣ = ∣∣fm [n − nm+1]

∣∣ (9)

where nm+1 denotes the displacement between
∣∣fm[ n]∣∣

and
∣∣fm+1[ n]

∣∣.

nm+1 = �Rm+1 − �Rm
c

(10)

That is to say, apart from the displacement nm+1,
two adjacent rows of the data can be considered as
approximately equal.
The similarity of adjacent rows can be measured by the

correlation value (CV), which is defined as:

r =
∑
i

(
gm+1[ n]−ḡm+1

) (
gm[ n]−ḡm

)
√[∑

n

(
gm+1[ n]−ḡm+1

)2] [∑
n

(
gm[ n]−ḡm

)2]

(11)

where r is the correlation value of adjacent rows,

gm+1[ n] = ∣∣fm+1[ n]
∣∣

gm[ n] = ∣∣fm[ n]∣∣ (12)

In this article, it is assumed that the adjacent rows of
data can be regarded as approximately equal if the aver-
age CV is larger than 0.85. Fortunately, the range focused
data of natural scenes collected by BFSAR system can sat-
isfy this condition. Figure 3a presents the simulated range
focused data with one target, and Fig. 3b depicts the cor-
relation function curve of the range focused data. White
Gauss noise with SNR = 5 dB is added into the simu-
lated data. Simulation parameters are listed in Table 1.
It can be seen that the CVs meet the requirements
completely.
Taking the real data of BFSAR as an example, and calcu-

lating the correlation value of 10,000 group adjacent rows,
respectively, we can get the correlation function curve in
Fig. 4b. We carry out an airborne BFSAR experiment in
2012 [12]. The actual data comes from the experiment. It
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Fig. 3 a Range focused signal of the simulation data. b CV between adjacent rows
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Table 1 Simulation parameters

Parameter Value

Carrier frequency 10 GHz

Band width 400 MHz

Synthetic aperture time 5 s

Nominal Radar platform velocity 100 m/s

Pulse repetition frequency 600 Hz

Coordinates of the transmitter (1, 0.6, 0.8) km

Coordinates of the receiver (0, 1.2, 0.7) km

Size of mean filter window 3

is shown in Fig. 4b that due to the continuity of the scene,
the CVs of adjacent rows are all above 0.87, i.e., the adja-
cent rows of data can be regarded as approximately equal.
It can be seen that the CVs meet the requirements as for
the BFSAR data as well.
Hence, it is reasonable to regard the two adjacent rows

of the data as approximately equal, and this feature pro-
vides the theoretical basis for the proposed algorithm.

3.2 Phase difference extraction
According to (7), (8), and (10), we can write

Fm+1(ω) =Fm(ω)

exp
[
−jωnm+1 − j

2π
(
R̄m+1 − R̄m

)
λ

]

(13)

where Fm+1(ω) and Fm(ω) are the frequency spectra of
fm+1[ n] and fm[ n], respectively. Then, phase difference
between Fm+1(ω) and Fm(ω) can be calculated by Eq. (14).

	(ω) = −nm+1ω − 2π
(
R̄m+1 − R̄m

)
λ

(14)

where 	(ω) ∈ (−π ,π ] denotes the phase difference
between Fm+1(ω) and Fm(ω). As known to all, the phase
is limited to the interval of (−π ,π ] and leads to the tran-
sition of a phase difference from −π to π . In order to
get a continuous phase difference curve, it is necessary
to unwrap the phase spectrum while limited SNR of a
BFSAR data can result in a great difference between adja-
cent rows of data. Hence, there will be a large local jitter
in the phase difference curve, which will lead to failure
of phase unwrapping. As a result, the number of fitting
points to a linear function would decrease. Therefore, the
phase difference curve should be denoised and smoothed
before unwrapping.

3.3 Phase difference denoising
A median filter or a mean filter can not be simply applied
into the denoising of phase, because they would seriously
destroy the transition property in the phase difference
spectrum. Let 	[ n] denote the discrete version of the
	(ω). Consider the phase sequence

a[ n]= cos (	[ n] ) (15)
b[ n]= sin(	[ n] ) (16)

The formulas mentioned above make the original phase
	[ n] transform into the continuous sine/cosine phase
sequence a[ n] and b[ n], which then can be filtered by
the mean filter as
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Fig. 4 a Range focused signal of the real data. b CV between adjacent rows
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ā[ n]= 1
M

∑
i∈W

a[ n] (17)

b̄[ n]= 1
M

∑
i∈W

b[ n] (18)

where W is the neighborhood with center n and M is the
size of mean filter window. In the phase difference curve,
the jitter at some locations is large, while other locations
are relatively flat. Therefore, the size of the mean filter
windowM can not be a constant value, but should change
with a specific parameter. When the jitter is large, a small
window should be used; otherwise, it is likely to make
the curve too flat. When the jitter is flat, a larger win-
dow should be used, which makes the curve as smooth
as possible. Calculate the arctangent function through the
filtered sin/cosine values as

	1[ n]= arctan
b̄[ n]
ā[ n]

(19)

By using the arctangent function as inverse mapping,
the filtered sawtooth phase is limited in the interval of
(−π/2,π/2]. By judging the quadrant of the phase differ-
ence sequence through the positive and negative relation-
ship between sine and cosine values, the filtered smooth
phase difference sequence can be determined. After
the phase difference denoising procedure, the jitter in the
phase difference decreases a lot, which makes the phase
unwrapping more accurately.
In principle, the displacement nm+1 can be estimated

by fitting the slope of the phase difference curve 	1[ n].
However, the displacement estimated at this point is inac-
curate. The reason is that there exists some minute dif-
ferences between two adjacent rows due to the noise

and clutter in practical application. The corresponding
solution will be discussed in the next subsection.

3.4 Low-frequency fitting
Information between fm[ n − nm+1] and fm+1[ n] can
be divided into macroscopic similarity and detailed
difference, which correspond to low-frequency and
high-frequency components in frequency spectrum,
respectively. The low-frequency part, which corresponds
to the similarity of adjacent azimuth cells, is a data seg-
ment similar to the ideal phase curve, and it can be fit to a
straight line. While the high-frequency part, which corre-
sponds to the detailed difference of adjacent azimuth cells,
cannot be fit correctly.
Therefore, taking the low-frequency spectrum informa-

tion to fit the phase difference curve with the least-squares
method is a feasible way precise estimation. In the fol-
lowing, a strategy to select the low-frequency part is
presented.

1. The first-order differential of the phase difference
curve can be calculated as

�	[ n]= 	1[ n]−	1[ n − 1] (20)

2. By using a mean filter, the derivative curve is
smoothed.

ϕ[ n]= 1
M

∑
i∈W

�	[ n], (21)

where W is the neighborhood with center n and M
is the size of mean filter window.

3. Search peaks of ϕ[ n] from the central zero frequency.
If the peak value is larger than the threshold, set the
fitting area between zero and the peak value.

Fig. 5 Flowchart of the proposed method for a single azimuth cell
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1[ ]mf n

[ ]mf n

Fig. 6 Illustration of residual RCM in the presence of two dominant
targets

The differential phase difference in step 2 presents a
notch area in the low-frequency part. The adjacent aver-
age method in step 2 aims at reducing false positives,
which means avoiding putting the jitter low-frequency
points into the high-frequency points. Step 3 selects the
low-frequency part by searching the notch area of differ-
ential phase difference.
At this point, least-squares method is utilized to fit the

slope nm+1 in the low-frequency part. Then, correspond-
ing correction result f̃m+1[ n] can be achieved according
to (22).

f̃m+1[ n]= IFT
[
Fm+1(ω)ejωnm+1

]
(22)

To make it clear, the flowchart of the proposed residual
RCM correction method for a single azimuth cell is shown
in Fig. 5.

3.5 Discussion
In the proposed method, a dominant point-target model,
i.e., the presence of one strong scatterer per footprint.

Indeed, when only distributed targets are present sig-
nificant decorrelation between adjacent azimuth cells is
expected to appear. For example, when two dominant tar-
gets are located in the scene, the signal after coarse range
focusing is shown in Fig. 6.
As for the azimuth bins fm[ n] and fm+1[ n], there are

significant decorrelation, and the relationship in Eq. (9)
cannot be satisfied. In this condition, the assumption for
the proposed method is not valid, and we cannot esti-
mate the range deviation difference between these two
range bins. In order to cope with this problem, the CV
between the adjacent azimuth bins should be calculated
first. Then, as for the azimuth bins that the CV is smaller
than the threshold, we do not estimate the range deviation
difference. After the range deviation differences of most
azimuth bins are estimated, the range deviations of the
azimuth bin, whose CV is smaller than the threshold, are
estimated based on the range deviation difference of the
adjacent azimuth bins by the fitting methods.
In addition, computational complexity of the proposed

method is analyzed here. Suppose the range and azimuth
samples are Nr and Na, respectively. The computational
complexity of the proposed residual RCM correction
method for a single azimuth cell is elaborated as follows.
(1) The phase difference extraction procedure uses two
times Fourier transform and two times phase factor mul-
tiplication. The computational complexity isO(Nr logNr).
(2) The phase difference denoising procedure uses five
times phase factor multiplication and one 1-D phase
unwrap processing. The phase unwrap processing in [13]
is utilized in this paper, and the computation complex-
ity of this processing is O(Nr). As a consequence, the
computation complexity of this phase difference denois-
ing procedure is O(Nr). (3) The major operations of low
frequency fitting procedure are three times phase factor
multiplication, one time linear search, one time inverse
Fourier transform, and one time linear fitting. The com-
putational complexity is O(Nr logNr). As a consequence,
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Fig. 7 a Coarse range focused data before residual RCM correction. b Results after residual RCM correction of MEM. c Results after residual RCM
correction of the proposed method
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Fig. 8 a Imaging results without residual RCM correction. b Imaging results with residual RCM correction of MEM. c Imaging results with residual
RCM correction of the proposed methods

the computational complexity for the whole algorithm is
O(NaNr logNr).

4 Experimental results
In this section, both of the point target simulation and
the real data experiment are performed to evaluate the
performance of the proposed residual RCM correction
algorithm for BFSAR.

4.1 Simulation and analysis
Some simulation parameters are shown in Table 1. Three
point targets (A, O, and B) are assumed to be distributed
in the scene. The coordinates of the targets A, O, and B
are (−200, 0), 0(0, 0), and(200, 0)m, respectively. Motion
errors are added to the raw data of BFSAR. Let �xT and
�xR denote the deviations in x direction for the trans-
mitter and receiver, �yT and �yR denote the deviations
in y direction for the transmitter and receiver, while �zT
and �zR denote the height deviations of the transmit-
ter and receiver, respectively. Functions of these devia-
tions with respect to the azimuth time t are presented
in (23).

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�xT = cos(2π t),�xR = 2 cos(2π0.6t)
�yT = 4 cos(1.2π t) + 2 cos(π t)
�yR = 4 cos(1.6π t) + 2 cos(7π t)
�zT = 2 cos(1.8π t) + cos(π t)
�zR = 3 cos(7.2π t) + 4 cos(π t)

(23)

In order to highlight the performance of this method,
comparison with the minimal entropy residual RCM cor-
rection method (MEM)[6] is done. Residual RCM exists
in the data after range compression and RCM correc-
tion as shown in Fig. 7a. Figure 7c denotes the cor-
rected data by the proposed method. Compared with
the nonlinear migration trajectory in Fig. 7a, the straight
migration trajectory in Fig. 7c suggests that the pro-
posed method works well to correct the residual RCM.
Figure 7b presents the corrected data by the residual
RCM correction method in [6]. It can be seen that the
proposed method has a better performance than the
method in [6]. The reason is that the parametric model
of the range displacement in [6] restricts the estimation
accuracy.
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Fig. 9 Processing results by MEM. a Target A. b Target O. c Target B
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Fig. 10 Processing results by the proposed method. a Target A. b Target O. c Target B

After correcting the residual RCM, a robust autofocus
method MIA [14] is applied to obtain the imaging results.
Final compressed images of the target in the scene center
are shown in Fig. 8. Quality of the image without resid-
ual RCM correction suffers considerable degradation in
both azimuth and range direction in Fig. 8a. In Fig. 8b, c,
the imaging qualities are improved using MEM and the
proposed method.
In order to compare the performance of MEM and the

proposed method, the three targets in the imaging results
of MEM and the proposed method are interpolated eight
times as shown in Figs. 9 and 10, respectively. The results
show that we can get the perfectly focused imaging results
by the proposedmethod, while the imaging results can not
be focused well by MEM. Besides, we measure the quality
of imaging results of the focused targets of the proposed
method and MEM by peak sidelobe ratio (PSLR), inte-
grated sidelobe ratio (ISLR), and impulse-response width
(IRW) as shown in Table 2. From Table 2, it also can be
found that the proposed method has a better performance
than MEM.
True displacement and estimated displacement are

shown in Fig. 11a, b, and the estimation errors are shown
in Fig. 11c. It can be seen that the estimated displace-
ment matches quite well with the true displacement in
the proposed method, and the variation of the root mean
square (RMS) of an overall estimation error is 0.011 m.

Compared with the proposed method, estimation accu-
racy of MEM is bad, and the RMS is 1.21 m. The reason
is that the displacement estimated by MEM must be
modeled as a polynomial, which restricts the estimation
accuracy.
The performance of the proposed method in terms of

precision and robustness to noise is evaluated. Gaussian
white noise with different SNRs is added to the range
compression data, and 1000 repetitions of each case were
carried out. Figure 12a, b shows the RMS, calculated from
simulation results, as a function of SNR by MEM and the
proposed method, respectively. It is clear that if SNR is
larger than 5 dB, the RMS results obtained from the pro-
posed method are lower than 0.012 m. If SNR is smaller
than 5 dB, the proposed method performs poorly with
SNR tending to zero. The RMS of MEM increases when
the SNR becomes smaller as well. Compared with the pro-
posed method, the estimation results show that MEM is
more sensitive to noise. Future work will study the per-
formance of the proposed method in terms of robustness
to noise.

4.2 Real data results
In 2012, we performed an airborne BFSAR experiment
which was the first airborne bistatic forward-looking
experiments in the world [12]. In this experiment, the two
platforms were mounted on two airplanes of Yun-5. The

Table 2 Imaging quality parameters

Range Azimuth

PSLR (dB) ISLR (dB) IRW (m) PSLR (dB) ISLR (dB) IRW (m)

Target A −13.35 −10.22 0.68 −13.19 −10.09 0.88

By the proposed Target O −13.37 −10.23 0.67 −13.26 −10.17 0.84
method Target B −13.34 −10.22 0.68 −13.14 −10.11 0.86

Target A −8.02 −7.97 0.91 −6.03 −4.76 1.98

By MEM Target O −13.37 −8.23 0.87 −6.76 −5.68 1.84

Target B −8.13 −8.12 0.88 −6.12 −5.03 1.90
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Fig. 11 a Estimation results by MEM. b Estimation results by the
proposed method. c Estimation error
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Fig. 12 a RMS of estimated residual RCM versus SNR by MEM. b RMS
of estimated residual RCM versus SNR by the proposed method

antennas of the system are two horn antennas, and the
overlap of the antenna footprints was guaranteed by care-
ful flight planning and pilots skill. The system works in
X band. The bandwidth of the transmitted chirp signal is
75 MHz. Pulse repetition frequency is 500 Hz. The veloci-
ties of the two platforms were controlled to be 42m/s. The
geometry configuration is shown in Fig. 13.
After utilizing the proposed residual RCM correc-

tion method, MIA is applied to estimate azimuth phase
errors and obtain the final imaging results, and the
full compressed image is shown in Fig. 14b. Figure 14a
shows the imaging results of by MIA directly without
correcting the residual RCM. In Fig. 14a, b, the hori-
zontal direction is azimuth, and the vertical direction
is range. We can find that the method in this paper
can obtain a little better performance than the imag-
ing results without residual RCM correction. Recon-
structions of the proposed method exhibit excellent
quality.
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Fig. 13 Geometry configuration in the airborne experiment. a Side view. b Vertical view

(a)

(b)

Fig. 14 a Image result without residual RCM correction. b Image result with residual RCM correction

Fig. 15 a Data before residual RCM correction. b Data after residual RCM correction
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To illustrate the detail of the proposed method, migra-
tion trajectories of the targets in Fig. 14b are presented
in Fig. 15. Figure 15a gives the data after range compres-
sion and LRCMC. Although deterministic range migra-
tion has been compensated by using RCM correction,
residual RCM is still large enough to exceed several range
resolution cells. In this situation, conventional autofocus
algorithm cannot completely compensate for the errors.
Figure 15b shows the imaging results utilizing MIA. It can
be clearly seen that the image suffers from severely 2-D
defocus.

5 Conclusions
In this paper, a novel residual RCM correction method
based on low-frequency fitting for BFSAR has been
proposed. By fitting the low-frequency phase difference
between adjacent azimuth cells, residual RCM in each
azimuth cell is corrected one by one. Using the least-
squares method, the estimation result is generally not
an integer, and a sub-pixel level correction result can
be achieved. Compared with previous works on residual
RCM correction of SAR data, the proposed method can
realize residual RCM correction requiring neither inter-
polation nor parametric model. In addition, the proposed
algorithm is robust to noise. Simulations and experiments
have been carried out to confirm the effectiveness of the
proposed algorithm.
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