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Abstract

Different from the phased-array using the same carrier frequency for each transmit element, the frequency diverse
array (FDA) uses a small frequency offset across the array elements to produce range-angle-dependent transmit
beampattern. FDA radar provides new application capabilities and potentials due to its range-dependent transmit
array beampattern, but the FDA using linearly increasing frequency offsets will produce a range and angle coupled
transmit beampattern. In order to decouple the range-azimuth beampattern for FDA radar, this paper proposes a
uniform linear array (ULA) FDA using Costas-sequence modulated frequency offsets to produce random-like energy
distribution in the transmit beampattern and thumbtack transmit-receive beampattern. In doing so, the range and
angle of targets can be unambiguously estimated through matched filtering and subspace decomposition algorithms
in the receiver signal processor. Moreover, random-like energy distributed beampattern can also be utilized for low
probability of intercept (LPI) radar applications. Numerical results show that the proposed scheme outperforms the
standard FDA in focusing the transmit energy, especially in the range dimension.

Keywords: Frequency diverse array (FDA) radar, Frequency offset, Range-dependent, Decouple, Costas sequence

1 Introduction

Active phased-array has been widely adopted in many
applications such as radar, electronic warfare, radio
astronomy, etc., because it can steer the beam elec-
tronically with high effectiveness [1]. The offered direc-
tional gain is useful for detecting/tracking weak targets
and suppressing sidelobe interferences in other direc-
tions [2]. Since phased-array has range-independent
transmit beampattern, the range and angle of targets
cannot be unambiguously estimated from the beam-
forming output peaks. If we want to steer the array
beams to multiple different range cells, multiple anten-
nas or a multibeam antenna will be required. More
importantly, controlling range-dependent energy distri-
bution becomes an increasingly important requirement
in many applications. While techniques exist in mit-
igating range-dependent interferences, e.g., space-time
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adaptive processing [3], they generally require a high
computational cost.

In order to overcome the disadvantage of phased-array
radar, the frequency diverse array (FDA) radar using a
small frequency offset across the array elements was pro-
posed in 2006 [4]. This stepped-frequency offset results
in that the beam can scan the space in a periodic
manner [5, 6]. Its beamforming focusing direction will
change as a function of the range, angle, time, and even
the frequency offset [7]. These characteristics contrast
with the range-independent transmit beampattern in a
phase-array radar. FDA radar is different from orthog-
onal frequency division multiplexing (OFDM) radar [8]
and multiple-input multiple-output (MIMO) radar [9, 10].
OFDM radar uses orthogonal subcarriers, but non-
orthogonal carriers are employed in FDA radar. MIMO
radar aims to provide non-coherent waveforms to obtain
increased degrees of freedom (DOFs), whereas FDA radar
transmits overlapping signals with closely spaced fre-
quencies to provide additional functionality. FDA radar
is also different from conventional frequency scanning
radar using the frequency increments as a function of time
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for all the elements [11], but FDA frequency offsets are
characterized by the element index [12]. Another similar
concept is the time-modulation array [13], which weights
each element using on/off switching operation. FDA was
investigated in [14] as a range-dependent beam with appli-
cations in suppressing range ambiguous clutter. Secmen
et al. [5] described the time and angle periodicity of FDA
radiation pattern. Higgins and Blunt [15] explored range-
angle coupled beamforming in FDA. Additional studies
to exploit FDA range-dependent beampattern character-
istics were reported in [16, 17]. In fact, with the introduc-
tion of frequency increment, the FDA apparent angle will
be different from its nominal beam scanning angle.

Due to its promising application potentials [18], FDA
has sparked many interesting investigations [19-21].
Since FDA offers a range-angle-dependent beampattern,
it is of great importance as this provides a potential for
range-angle localization of targets, but the transmit beam-
pattern of a standard FDA using linearly increasing fre-
quency offsets is coupled in the range-angle dimension.
This limits its application for unambiguously estimating
target parameters. To decouple the range-angle coupling
response of targets, a simple range-azimuth localization
of targets is proposed in [22] by adopting a uniform linear
array (ULA) double-pulse FDA radar. This double-pulse
FDA radar transmits two pulses with zero and non-zero
frequency offsets, respectively. In [23], a subarray-based
FDA is proposed for target range-angle estimation. Fur-
thermore, a transmit subaperturing is designed in [20]
with convex optimization, so that the range and angle
responses are decoupled and the equivalent transmit
beam can be focused in a certain range-angle sector to
localize the targets.

In [19], a nonuniform linear array is adopted for the
FDA. However, the transmitter and receiver must be
placed accurately. Another nonuniform linear array for
FDA is attempted to suppress/locate range-dependent
interference/target in [12], but the carrier frequency
and/or frequency increments cannot be altered in real-
time because it requires relocating the elements mechani-
cally. Logarithmically increasing frequency offsets [24] or
time-dependent frequency offsets [25] are also suggested
to decouple the range-angle beampattern, but they result
in poor beamforming performance, especially in the range
dimension. In fact, the best decoupling approach is to
form a dot-shaped beampattern rather than an “S”-shaped
beampattern. Such a dot-shaped range-angle beampattern
is synthesized in [26] by a symmetrical FDA using multi-
carrier frequency offsets and convex optimization, and in
[27] by the use of random frequency offsets. Neverthe-
less, these two schemes are very difficult to implement in
practical array systems.

In this paper, we analyze the reason of FDA range and
angle coupled transmit beampattern and thus propose
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the range-azimuth decouple beamforming for FDA radar
using Costas-sequence modulated frequency offsets. The
rest of this paper is organized as follows. Section 2 pro-
vides a brief introduction to basic FDA radar scheme
and motivation of this paper. Then, Section 3 pro-
poses the range-azimuth decoupling beamforming for the
FDA using Costas-sequence modulated frequency offsets.
Finally, numerical results are provided in Section 4 and
concluding summaries are drawn in Section 5.

2 Basic FDA radar and motivation

In conventional phased-arrays, it is assumed that the same
waveform is radiated by each array elements. Different
from conventional phased-arrays, FDA elements can be
excited by either the same waveform or different wave-
forms. Without loss of generality, we assume that the
waveform radiated from each array element is identical
with a frequency offset of Af Hz, as shown in Fig. 1,
where the x-axis and x-axis are defined as along the linear
array arrangement and the zero-azimuth angle, respec-
tively. Therefore, the monochromatic continuous signal
transmitted by the mth element is

Sm(t) = WiWe(fin) €xp (—j271fmt) ,m=0,1,...,M—1,
(1)

where wy, is the amplitude weighting and w,(f,,) is the
element pattern factor which can be expressed as [28]

Tafy, sin(@))

co

We (fm) = sinc ( (2)

where 0 is the direction angle, ¢y is the speed of light, and
sinc(x) = sin(x)/x. In order to evaluate the impacts of the
frequency offsets on the w,(f,), we define the following
performance metric:

_ We(fm)
We(f()) )
We(fm)

Suppose Af = 5 kHz, Fig. 2 shows the ratio W) 28
a function of the number of array elements. It is noticed

(3)
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Fig. 1 lllustration of a linear FDA transmitter
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that the frequency offsets have ignorable effects on the
amplitude changes of the w,(f,,), and thus, w(f,,;) = 1 is
adopted in subsequent discussions.

Different from traditional phased-array antenna, which
uses the same carrier frequency for all the array elements,
the FDA uses different carrier frequencies with small fre-
quency offsets for the array elements. This implies that
the FDA elements will have frequency-dependent beam
steering component. The radiation frequency f,, is [4]

fm =f0 +W1Afr (4)

with fp and M being the carrier frequency and number of
array elements, respectively. The signal arriving at a far-
field point with slant range r for the first element and
direction angle 6 can be expressed as

S <t — rm> = Wy We (fin) €Xp {—jZTrfm (t — rm> } ,
[ €0

(5)
where r;, can be approximated by
Fm & r — mdsin#, (6)

with d being the element spacing.

To avoid aliasing effects, the element spacing should be
smaller than the half wavelength of the highest frequency
signal. Generally, positive frequency offset Af is assumed
in most of literatures. Certainly, negative frequency offset
Af is also feasible for the FDA radar. Therefore, in this
paper the uniform array element spacing is designed as

.
© 2fo+ M= DIAfI

If the amplitude and beam steering components are all
equal to one, namely, w,, = 1 and w,(f;,;) = 1, the array

(7)
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factor seen at the target position (r,6) can be derived
as [19]

M-1
AF(1,0) = ) exp {—j2nfm (t - '”)}
m=0
M-1
A
=exp ]<I>o Z exp {—jZn (mAft — ml
co
m=0
dfo sm9 Afd sin 6
< <o ’
8)

where the common phase &g is &g = —27f) (t — é)

To get a closed-form expression, we approximate the
phase term m? Afd sin @ /co as mAfd sin 6 /co. To make the
assumption reasonable, an empirical requirement can be
employed:

< 9)

(M — 1)2Afd sin6 M- l)AfdsinG‘ n
T

44 €0

Suppose the carrier frequency is fy = 10 GHz, the
azimuth angle is 6 = 7/3 and the element spacing is half
of the maximal wavelength. Figure 3 shows the maximum
allowable frequency increment as a function of the num-
ber of array elements, M. Since Eq. (9) is just an empirical
phase requirement, the high offsets shown in Fig. 2 can-
not be used in practice due to bandwidth constraints. In
order to avoid also frequency decorrelation to happen in
target response, in most literature the frequency offset
Af is assumed to be smaller than one thousandth of the
transmitted signal bandwidth B,. It is observed that the
assumption requirement is easily achieved for practical

Maximum allowable frequency increment [Hz]
-
o
T

2
10 ‘ ‘ ‘
10° 10’ 10° 10° 10*
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Fig. 3 Maximum allowable frequency offset versus the number of
array elements
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FDA radar systems. In this case, Eq. (8) can be rewritten
in a closed-form as

AF(t1,0) ~ exp {j®1}
sin [Mn (Aft— A%r i dfy sin6 + Afdsin&)]

5 o co
X : : ’
sin [n (Aft — %’ + dfocsome + %)]

(10)

where @ is

A dsind  Afdsin6
q’1=¢o+n(M—1)|:fr_f0 sinf  Afdsin ]

€0 co co
(11)

According to Eq. (10), the transmit beampattern
achieves the maximum at

Aft — Afr —ésinQ =k k=0,1,....

co A
When the time variable ¢ is fixed, the FDA beampattern
will be coupled in the range and angle dimensions, caused
by the synchronous linearly changing between frequency
increment and element spacing. If this synchronization
is damaged, the FDA may yield uncoupled range-angle

beampattern. Hence, we have two potential solutions:

(12)

1. Linearly increasing frequency offsets and
nonuniform linear array

2. Uniform linear array and non-linearly increasing
frequency offsets

In this paper, we use Costas-sequence modulated
frequency increments, namely, the second case.

3 FDAradar using Costas-sequence modulated
frequency offsets

In the Costas frequency coding scheme, the columns rep-

resent M contiguous time slices (each of duration fj)

and the rows represent M distinct frequencies, equally

spaced by Afy. We use this scheme for the FDA, namely,
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only one carrier frequency is transmitted by any one of
he M FDA elements and each carrier frequency is used
only once. The construction algorithms for Costas signals
were discussed by Golomb and Taylor [29]. The coding
sequence, the order of used frequencies is a concise way to
describe the coding matrix. With regard to the difference
matrix, note that the top row and the leftmost column are
headings and not part of the matrix. The element of the
difference matrix in row i and column j is

Dij=airj—aj i+j<M, (13)
where g; is the ith element of the coding sequence. The
remaining locations (where i + j > M) are left blank.
This equation implies that the first row is formed by tak-
ing differences between adjacent elements in the coding
sequence, the second row is formed by taking differences
between next-adjacent elements, and so on.

Construction of Costas codes can be understood as a
construction of stepped-frequency waveforms, where the
pulse width 7 is divided into M sub-pulses, each of width
71. Within each group of M sub-pulses, the frequency
is increased by Af from one subpulse to the next. The
total signal bandwidth is (M — 1)Af and there are M
sub-pulses; each subpulse has the duration of 1/Af, then
the time-bandwidth product of the transmitted signal is
M — DAf x M x 1/Af = (M — 1)M. Costas codes
are similar to stepped-frequency waveforms, except that
the frequencies for the subpulse are selected in a random
fashion, according to some predetermined rule or logic.
Figure 4 compares the hopping orders of LFM and Costas
coding schemes, where the x-axis and y-axis denote the
time and frequency, respectively.

The normalized complex envelope of the Costas signal
can be expressed as [30]

M—1
1
s(t) = ool mZ:% U (t — m11), (14)

LFM

Costas-sequence modulated

. x

Fig. 4 Binary matrix representation of quantized LFM and Costas coding
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where u,,(t) = exp(2zfi,t), 0 < t < 1. Note that
the sub-pulses are separated in time-domain. It is eas-
ily understood that the hopping order strongly affects the
ambiguity function of the signal. The ambiguity function
can be predicted roughly by overlapping a copy of the
binary matrix on itself and then shifting one relative to
the other according to the desired delay and Doppler. The
corresponding ambiguity function of the matched filter is

| M-l
x(t,v) = mX_;) exp(j2rmvr)

M-1

X {CDmm(rf l))+ Z d)mq(‘f - (m_q)tb V)} )
q=0.q#m

(15)

where

B g (1, V) = <n - ':) SiZ“ exp(—jf — j21fy7) (16)

a =7 —fg — V(11— I7]) (17)

B=7a(m—Jg—v)(T1+ITD. (18)

As noted in Eq. (14), in the standard Costas sequence
the sub-pulses corresponding to each element are not
aligned. However, in the FDA the transmitted signals from
all the elements should be aligned in time-domain; other-
wise, the beampattern of the whole array will be decided
mainly by some particular elements for a given instant.
To avoid this problem, we use the Costas-sequence mod-
ulated frequency offsets in a time-aligned way. Taking
the Costas sequence illustrated in Fig. 4 as an example,
the adopted frequency indexes in the seven time inter-
vals are {4,7,1,6,5,2,3}. Accordingly, our method allows
for a seven-element FDA and the seven elements use
the frequency offsets 4Af, 7Afo, 1Afo, 6Af, 5Af, 2Af,
and 3Afy with Afy being the hopping frequency step,
respectively. That is, similar to conventional FDA, all the
signals are transmitted simultaneously from the Costas
modulated FDA.

The frequency fed to the mth element of the FDA
using Costas-sequence modulated frequency offsets can
be generally written as

fm =JSo+ Afy, m=0,1,2,...,M —1, (19)

where Af,, is the frequency increment for the mth ele-
ment. The transmitted signal of the mth element can then
be expressed as

Sm(t) = exp (jZn (fo + Afm) t) . (20)
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For an ideal point target at the range r and azimuth 6,
the received echo corresponding to the mth antenna is

r—{—mdsin@)

€o

rm(t) = S <t -2 (21)

By demodulating the received returns with the transmit
signal, we can get the baseband signal:
AT )
bu(r,0) = exp {_]c (fo + Afm) (r + mdsm@)} .
0
(22)

For notation convenience, the above equation can be
simply rewritten as

bin(r,0) = exp {—jom} , (23)
where ¢, is
G = il (fo + Afin) (r + mdsin6) . (24)
0

In the single snapshot case, the received noise-free echo
of one ideal target can be represented as the following
receive steering vector

b(r,0) = e e .. eTitm . eTitu-1]", (25)

where T is the transpose operator. For the multi-target
case, the received echo vector for the kth snapshot can
then be expressed as

P
x(k) =Y, (k)b (rp, 0p) + n(k), k = 1,2,...,K, (26)
p=1

where o, (k), 7, and 6, are the reflection coefficient, slant
range, and azimuth angle for the pth target at the kth snap-
shot, respectively, P is the target number, K is the snapshot
number, and n(k) is the M x 1 additive receiver noise vec-
tor. Note that the target reflection coefficient a, (k) may
vary from shapshot to snapshot [31].

Adaptive beamforming algorithms can be used to opti-
mally design the weighting vector w to synthesize the
desired transmit-receive beampattern. Specifically, when
the non-adaptive beamforming algorithm is adopted, the
weighting vector is

w= b(r(); 00)’ (27)

where 6y and ry denote the angle and range of the desired
target, respectively. In this case, the maximum is steered
to the expected location (rg, 6p). The FDA radar transmit-
receive beampattern can then be expressed as

b (ro, 60)b(r, 0)|*
|1b(60, 70)||*

It is noticed that, like a phased-array radar, the FDA

radar has coherent transmit processing gain; however, the

FDA radar directional gain depends on both the range
and angle parameters, whereas the phased-array radar

G@r,0) 2 (28)
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directional gain depends only on the range parameter.
This range-angle-dependent beam provides a potential
approach to suppress range-dependent interferences and
noise.

The conventional non-adaptive beamforming is known
to be optimal in the sense that it provides the highest
possible output signal-to-noise ratio (SNR) and signal-to-
interference plus noise ratio (SINR) in the background of
white Gaussian noise [32]. The output SINR of the FDA
radar can be evaluated by

o2M?

SINR = T 23 7 5 T
>_ 07 [bH (ro, 60)b(ri, 0:) |2 [b (r0, 00)b(ri, 6:) |* + 07 M
1

(29)

where o2 is the variance of the desired target signal, o
is the variance of the ith interference, and o,% is the noise
variance. If the target is observed in the background of few
weak interferences which are well separated from the tar-
get, the interference-to-noise power can be attributed to
the noise term only. In this case, the SINR for the FDA
radar simplifies to

O'SZM

2
Gﬂ

SINR = (30)
which means that the FDA radar has an equivalent robust-
ness again noise.

In contrast, if the target is observed in the background of
strong interferences, then we can fairly consider the noise
power to be negligible as compared to the interference
power. In such a case, we have

oM

SINR = .
> o2 |bH (ro, 60)b(ri, 0;) |2 b (ro, 60)b(r;, 6,)]2
l

(31)

The FDA using Costas-sequence modulated frequency
offsets will make the transmit-receive beampattern main-
lobe approximate an ideal thumbtack response, as pro-
vided in the next section. In this case, the SINR (Eq. (31))
can be simplified as

2M2

SINR = (32)

—2 ’
gi
where E? denotes the mean of oiz. Thus, it is expected that
this FDA radar has better robustness against interferences
than both conventional phased-array radar and standard
FDA radar.

4 Numerical results

It is well known that when a given delay-Doppler shift
results in a coincidence of N points, the ambiguity func-
tion is expected to yield a peak of approximately N/M at

Page 6 of 9

the corresponding delay-Doppler coordinate. For the lin-
early frequency modulated (LEM) coding case, only delay
and Doppler shifts of equal number of units, namely, 7 =
mtp,v = mAf,m = 0,£1,...,£(M — 1), will cause an
overlap of dots, and the number of coinciding dots will be
N = M — |m]|. This hints at a diagonal ridge in the ambi-
guity function, along the line v = Aft/t,. What is unique
for a Costas signal is that the number of coinciding dots
cannot be larger than one for all but the zero-shift case,
where all dots coincide (N = M). This property implies
a narrow peak of the ambiguity function at the origin and
low sidelobes elsewhere. If Af = 1/1, the exact ambi-
guity function values at the grid points will be either 1 or
0, according to the corresponding number of coinciding
dots.

As an example, we consider the Welch-Constructed
Costas coding sequence for M = 12, namely, the cho-
sen positions are 1,2,4,8,3,6,12,11,9,5,10, and 7.
This implies that the frequency offsets are not linearly
increasing as the element index, but change as the Costas
sequence, namely, {1Afy,2Afo, 4Af0,8 Afo, 3A/f, 6Afo,
12Afo, 11Afo, 9Afo, 5Af, 10Afy, 7Afo}. Suppose Afy =
100 kHz, Fig. 5a shows the ambiguity function for
a monochromatic waveform with Costas-sequence
modulated frequency offsets for the FDA radar. As a
comparison, suppose the following parameters for the
LFM waveform: bandwidth is 10 MHz, starting fre-
quency is 0 Hz and pulse duration is 1 ps. Figure 5b, ¢
show the ambiguity function for a LFM waveform with
Costas-sequence modulated frequency offsets for FDA
and phased-array radars, respectively. It is noticed that
the use of Costas-sequence modulated frequency offsets
produces a more focused peak. The ambiguity function
sidelobes are usually lower than 20log;,(2/M), but the
near sidelobes are higher decaying in a manner typical of
the sidelobes of a signal with a rectangular spectrum.

Next, we consider the transmit beampattern for the
arrays. Suppose Af = 5 kHz and use also the Welch-
Constructed Costas sequence with M = 12, Fig. 6a
shows the Costas-sequence modulated FDA using uni-
form transmit weighting coefficients. It is seen that the
transmit beampattern has random-like peak distribution
without obvious peaks. This implies that it is difficult to
be detected or localized by an unfriendly detector without
knowing the specified coding sequence for the frequency
increments, and it can be exploited to develop low prob-
ability interception (LPI) or radio frequency (RF) stealth
radar techniques [33]. However, with the knowledge of the
specific Costas sequences used in the FDA transmitter,
we can recover the thumbtack transmit-receive beampat-
tern for the targets. As a comparison, Fig. 6b provides
the standard FDA using also uniform transmit weighting
coefficients, which produces range-angle-dependent and
range-angle coupling transmit beampattern. This implies
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Fig. 7 Transmit beampattern and radar ambiguity function of the FDA radar using the Costas sequence with M = 18. a Transmit beam-pattern.

that it can be exploited for range-angle localization of
targets, but it may produce ambiguous results due to
the range-angle coupling beampattern. Differently, the
traditional phased-array generate angle-dependent only
transmit beampattern, as shown in Fig. 6c, but it pro-
vides no range information of the targets because of its
range-independent beampattern [34].

Finally, we consider another example to compare
the differences between different length of Costas
sequences. Using the Welch-Constructed Costas coding
sequence with M = 18, namely, the chosen positions
are 1,2,4,8,16,13,7,14,9,18,17,15,11, 3,6, 12,5, and 10.
Figure 7 shows the corresponding transmit beampattern
and radar ambiguity function for Afy = 100 kHz. The
results validate again that the FDA using Costas-sequence
modulated frequency offsets produces random-like peak
distribution without obvious peaks, and consequently, it
is difficult to be detected by unfriendly detectors. Nev-
ertheless, it generates also a focused peak in the radar
ambiguity function. Therefore, we can conclude that LPI
can be achieved by the FDA radar using Costas-sequence
modulated frequency offsets.

5 Conclusions

This paper proposed a ULA FDA using Costas sequence
modulated frequency offsets to decouple the range-angle-
dependent beampattern by producing random-like energy
distribution in the transmit beampattern. Moreover, a
thumbtack transmit-receive beampattern can be obtained
at the receiver. In doing so, the range and angle of tar-
gets can be solely estimated through matched filtering and
subspace decomposition algorithms in the receiver sig-
nal processor. Numerical results show that the proposed
scheme outperforms the standard FDA in focusing the
transmit energy, especially in the range dimension. This
Costas-sequence modulated FDA radar can be exploited
for LPI radar applications due to the random transmit

beampattern and thumbtack transmit-receive beampat-
tern. Such a topic is planned for our future work.

Acknowledgements

This work was supported by the National Natural Science Foundation of China
under grant 61571081, Sichuan Province Science Fund for Distinguished
Young Scholars under grant 2013JQ0003, and Sichuan Technology Research
and Development fund under grant 2015GZ0211.

Competing interests
The authors declare that they have no competing interests.

Received: 20 June 2016 Accepted: 5 November 2016
Published online: 23 November 2016

References

1. PF McManamon, PJ Bos, MJ Escuti, J Heikenfeld, S Serati, H Xie, EA Watson,
A review of phased array steering for narrow-band electrooptical systems.
Proc. IEEE. 97(6), 1078-1096 (2009)

2. JLi, P Stoica, The phased array is the maximum SNR active array. I[EEE
Signal Process. Mag. 27(2), 143-144 (2010)

3. SDGreve, P Ries, FD Lapierre, JG Verly, Framework and taxonomy for radar
space-time adaptive processing (STAP) method. IEEE Trans. Aerosp.
Electron. Syst. 43(3), 1084-1099 (2007)

4. P Antonik, MC Wicks, HD Griffiths, CJ Baker, in Proc. IEEE Radar Conference.
Frequency diverse array radars (IEEE, New Jersey, 2006), pp. 215-217

5. M Secmen, S Demir, A Hizal, T Eker, in Proc. IEEE Radar Conference.
Frequency diverse array antenna with periodic time modulated pattern in
range and angle (IEEE, New Jersey, 2007), pp. 427-430

6.  SHuang, KF Tong, CJ Baker, in Proc. IEEE Antennas and Propagation
Conference. Frequency diverse array with beam scanning feature (IEEE,
New Jersey, 2008), pp. 1-4

7. P Antonik, An investigation of a frequency diverse array. PhD thesis.
(University College London, 2009)

8. TXZhang, X-G Xia, LJ Kong, IRCI free range reconstruction for SAR
imaging with arbitrary length OFDM pulse. [EEE Trans. Signal Process.
62(18),4748-4759 (2014)

9. SGogineni, A Nehorai, Frequency-hopping code design for MIMO radar
estimation using sparse modeling. IEEE Trans. Signal Process. 60(6),
3022-3035 (2012)

10. GL Cui, HB Li, M Rangaswamy, MIMO radar waveform design with
constant modulus and similarity constraints. IEEE Trans. Signal Process.
62(2),343-353 (2014)

11. CVazquez, C Garcia, Y Alvarez, S Ver-Hoeye, F Las-Heras, Near-field
characterization of an imaging system based on a frequency scanning
antenna array. IEEE Trans. Antennas Propag. 61(5), 2874-2879 (2013)

12. W-Q Wang, HC So, HZ Shao, Nonuniform frequency diverse array for
range-angle imaging of targets. IEEE Sensors J. 14(8), 2469-2476 (2014)



Wang et al. EURASIP Journal on Advances in Signal Processing (2016) 2016:124

20.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31
32.
33

34.

K-J Koh, H Elyas, Time-interleaved phased arrays with parallel signal
processing in RF modulation. IEEE Trans. Antennas Propag.
62(2),677-689 (2014)

S Mustafa, D Simsek, HAE Taylan, in Proc. IEEE Radar Conference. Frequency
diverse array antenna with periodic time modulated pattern in range and
angle (IEEE, New Jersey, 2007), pp. 427-430

T Higgins, S Blunt, in Proceedings of the 4th International Waveform Diversity
& Design Conference. Analysis of range-angle coupled beamforming with
frequency diverse chirps (IEEE, New Jersey, 2009), pp. 140-144

L Zhuang, XZ Liu, in Proceedings of the International Radar Conference.
Precisely beam steering for frequency diverse arrays based on frequency
offset selection (IEEE, New Jersey, 2009), pp. 1-4

W-Q Wang, HZ Shao, JY Cai, Range-angle-dependent beamforming by
frequency diverse array antenna. Int. J. Antennas Propag. 2012, 1-10
(2012)

W-Q Wang, Overview of frequency diverse array in radar and navigation
applications. IET Radar Sonar Navig. 10(6), 1001-1012 (2016)

PF Sammartino, CJ Baker, HD Griffiths, Frequency diverse MIMO
techniques for radar. IEEE Trans. Aerosp. Electron. Syst. 49(1), 201-222
(2013)

W-Q Wang, HC So, Transmit subaperturing for range and angle
estimation in frequency diverse array radar. IEEE Trans. Signal Process.
62(8), 2000-2011 (2014)

. JXu, GS Liao, SQ Zhu, L Huang, HC So, Joint range and angle estimation

using MIMO radar with frequency diverse array. IEEE Trans. Signal Process.
63(13),3396-3410 (2015)

W-Q Wang, HZ Shao, Range-angle localization of targets by a
double-pulse frequency diverse array radar. IEEE J. Selected Topics Signal
Process. 8(1), 106-114 (2014)

W-Q Wang, Subarray-based frequency diverse array radar for target
range-angle estimation. IEEE Trans. Aerosp. Electron. Syst.

50(4), 3057-1076 (2014)

W Khan, IM Qureshi, S Saeed, Frequency diverse array radar with
logarithmically increasing frequency offset. IEEE Antennas Wireless
Propag. Lett. 14(1), 499-502 (2015)

W Khan, IM Qureshi, Frequency diverse array radar with time-dependent
frequency offset. IEEE Antennas Wireless Propag. Lett. 13(1), 758-761
(2014)

HZ Shao, J Dai, J Xiong, H Chen, W-Q Wang, Dot-shaped range-angle
beampattern synthesis for frequency diverse array. [EEE Antennas
Wireless Propag. Lett. 15(1) (2016). in press

YM Liu, in Proc. IEEE International Conference on Acoustics, Speech, and
Signal Processing. Range azimuth indication using a random frequency
diverse array (IEEE, New Jersey, 2016), pp. 3111-3115

D Lynch, Introduction to RF Stealth. (SciTech Publishing, Raleigh, 2013)
SW Golomb, H Taylor, Constructions and properties of costas arrays. Proc.
IEEE. 72(9), 1143-1163 (1984)

BR Mahafza, Z Elsherbeni, MATLAB Simulations for Radar Systems Design.
(CRC Press, New York, 2003)

M Skolnik, Introduction to Radar Systems. (McGrow-Hill, New York, 2001)
HL Van Trees, Optimum Array Processing. (Wiley, New York, 2002)

W-Q Wang, Moving-target tracking by adaptive RF stealth radar using
frequency diverse array antenna. IEEE Trans. Geosci. Remote Sens.
54(7),3764-3773 (2016)

Page 9 of 9

W-Q Wang, CL Zhu, Nested array receiver with time-delayers for joint
target range and angle estimation. IET Radar Sonar Navig. 10 (2016). in
press

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Immediate publication on acceptance

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com




	Abstract
	Keywords

	Introduction
	Basic FDA radar and motivation
	FDA radar using Costas-sequence modulated frequency offsets
	Numerical results
	Conclusions
	Acknowledgements
	Competing interests
	References

