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Abstract

Canonical correlation analysis (CCA) is a well-known technique used to characterize the relationship between two
sets of multidimensional variables by finding linear combinations of variables with maximal correlation. Sparse CCA
and smooth or regularized CCA are two widely used variants of CCA because of the improved interpretability of the
former and the better performance of the later. So far, the cross-matrix product of the two sets of multidimensional
variables has been widely used for the derivation of these variants. In this paper, two new algorithms for sparse CCA
and smooth CCA are proposed. These algorithms differ from the existing ones in their derivation which is based on
penalized rank-1 matrix approximation and the orthogonal projectors onto the space spanned by the two sets of
multidimensional variables instead of the simple cross-matrix product. The performance and effectiveness of the
proposed algorithms are tested on simulated experiments. On these results, it can be observed that they outperform
the state of the art sparse CCA algorithms.
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1 Introduction
Canonical correlation analysis (CCA) [1] is a multivariate
analysis method, the aim of which is to identify and quan-
tify the association between two sets of variables. The two
sets of variables can be associated with a pair of linear
transforms (projectors) such that the correlation between
the projections of the variables in lower dimensional space
through these linear transforms are mutually maximized.
The pair of canonical projectors are easily obtained by
solving a simple generalized eigenvalue decomposition
problem, which only involves the covariance and cross-
covariance matrices of the considered random vectors.
CCA has been widely applied in many important fields,
for instance, facial expression recognition [2, 3], detection
of neural activity in functional magnetic resonance imag-
ing (fMRI) [4, 5], machine learning [6, 7] and blind source
separation [8, 9].
In the context of high-dimensional data, there is usu-

ally a large portion of features that is not informative in
data analysis.When the canonical variables involve all fea-
tures in the original space, the canonical projectors are, in
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general, not sparse. Therefore, it is not easy to interpret
canonical variables in such high-dimensional data anal-
ysis. These problems may be tackled by selecting sparse
subsets of variables, i.e. obtaining sparse canonical projec-
tors in the linear combinations of variables of each data
set [7, 10–12]. For example, in [11], the authors propose
a new criterion for sparse CCA and applied a penalized
matrix decomposition approach to solve the sparse CCA
problem, and in [10], the presented sparse CCA approach
computes the canonical projectors from primal and dual
representations.
In this paper, we adopt an alternative formulation of the

CCA problem which is based on rank-1 matrix approx-
imation of the orthogonal projectors of data sets [13].
Based on this new formulation of the CCA problem, we
developed a new sparse CCA based on penalized rank-1
matrix approximation which aims to overcome the draw-
back of CCA in the context of high-dimensional data
and improved interpretability. The proposed sparse CCA
seeks to obtain iteratively a sparse pair of canonical pro-
jectors by solving a penalized rank-1 matrix approxima-
tion via a sparse coding method. Also, we present in this
paper a smoothed version of the CCA problem based
on rank-1 matrix approximation where we impose some
smoothness on the projections of the variables in order to
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avoid abrupt or sudden variations. These proposed algo-
rithms differ from the existing ones in their derivation
which is based on penalized rank-1 matrix approximation
and the orthogonal projectors onto the space spanned by
the two sets of multidimensional variables instead of the
simple cross-matrix product [7, 10–12].
The rest of the paper is organized as follows: In

Section 2, we give a brief review of the CCA problem. In
Section 3, we present a formulation of CCA using a rank-1
matrix approximation of the orthogonal projectors of data
sets and derive the smoothed solution. In Section 4, we
introduce our new sparse CCA algorithm. In Section 5,
we present some simulation results to demonstrate the
effectiveness of the proposedmethod compared to state of
the art CCA algorithms. Finally, Section 6 concludes the
paper.
Henceforth, bold lower cases denote real-valued vectors

and bold upper cases denote real-valued matrices. The
transpose of a givenmatrixA is denoted byAT . All vectors
will be column vectors unless transposed. Throughout the
paper, In stands for n × n identity matrix, 0 stands for the
null vector and 1n is the (column) vector of Rn with one
entries only. For a vector x, the notation xi will stand for
the ith component of x. As usual, for any integerm, �1,m�
stands for {1, 2, . . .m}.

2 Canonical correlation analysis
In this section, we present briefly a review of CCA and
its optimization problem. Let x ∈ R

dx and y ∈ R
dy be

the two random vectors, and we assume, without loss of
generality, that both x and y have zero mean, i.e. E[x]= 0
and E[y]= 0 where E[·] is the expectation operator. CCA
seeks a pair of linear transform wx ∈ R

dx and wy ∈ R
dy ,

such that correlation betweenwT
x x andwT

y y is maximized.
Mathematically, the objective function to be maximized is
given by:

ρ(wx,wy) =
cov

(
wT
x x,wT

y y
)

√
var

(
wT
x x

)
var

(
wT
y y

) . (1)

Then, the objective function ρ can be rewritten as:

ρ(wx,wy) = wT
x Cxywy√(

wT
x Cxxwx

) (
wT
y Cyywy

) , (2)

where Cxx = E[xxT ], Cyy = E[yyT ] and Cxy = E[xyT ]
are the covariance matrices. Since the value of ρ(wx,wy) is
invariant with the magnitude of the projection direction,
we can turn to solve the following optimization problem

argmax
wx,wy

wT
x Cxywy

subject to wT
x Cxxwx = 1, wT

y Cyywy = 1.

Incorporating these two constraints, the Lagrangian is
given by:

J
(
λx, λy,wx,wy

) = wT
x Cxywy − λx

(
wT
x Cxxwx − 1

)

− λy
(
wT
y Cyywy − 1

)
.

(3)

Taking derivatives with respect to wx and wy, we obtain
∂J
∂wx

= Cxywy − 2λx Cxxwx = 0 (4)

∂J
∂wy

= CT
xywx − 2λy Cyywy = 0. (5)

These equations lead to the following generalized eigen-
value problem

Cxywy = λCxxwx (6)
CT
xywx = λCyywy, (7)

where λ = 2λx = 2λy. One way to solve this problem is as
proposed in [6] by assumingCyy is invertible; we can write

wy = 1
λ
C−1
yy C

T
xywx, (8)

and so substituting in Eq. (6) and assuming Cxx is invert-
ible gives

C−1
xx CxyC−1

yy CT
xywx = λ2 wx. (9)

It has been shown in [6] that we can choose the associ-
ated eigenvectors corresponding to the top eigenvalues of
the generalized eigenvalue problem in (9) and then use (8)
for find the correspondingwy. A number of existingmeth-
ods for sparse and smooth CCA have used the description
provided above of CCA and focused on the use of the
cross matrix Cxy for the derivation of new CCA variant
algorithms [7, 10–12]. For the derivation of the proposed
CCA variants, we adopt an alternative description of
CCA which is based on the orthogonal projectors onto
the space spanned by the two sets of multidimensional
variables [13].

3 Canonical correlation analysis based on rank-1
matrix approximation

In practice, the covariance matrices Cxx, Cyy and Cxy
are usually not available. Instead, the estimated covari-
ance matrices are constructed based on given sample data
set. Let X =[x1, . . . , xN ]∈ R

dx×N and Y =[y1, . . . , yN ]∈
R
dy×N be the two sets of instances of x and y, respec-

tively. Without loss of generality, we can assume both

{x1, . . . , xN } and {y1, . . . , yN } have zero mean, i.e.,
N∑
i=1

xi =

0 and
N∑
i=1

yi = 0. Or, we can center the data sets such that

xi ← xi − μx and yi ← yi − μy for all i ∈ �1,N�, where



Aïssa-El-Bey and Seghouane EURASIP Journal on Advances in Signal Processing  (2017) 2017:25 Page 3 of 14

μx = N−1
N∑
i=1

xi and μy = N−1
N∑
i=1

yi. Then, the opti-

mization problem for CCA based on estimated covariance
matrices is given by

argmax
wx,wy

wT
x XYTwy (10)

subject to wT
x XX

Twx = 1, wT
y YY

Twy = 1,

and the generalized eigenvalue problem given by Eqs. (6)
and (7) can be rewritten as

XYTwy = λXXTwx (11)
YXTwx = λYYTwy . (12)

Then, by multiplying both sides of Eqs. (11) and (12) by
XT (XXT )−1 and YT (YYT )−1 , respectively, we obtain:

XT
(
XXT

)−1
XYTwy = PxYTwy = λXTwx (13)

YT
(
YYT

)−1
YXTwx = PyXTwx = λYTwy, (14)

where Px = XT (XXT )−1X and Py = YT (YYT )−1Y are
the orthogonal projectors onto the linear spans of the rows
of X and Y respectively. So substituting XTwx in Eq. (14)
and YTwy in Eq. (13) gives

PxPyXTwx = KxyXTwx = λ2 XTwx

PyPxYTwy = K yxYTwy = λ2 YTwy .

Therefore, we can observe that XTwx and YTwy are the
left singular vectors associated to the largest singular val-
ues of the matrices K xy = PxPy and K yx = PyPx respec-
tively. By using the symmetric property of the matrices Px
and Py we have:

K yx = PyPx = PT
y PT

x = (PxPy)
T = KT

xy . (15)

The singular value decomposition of the matrices Kxy
and Kyx is given by:

Kxy = U DVT (16)
K yx = V DUT , (17)

where ui and vi are the ith column vectors of the matri-
ces U and V , respectively, and D = diag(d1, . . . , dN ) such
that d1 ≥ d2 ≥ . . . ≥ dN represent the singular values
of Kxy and K yx. We can deduce from Eqs. (16), (17) and
(15) that the left singular vectors of K yx correspond to the
right singular vectors of Kxy.
In order to estimate the canonical projectors, we define

the nearest rank-1 matrix approximation of Kxy by:

K1 = d1 u1vT1 ,

where the nearest means that the squared Frobenius norm
betweenKxy andK1, defined by

∥∥Kxy−K1
∥∥2
F , is minimal.

Therefore, the rank-1 matrix approximation of Kxy can
be formulated as solving the following optimization from:

argmin
wx,wy

∥∥Kxy − XTwxwT
y Y

∥∥2
F . (18)

Consequently, the projected data XTwx and YTwy con-
sist of the left and right singular vectors, respectively,
associated to the largest singular value of the matrix Kxy.
Therefore, after estimating the left and right singular vec-
tors u1 and v1. respectively, and associated singular value
d1 of the matrix Kxy, we can obtain the projectors wx and
wy by solving the following least square equations (see
Step 5 in Algorithm 1):

argmin
wx

‖
√
d1u1 − XTwx‖22

argmin
wy

‖
√
d1v1 − YTwy‖22 .

Hence, for multiple projected data, the solution consist
of the associated singular vectors corresponding to the top
singular values of the matrix Kxy.

Algorithm 1 Rank-1 matrix approximation CCA
algorithm
Require: Training data X ∈ R

dx×N and Y ∈ R
dy×N .

Ensure: The r pairs of canonical projector W x ∈ R
dx×r

andW y ∈ R
dy×r .

1: Compute the centred data xi ← xi − μx and yi ←
yi − μy for all i ∈ �1,N�, where μx = N−1

N∑
i=1

xi and

μy = N−1
N∑
i=1

yi;

2: Compute Px = XT (XXT + γxIdx)−1X, Py =
YT (YYT + γyIdy)−1Y and Kxy = PxPy;

3: Perform the SVD of Kxy : Kxy = UDVT ;
4: Form Ũ =[u1, . . . ,ur], D̃ = diag(

√
d1, . . . ,

√
dr) and

Ṽ =[v1, . . . , vr];
5: SetW x = (XXT + γxIdx)−1XŨD̃ andW y = (YYT +

γyIdy)−1YṼD̃.

From (18),we can observe that the optimization prob-
lem (10) that involves the two constraints ‖wT

x X‖2 = 1
and ‖wT

y Y‖2 = 1 has now been transformed into a rank-
1 matrix approximation problem free of constraints and
which can be solved with an SVD.With this approach, the
proposed algorithm avoids the need of using these con-
straints and hence also avoids their relaxations as it was
proposed in [11].
One disadvantage of the above approach is the restric-

tion that XXT and YYT must be non-singular. In order to
prevent overfitting and avoid the singularity of XXT and
YYT [6], two regularization terms, γxIdx and γyIdy , with
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γx > 0, γy > 0 are added in (10). Therefore, the regu-
larized version solves the generalized eigenvalue problem
with Px = XT (XXT + γxIdx)−1X and Py = YT (YYT +
γyIdy)−1Y . We summarized the method of solving the
entire rank-1 matrix approximation CCA in Algorithm 1.

3.1 Smoothed rank-1 matrix approximation CCA
algorithm

In order to give preference to a particular solution with
desirable properties for the proposed CCA problem,
a regularization term (Tikhonov regularization) can be
included in Eq. (18) such that:

argmin
wx,wy

∥∥Kxy − XTwxwT
y Y

∥∥2
F + αx wT

x X�xXTwx

+ αy wT
y Y�yYTwy .

(19)

In many cases, the matrices �x and �y are chosen as a
multiple of the identity matrix, giving preference to solu-
tions with smaller norms. In our case, the matrices �x
and�y are non-negative definite roughness penaltymatri-
ces used to penalize the second differences [14, 15], and
αx > 0 and αy > 0 are trade-off parameters such as:

∀z ∈ R
N , zT�z = z21+z2N +

N−1∑
i=2

(zi+1−2zi+zi−1)
2 .

(20)

The choice of such matrices may be used to enforce
smoothness if the underlying vector is believed to be
mostly continuous. The criterion of Eq. (19) can be rewrit-
ten as

argmin
wx,wy

∥∥XTwx‖22‖YTwy‖22 − 2wT
x XKxyYTwy

+ αx wT
x X�xXTwx + αy wT

y Y�yYTwy .
(21)

The optimization problem (21) can be alternatively
solved by optimizing wx and wy. Specifically, we first fix
wy and solve wx by minimizing (21). Then, we fix wx and
minimize (21) to obtain wy. The above two procedures
are repeated until convergence. Taking derivatives with
respect to wx and wy, we obtain

(
‖YTwy‖22 XXT + αx X�xXT

)
wx = XKxyYTwy

(
‖XTwx‖22 YYT + αy Y�yYT

)
wy = YKT

xyX
Twx .

Therefore, we obtain wx and wy by solving the above
equations in the least square sense (see Steps 7 and 9
in Algorithm 2). For multiple canonical projectors, let
us consider the singular value decomposition of Kxy =
UDVT =

N∑
i=1

diuivTi , where ui and vi are the ith col-

umn vectors of the matrices U and V , respectively, and

D = diag(d1, . . . , dN ) such that d1 ≥ d2 ≥ . . . ≥ dN .
In order to estimate the second pair of canonical projec-
tors, we must remove the contribution of the first pair
of canonical projectors from the matrix Kxy. To this end,
we must remove the contribution of the singular vectors
associated to the largest singular value d1 using:

Kxy − d1u1vT1 =
N∑
i=2

diuivTi .

As presented in Section 3, the singular vectors u1
and v1 represent the projected data XTwx and YTwy,
respectively. Then, by using the unitary property of
matrices U and V , we can compute the singular value
associated to the singular vectors u1 and v1 by d1 =
uT1 Kxyv1. Therefore, we propose to use a deflation pro-
cedure where the second pair of canonical projectors are
defined by using the corresponding residual matrix Kxy −
wT
x XKxyYTwyXTwxwT

y Y . Then, we can define the other
pair of projectors. The method for solving the smoothed
rank-1 matrix approximation CCA is summarized by
Algorithm 2.

Algorithm 2 Smoothed rank-1 matrix approximation
CCA algorithm
Require: Training data X ∈ R

dx×N and Y ∈ R
dy×N .

Ensure: The r pairs of canonical projector W x ∈ R
dx×r

andW y ∈ R
dy×r .

1: Compute the centred data xi ← xi − μx and yi ←
yi − μy for all i ∈ �1,N�, where μx = N−1

N∑
i=1

xi and

μy = N−1
N∑
i=1

yi

2: Compute Px = XT (XXT + γxIdx)−1X, Py =
YT (YYT + γyIdy)−1Y and Kxy = PxPy

3: for i = 1, 2, . . . , r do
4: Perform the SVD of Kxy : Kxy = UDVT

5: Initialize ũ = u1 and ṽ = v1
6: repeat
7: Update the i-th column of W x : W x(:, i) =(

XXT + αx X�xXT + γxIdx
)−1

XKxỹv

8: Update ũ = XTW x(:,i)
‖XTW x(:,i)‖2

9: Update the i-th column of W y : W y(:, i) =(
YYT + αy Y�yYT + γyIdy

)−1
YKT

xyũ

10: Update ṽ = YTW y(:,i)
‖YTW y(:,i)‖2

11: until convergence
12: Update Kxy : Kxy ← Kxy − ũTKxỹvũ̃vT
13: end for
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For illustrating the advantage of the proposed smoothed
CCA approach over standard CCA, we generated for three
distinct simulated activation cases; spatially independent
case S1, partial spatial overlap S2, and complete spatial
overlap case S3 as done in [16]. Three temporal sources,
with 120 s duration, were constructed to represent the
brain hemodynamics, i.e. block design activation (T1), and
two sinusoids (T2 and T3) with frequencies ∈ {1.5, 9.5}
Hz, respectively, and box signals were used as brain acti-
vation patterns [16]. Three distinct visual patterns of size
10 × 10 voxels were created with amplitudes of 1 at voxel
indexes {2, . . . , 6} × {2, . . . , 6} for pattern A, {8, 9} × {8, 9}
for pattern B, and {5, . . . , 9} × {5, . . . , 9} for pattern C,
and 0 elsewhere. The three simulated cases are shown in
Figs. 1, 2 and 3: spatially independent events in Fig. 1,
partial spatial overlapping events in Fig. 2 and complete
spatial overlapping events in Fig. 3.
We can observe from Figs. 1, 2 and 3 that the proposed

smoothed CCA algorithm have recovered both the tem-
poral signal and spatial maps with better accuracy than
CCA for the three presented cases S1, S2 and S3. This
demonstrates the effectiveness of the proposed smoothed
CCA approach in regularization when the estimated sig-
nals are believed to be continuous and smooth.

4 Sparse CCA algorithm based on rank-1matrix
approximation

In this section, we will propose the sparse CCA method
based on rank-1 matrix approximation by penalizing the
optimization problem (18). Then, we propose an effi-
cient iterative algorithm to solve the sparse solution of the
proposed criterion.
In general, the canonical projectors wx and wy found as

solutions in Eq. (18) are not sparse, i.e., the entries of both

wx and wy are non-zeros. To obtain the sparse solution,
we adopt the similar trick used in [7, 11, 12, 17] by impos-
ing penalty functions on the optimization problem (18).
Therefore, we can write the new optimization problem as:

argmin
wx,wy

∥∥Kxy − XTwxwT
y Y

∥∥2
F subject to

Fx(wx) ≤ βx and Fy(wy) ≤ βy ,
(22)

where Fx(·) and Fy(·) are penalty functions, which can
take on a variety of forms. Useful examples are �0-quasi-
norm F(z) = ‖z‖0 which count the non-zero entries of
a vector; Lasso penalty with �1-norm F(z) = ‖z‖1 and
so on.
The optimization problem (22) can be alternatively

solved by optimizingwx andwy. Specifically, we first fixwy
and solve for wx by minimizing (22). Then, we fix wx and
minimize (22) to obtainwy. The above two procedures are
repeated until convergence.
The straightforward approach to solve this problem is to

formulate it as an ordinary sparse coding task. Then, for
a fix wy the problem (22) is equivalent to much simpler
sparse coding problem

argmin
wx

∥∥KxyYTwy−XTwx
∥∥2
2 subject to Fx(wx) ≤ βx ,

which can be solved by using any sparse approximation
method. In the same way, we can solve the problem (22)
regarding wy for a fix wx by minimizing the following
criterion:

argmin
wy

∥∥KT
xyX

Twx−YTwy
∥∥2
2 subject to Fy(wy) ≤ βy .

Based on the above description, we can obtain the first
pair of sparse projectors wx and wy. For multiple projec-
tion vectors, we propose to use a deflation procedure as

Fig. 1 Illustrative example for simulated spatially independent activation case S1. Comparison of CCA and smoothed CCA (Algorithm 2) for spatially
independent case S1
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Fig. 2 Illustrative example for simulated partial spatial overlap activation case S2. Comparison of CCA and smoothed CCA (Algorithm 2) for
simulated partial spatial overlap activation case S2

presented in Section 3.1 where the second pair of sparse
projectors are defined by using the corresponding residual
matrices Kxy − XTwxKxywT

y YwT
x XYTwy. Using the same

way, we can define the other pair of sparse projectors.
The uncorrelated entries of the projected vector is

obtained due to the orthogonality of the canonical com-
ponents . The orthogonality among these components
is lost due to the constraints added to the cost (18), a
nice property enjoyed by standard CCA. Several other
CCA procedures lose this property as well; this is just the
price to pay for using the other constraints (sparsity or
smoothness).

Then, we summarized the method of solving the entire
sparse rank-1 matrix approximation CCA in Algorithm 3
In terms of difference between the proposed approach

to achieve sparse CCA and the method proposed in
[11]; the method proposed in [11] uses a penalized
matrix decomposition on the cross-product matrix XYT

, whereas our proposed approach is based on a rank-1
matrix approximation of Kxy as defined in (18). Further-
more, the method proposed in [11] makes the assumption
thatXXT and YYT are identities to replace the constraints
wT
x XXTwx ≤ 1 and wT

y YYTwy ≤ 1 by ‖wx‖22 ≤ 1 and
‖wy‖22 ≤ 1 (Eqs. (4.2) and (4.3) of [11]). This assumption is

Fig. 3 Illustrative example for simulated complete spatial overlap activation case S3. Comparison of CCA and smoothed CCA (Algorithm 2) for
simulated complete spatial overlap activation case S3
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relaxed in the proposed sparse CCA algorithm presented
in Section 4. This is obtained by directly including these
constraints wT

x XXTwx = 1 and wT
y YYTwy = 1 in the

derivation of the matrix Kxy used in the penalized rank-1
matrix approximation via Eq. (3).
The same argument is valid for [7] and [12] as both

these papers are based on the cross-product matrix XYT ;
furthermore, their approaches used for regularization is
similar to the one described in Algorithm 1 and therefore
different from the regularization adopted in this paper
given in Algorithm 2.

Algorithm 3 Sparse rank-1 matrix approximation CCA
algorithm
Require: Training data X ∈ R

dx×N and Y ∈ R
dy×N .

Ensure: The r pairs of canonical projector W x ∈ R
dx×r

andW y ∈ R
dy×r .

1: Compute the centred data xi ← xi − μx and yi ←
yi − μy for all i ∈ �1,N�, where μx = N−1

N∑
i=1

xi and

μy = N−1
N∑
i=1

yi;

2: Compute Px = XT (XXT + γxIdx)−1X, Py =
YT (YYT + γyIdy)−1Y and Kxy = PxPy;

3: for i = 1, 2, . . . , r do
4: Perform the SVD of Kxy : Kxy = UDVT ;
5: Initialize ũ = u1 and ṽ = v1;
6: repeat
7: Update the i-th column ofW x :

W x(:, i) = argmin
W x(:,i)

∥∥Kxỹv − XTW x(:, i)
∥∥2
2 subject to

Fx(W x(:, i)) ≤ βx;

8: Update ũ = XTW x(:,i)
‖XTW x(:,i)‖2 ;

9: Update the i-th column ofW y :

W y(:, i) = argmin
W y(:,i)

∥∥KT
xyũ − YTW y(:, i)

∥∥2
2 subject to

Fy(W y(:, i)) ≤ βy;

10: Update ṽ = YTW y(:,i)
‖YTW y(:,i)‖2 ;

11: until convergence
12: Update Kxy : Kxy ← Kxy − ũTKxỹvũ̃vT ;
13: end for

5 Experiments
In this section, we present several computer simulations
in the context of blind channel estimation in single-input
multiple-output (SIMO) systems and blind source sepa-
ration to demonstrate the effectiveness of the proposed
algorithm. We compare the performance of the proposed

algorithm with existing state of the art sparse CCA
methods:

• The sparse CCA presented in [11], relying on a
penalized matrix decomposition denoted PMD. An R
package implementing this algorithm, called PMA, is
available at http://cran.r-project.org/web/packages/
PMA/index.html. Sparsity parameters are selected
using the permutation approach presented in [18] of
which the code is provided in PMA package.

• The sparse CCA presented in [7] where the CCA is
reformulated as a least-squares problem denoted LS
CCA. A Matlab package implementing this algorithm
is available at http://www.public.asu.edu/~jye02/
Software/CCA/.

• The sparse CCA presented in [12] where the sparse
canonical projectors are computed by solving two
�1-minimization problems by using the Linearized
Bregman iterative method [19]. This algorithm is
denoted CCA LB (Linearized Bregman). We
re-implemented the sparse CCA algorithm proposed
in [12] using Matlab.

For the proposed sparse CCA algorithm, we have used
Fx(z) = Fy(z) = ‖z‖0 as penalty functions. We solve
the sparse coding problem by using orthogonal matching
pursuit (OMP) algorithm [20, 21]. For proposed smoothed
CCA algorithm, we chose �x = �y and given by Eq. (20).

5.1 Synthetic data
This simulation setup is inspired from [22]. The synthetic
data X and Y were generating according to multivariate
normal distribution, with covariance matrices described
in Table 1. The number of simulations with each config-
uration was Nk = 1000. We compare the performance of
our algorithm to the state of the art methods by estimating
the precision accuracy of the space spanned by r esti-
mated canonical projectors. We compute for each simula-
tion run k the angle θk(Ŵ k

x ,W x) between the subspace1
spanned by the estimated canonical projectors contained
in the columns of Ŵ k and the subspace spanned by the
true canonical projectors contained in the columns of
W x solution of the eigenproblem (9). The same crite-
rion is used for the canonical projectors W y. The aver-
age angles are estimated over Nk Monte-Carlo run such
that:

θx = 1
Nk

Nk∑
k=1

θk(Ŵ k
x ,W x) and

θy = 1
Nk

Nk∑
k=1

θk(Ŵ k
y ,W y) .

http://cran.r-project.org/web/packages/PMA/index.html
http://cran.r-project.org/web/packages/PMA/index.html
http://www.public.asu.edu/~jye02/Software/CCA/
http://www.public.asu.edu/~jye02/Software/CCA/
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Table 1 Simulation settings
Parameters dx dy r N Cxx Cyy Cxy

Scenario 1 4 4 3 {50, 100, 200} I4 I4

⎡
⎢⎢⎢⎢⎢⎣

9
10 0 0 0

0 1
2 0 0

0 0 1
3 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

Scenario 2 4 6 2 {50, 100, 200} I4 I6

⎡
⎢⎢⎢⎢⎢⎣

3
5 0 0 0 0 0

0 1
2 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

Scenario 3 4 6 2 {50, 100, 200} I4 I6

⎡
⎢⎢⎢⎢⎢⎣

2
5

4
25 0 0 0 0

4
25

2
5 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

Scenario 4 6 10 2 {50, 100, 200} I6

⎡
⎣ M 0

0 I7

⎤
⎦ 1

2

⎡
⎣ I2 0

0 0

⎤
⎦

withM(i, j) = 0.3|i−j|

Scenario 5 20 20 10 {50, 100, 200} I20 I20 7
10

⎡
⎣ I10 0

0 0

⎤
⎦

Scenario 6 20 20 10 {50, 100, 200} I20 I20

⎡
⎣ S10 0

0 0

⎤
⎦

with S10(i, j) = 0.4|i−j+1|

For each algorithm, we used the following parameters:
LS CCA algorithm with λx = λy = 0.5, CCA LB algo-
rithm with μx = μy = 2; Algorithm 2 with αx = αy =
10−2 ; and Algorithm 3 with βx = βy = 3. The simu-
lation performance on the estimated angle between the
subspace spanned by the true canonical projectors and the
estimated one by the different methods are reported in
Tables 2 and 3, and plotted in Fig. 4. Note that the true
canonical projectors W x and W y are sparse due to the
structure of the matrices Cxy (see Eqs. (8) and (9)).
We can observe that the simulation accuracy of the

proposed sparse CCA method is significantly better com-
pared to other CCA methods. In the case of low number
of observations, the proposed sparse CCA method is still
doing well and where the performance gain increases with
increasing number of observations. This demonstrates the
robustness of our sparse CCA method with respect to the
number of available observations and the benefit of using
our sparse CCA method in the context of a relatively low
number of observations

5.2 Blind channel identification for SIMO systems
Blind channel identification is a fundamental signal
processing technology aimed at retrieving a system’s
unknown information from its outputs only. Estimation
of sparse long channels (i.e. channels with small number
of nonzero coefficients but a large span of delays) is

considered in this simulation. Such sparse channels are
encountered in many communication applications: high-
definition television (HDTV) [23], underwater acous-
tic communications [24] and wireless communications
[25, 26]. The problem addressed in this section is to deter-
mine the sparse impulse response of a SIMO system in a
blind way, i.e. only the observed system outputs are avail-
able and used without assuming knowledge of the specific
input signal.
Let us consider a mathematical model where the

input and the output are discrete, the system is driven
by a single-input sequence s(t) and yields two output
sequences x1(t) and x2(t) and the system has finite
impulse responses (FIR’s) hi(t), for t = 0, . . . , L and
i = 1, 2 with L as the maximal channel length (which
is assumed to be known). Such a system model can be
described as follows :

{
x1(t) = s(t) ∗ h1(t) + η1(t)
x2(t) = s(t) ∗ h2(t) + η2(t) ,

(23)

where ∗ denotes linear convolution, η(t) =[ η1(t), η2(t)]T
is an additive spatial white Gaussian noise, i.e.
E[ η(t)η(t)T ]= σ 2I2 , and h =[hT1 h

T
2 ]T with

hi =[ hi(0), . . . , hi(L)]T (i = 1, 2) denotes the impulse
response vector of the ith channel. Given a finite set of
observation of length T, the objective in this experience
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Table 2 Simulation results part 1

θx (rad) θy (rad) θx (rad) θy (rad) θx (rad) θy (rad)

Method N = 50 N = 100 N = 200

Scenario 1: CCA 0.5395 0.5033 0.3468 0.3475 0.2273 0.2388

LS CCA 0.4161 0.3697 0.2649 0.2650 0.1784 0.1872

CCA LB 0.5172 0.5151 0.3310 0.3341 0.2250 0.2228

PMD 0.2203 0.2420 0.0908 0.0506 0.0207 0.0175

Algorithm 2 0.5074 0.5189 0.3123 0.3140 0.2225 0.2202

Algorithm 3 0.2011 0.2191 0.0491 0.0273 0.0044 0.0057

Scenario 2: CCA 0.5091 0.6682 0.3108 0.4123 0.2089 0.2771

LS CCA 0.3481 0.5083 0.2285 0.3247 0.1605 0.2182

CCA LB 0.3000 0.3761 0.0227 0.0228 0.0008 0.0009

PMD 0.2061 0.3068 0.0230 0.0706 0.0043 0.0443

Algorithm 2 0.5064 0.6462 0.3062 0.4111 0.2061 0.2792

Algorithm 3 0.1162 0.1508 0.0012 0.0015 0.0001 0.0001

Scenario 3: CCA 0.8699 1.0281 0.6800 0.8254 0.4823 0.6009

LS CCA 0.6398 0.8314 0.4608 0.6139 0.3116 0.4348

CCA LB 0.8681 1.0285 0.6575 0.8122 0.3859 0.4938

PMD 0.7690 0.9080 0.5382 0.6736 0.2736 0.4811

Algorithm 2 0.8465 0.9876 0.6654 0.8078 0.4345 0.5839

Algorithm 3 0.3424 0.4571 0.0393 0.0628 0.0001 0.0016

Table 3 Simulation results part 2

θx (rad) θy (rad) θx (rad) θy (rad) θx (rad) θy (rad)

Method N = 50 N = 100 N = 200

Scenario 4: CCA 0.8125 0.9956 0.5603 0.6678 0.3390 0.4484

LS CCA 0.5275 0.7305 0.3553 0.4711 0.2412 0.3449

CCA LB 0.7603 0.9209 0.2785 0.5163 0.0149 0.3152

PMD 0.6111 0.8273 0.2031 0.4616 0.0397 0.3373

Algorithm 2 0.8829 0.9938 0.5288 0.6735 0.3295 0.4447

Algorithm 3 0.3990 0.6856 0.0173 0.3237 0.0001 0.3035

Scenario 5: CCA 1.3798 1.3764 0.8879 0.8744 0.4700 0.4722

LS CCA 0.8538 0.8298 0.5231 0.5187 0.3373 0.3378

CCA LB 1.3681 1.3659 0.7264 0.7347 0.0478 0.0417

PMD 1.3972 1.3542 1.1316 1.0342 0.4082 0.3820

Algorithm 2 1.3627 1.3655 0.7413 0.8096 0.4407 0.4605

Algorithm 3 1.1185 1.0986 0.0275 0.0271 0.0001 0.0001

Scenario 6: CCA 1.4853 1.4854 1.4624 1.4633 1.4249 1.4199

LS CCA 1.4589 1.4578 1.3797 1.3838 1.1954 1.1951

CCA LB 1.4862 1.4851 1.4684 1.4740 1.4830 1.4793

PMD 1.5244 1.5130 1.4985 1.4954 1.4553 1.4551

Algorithm 2 1.4794 1.4791 1.4512 1.4509 1.3869 1.3790

Algorithm 3 1.4633 1.4628 0.7775 0.7885 0.0220 0.0221
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Fig. 4 Synthetic data simulation results. Performance comparison of CCA, LS CCA, CCA LB, PMD, Algorithm 2 and Algorithm 3 for synthetic data

is to estimate the channel coefficients vector h. The
identification method presented by Xu et al. in [27] which
is closely related to linear prediction exploits the com-
mutativity of the convolution. Based on this approach
and inspired from [28], we present in the following an
experience to asses the performance of blind channel
identification methods based on CCA.
From Eq. (23), the noise-free outputs xi(n), i = 1, 2 and

using the commutativity of convolution, it follows :

h2(t) ∗ x1(t) = h1(t) ∗ x2(t) . (24)

In case the outputs xi(t) are corrupted by additive noise,
this property inspired the design of the identification dia-
gram shown in Fig. 5, which allows to find estimates of
the channels impulse response, ĥ1 and ĥ2, by collecting

T observations sample and minimizing the following cost
function

argmin
h1,h2

‖X1h2 − X2h1‖2
subject to ‖X1h1‖2 = ‖X2h2‖2 = 1 ,

where

X i =
⎡
⎢⎣

xi(L) . . . xi(0)
...

. . .
...

xi(T − 1) . . . xi(T − L − 1)

⎤
⎥⎦ i = 1, 2.

This problem is a canonical correlation analysis (CCA)
problem.
Then, we present here some numerical simulations to

assess the performance of the proposed algorithm. We
consider a SIMO system with two outputs represented by
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Fig. 5 SIMO system scheme. The block diagram of a SIMO system A
linear SIMOsystem and the corresponding blind identification diagram

polynomial transfer function of degree L = 66. The chan-
nel impulse response is generated following 3GPP ETU
(Extended Typical Urban) channel model [29] with fre-
quency sampling 15.36 MHz which is used to model a
channel impulse response for urban area in the context of
wireless communications. The multipath delay profile for
this channel is shown in Table 4.
The input signal is a BPSK i.i.d. sequence of length

T = {256, 1024}. The observation is corrupted by the
additive white Gaussian noise with a variance σ 2 chosen
such that the signal to noise ratio SNR= ‖h‖2

σ 2 varies in the
range [ 0, 40] in dB. Statistics are evaluated over Nk = 100
Monte Carlo runs, and estimation performance are given
by the normalized mean square error criterion :

NMSE = 1
Nk

Nk∑
k=1

1 −
(

ĥTk h
‖̂hk‖‖h‖

)2

,

where ĥk denotes the estimated channel coefficient vector
at the kth Monte Carlo run. For each algorithm, we used
the following parameters: LS CCA algorithm with λx =
λy = 10−2, CCA LB algorithm with μx = μy = 10−1;
Algorithm 2 with αx = αy = 10−3 ; and Algorithm 3 with
βx = βy = 10.
In Figs. 6 and 7, the normalized mean square error

is plotted versus the SNR for the proposed approaches
and state of the art algorithm. It is clearly shown that
our sparse CCA based on rank-1 matrix approximation
provide the best results for all SNR range and all observa-
tion length. Especially, we can observe that the proposed
method outperforms the PMD algorithm [11] by 9 dB for
moderate and high SNR. This results show the robustness
of the proposed method against the additive noise and
its fast convergence. Indeed, from Fig. 6, we can observe
that the proposed sparse CCAmethod provide for moder-
ate and high SNR a near-optimal performance even in the
case of low observation size.

Table 4 3GPP extended typical urban channel model [29]

Excess tap delay (ns) 0 50 120 200 230 500 1600 2300 5000

Relative power (dB) −1.0 −1.0 −1.0 0.0 0.0 0.0 −3.0 −5.0 −7.0

SNR (dB)
10 15 20 25 30 35 40

N
M

S
E

 (
dB

)

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

CCA
LS CCA
CCA LB
PMD
Algorithm 2
Algorithm 3

Fig. 6 NMSE versus SNR for T = 256. Normalized mean square error
(NMSE) versus the SNR for SIMO system with two sensors and
T = 256: performance comparison between CCA based methods for
blind channel identification

5.3 Blind source separation for fMRI signals
In this section, we evaluate the performance of the pro-
posed CCA variant algorithms on a problem of func-
tional magnetic resonance imaging (fMRI) resting state
experiment (see Fig. 8 and Table 5). In this case, we
are interested in functional connectivity and recovering a
resting state network, i.e. the default mode network from
a data matrix Y formed by vectorizing each time series
observed in every voxel creating a matrix n × N where n
is the number of time points and N the number of voxels
(≈ 10, 000 − 100, 000) [30].

SNR (dB)
10 15 20 25 30 35 40

N
M

S
E

 (
dB

)

-60

-50

-40

-30

-20

-10

0

CCA
LS CCA
CCA LB
PMD
Algorithm 2
Algorithm 3

Fig. 7 NMSE versus SNR for T = 1024. Normalized mean square error
(NMSE) versus the SNR for SIMO system with two sensors and
T = 1024: performance comparison between CCA based methods
for blind channel identification
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Fig. 8 FMRI simulation results. The functional connectivity results of a single subject for default mode network (DMN) using eight different CCA
variant algorithms. a Reference. b CCA. c LS CCA, λx = λy = 0.5. d CCA LB, μx = μy = 10. e PMD, f Algorithm 2, αx = αy = 10−4. g Algorithm 2,
αx = αy = 10−3. h Algorithm 3, βx = βy = 3. i Algorithm 3, βx = βy = 4

To use CCA, either a second data set obtained from a
different subject is used or the second data set is obtained
from the original data Y by time delay [31]. This last
option is used in this application example. Instead of tak-
ing N as the total number of voxels, only the cortical,
subcortical and cerebellum regions in the brain obtained
by parcellating the whole brain into 116 ROIs using auto-
mated anatomical labelling [32] were considered. For each
considered region, the average time series was generated
and used.
The single subject (id 100307) rsfMRI dataset used in

this section was obtained from the Human Connectome
Project Q1 release [33]. The acquisition parameters of
rsfMRI data are 90 × 104 matrix, 220 mm FOV, 72

slices, TR = 0.72 s, TE = 33.1 ms, flip angle = 52◦ ,
BW = 2290Hz/Px, in-plane FOV = 208 × 180 mm with
2.0 mm isotropic voxels. The obtained data was already
preprocessed with the preprocessing pipeline consisting
of motion correction, temporal pre-whitening, slice time
correction and global drift removal, and the scans were
spatially normalized to a standard MNI152 template and
were resampled to 2 mm × 2 mm × 2 mm voxels. The
reader is referred to [33, 34] for more details regarding
data acquisition and preprocessing.
The second data set obtained by a single sample delay

was used for CCA. The different CCA algorithms were
applied on Y and Y t−1 of dimension n × N to allow us to
generate canonical correlation components representing

Table 5 Performance comparison in terms of correlation with the reference Fig. 8 (a)

Algorithms CCA LS CCA CCA LB PMD Algo 2 (f) Algo 2 (g) Algo 3 (h) Algo 3 (i)

Correlation 0.9438 0.9054 0.9764 0.9235 0.9822 0.9852 0.9953 0.9995



Aïssa-El-Bey and Seghouane EURASIP Journal on Advances in Signal Processing  (2017) 2017:25 Page 13 of 14

maximally correlated temporal profile. The neural dynam-
ics of interest can be obtained by correlating the mod-
ulation profile of the canonical correlation components
with the time series representing average neural dynamics
for regions of interest (ROIs). For functional connectiv-
ity analysis of the default mode network (DMN), the
modulation profile that was most correlated with pos-
terior cingulate cortex (PCC) representative time series
is used. Using the neural dynamics of interest, sparsely
distributed and clustered origin of the dynamics are
obtained by converting the associated coefficient rows to
z-scores.
Using the different CCA variant algorithms, the con-

nected regions obtained for DMN are mostly PCC, medial
pre-frontal cortex (MFC) and right inferior parietal lobe
(IPL). As there is no gold standard reference for DMN
connectivity available, therefore, we relied on the simi-
larity of temporal dynamics of DMN-based modulation
profile with PCC representative time series. The similar-
ity measure used was correlation and estimated as > 0.9
for all the algorithms.

6 Conclusions
In this paper, we have developed two new variants of CCA;
more specifically, we have introduced new algorithms for
sparse and smooth CCA. The proposed algorithms are
based on penalized rank-1 matrix approximation and dif-
fer from the existing ones in the matrices they use for their
derivation. Indeed, instead of focusing on the cross-matrix
product of the two sets of multidimensional variables, we
have used the product of the orthogonal projectors onto
the space spanned by the columns of the two sets of mul-
tidimensional variables. Using this approach, the sparse
and smooth CCA algorithms proposed differ only in the
penalty used in the penalized rank-1 matrix approxima-
tion. Simulation results illustrating the effectiveness of
the proposed CCA variant algorithms are provided where
we can observe that proposed sparse CCA outperforms
state of the art methods. As a continuation of the pre-
sented work and in order to fix the tuning parameters
of the proposed approaches, the main idea of the per-
mutation method presented in [18] will be studied and
adapted.

Endnotes
1 Let A and B be two matrices. In order to compute the

angle θ between the subspaces spanned by the columns of
A and B; first, we compute an orthonormal basis A⊥ and
B⊥ for the range ofA and B respectively. θ is computed by
θ = arccos(min(AT⊥B⊥)).
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