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Abstract

The minimum power distortionless response beamformer has a good interference rejection capability, but the
desired signal will be suppressed if signal steering vector or data covariance matrix is not precise. The worst-case
performance optimization-based robust adaptive beamformer (WCB) has been developed to solve this problem.
However, the solution of WCB cannot be expressed in a closed form, and its performance is affected by a prior
parameter, which is the steering vector error norm bound of the desired signal. In this paper, we derive an
approximate diagonal loading expression of WCB. This expression reveals a feedback loop relationship between
steering vector and weight vector. Then, a novel robust adaptive beamformer is developed based on the iterative
implementation of this feedback loop. Theoretical analysis indicates that as the iterative step increases, the
performance of the proposed beamformer gets better and the iteration converges. Furthermore, the proposed
beamformer does not subject to the steering vector error norm bound constraint. Simulation examples show that the
proposed beamformer has better performance than some classical and similar beamformers.
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1 Introduction
The minimum variance distortionless response (MVDR)
beamformer is capable of maximizing the output signal to
interference-plus-noise ratio (SINR). The MVDR requires
using the interference-plus-noise covariance matrix; how-
ever, in many applications, it is impossible to obtain it.
When the training data contains the desired signal com-
ponent, the MVDR beamformer becomes the minimum
power distortionless response (MPDR) beamformer [1, 2].
The MVDR beamformer maximizes the output SINR by
minimizing the total beamformer output power, subject to
a distortionless constraint for the desired signal. However,
due to the desired signal component, even small error in
the steering vector or covariance matrix can lead to severe
performance degradation [3], this phenomenon is often
called desired signal cancellation. In practice, many fac-
tors can lead to steering vector estimation errors, such
as inaccurate signal model [4], direction of arrival (DOA)
estimation error [5], array perturbations [6], and calibra-
tion errors [7]. Finite sample snapshots [8] lead to an
inaccurate data covariance matrix. Therefore, a robust
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technology is required to overcome these problems. We
refer to adaptive beamformer that attempts to preserve
good performance in the presence of steering vector or
covariance matrix error as robust adaptive beamformer
(RAB).
In the past two decades, many technologies have been

developed to improve the robustness of the MPDR beam-
former against the steering vector error. For example,
the class of diagonal loading technology [9, 10] aug-
ment the data covariance with a constant improves the
robustness; the worst-case performance optimization-
based beamformer (WCB) [11, 12] restrains the gain
in signal uncertainty range that is larger than one; the
covariance fitting-based beamformer [13, 14] solves a new
steering vector which is fitting for the sample covariance
matrix to avoid desired signal cancellation; the magnitude
response constraintsmethod [15, 16] improves the robust-
ness by restraining the main beam pattern; the covariance
matrix reconstruction approach [17, 18] eliminates the
signal component from the data covariance matrix to
prevent desired signal cancellation.
The classical WCB [11] minimizing the total beam-

former output power, subject to the gain in desired signal
steering vector’s uncertainty set, is larger than one. The
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WCB has a good robustness performance, but it has two
inherent drawbacks. On the one hand, the constrained
optimization equation of WCB is a nonconvex NP-hard
problem; although there exists many methods [12, 19]
to solve it, there is no closed-form solution until now.
On the other hand, the performance of WCB is highly
affected by the prior value of steering vector error norm
bound. Unfortunately, the optimum bound value [20, 21]
cannot be obtained in practice, and if the prior value is
not big enough, the performance of WCB will decrease
significantly.
To solve these two problems of WCB, we propose a

novel beamformer; its idea and way are as follows. Firstly,
we propose an approximate diagonal loading expression
of WCB under certain conditions. Then, we build a feed-
back loop relationship between steering vector and weight
vector based on this expression. At last, a novel RAB is
developed based on the iterative implementation of this
feedback loop.
The outline of this paper is as follows. The data model

and background on adaptive beamforming are provided in
Section 2. The proposed beamformer and its implemen-
tation are developed in Section 3. The simulation results
are presented in Section 4. Finally, a brief conclusion
appears in Section 5. In the paper, E[ �], (�)H , (�)−1, ‖�‖, and
⊥ denote the expectation, Hermitian transpose, inverse,
the two-norm, and orthogonal, respectively; superscript ˆ
denotes the estimated value.

2 Problem formulation
2.1 The MPDR beamformer
Considering a uniform linear array (ULA) with M omni-
directional sensors, one desired signal and L interference
signals impinging upon the array from different direc-
tions, and the source is in the far-field of the array. The
received array signal can be expressed as

x(k) = aSsS(k) +
L∑

i=1
aisi(k) + n(k) (1)

where x(k), a, and n(k) are M × 1 complex vector, k
denotes the snapshot number, and ai, i = S, 1, . . ., L is the
actual steering vector of the i-th signal. si(k) is zero-mean
stationary i-th signal; n(k) denotes the noise. Assuming
that each signal and noise are statistically independent,
the data covariance matrix of the array output is given by

R = E[ x(k)xH(k)]= PSaSaHS +
L∑

i=1
PiaiaHi + PN I (2)

where PS, Pi, and PN denote the power of desired signal,
i-th interference, and noise, respectively.
The beamformer output signal can be written as

y(k) = wHx(k) (3)

where w is the weighing vector of the beamformer. The
MPDR beamformer is mathematically equivalent to the
problem

min
w

wHRw s.t. wHaS = 1 (4)

The solution of MPDR is often called optimum weight

wMPDR = R−1aS
aHS R−1aS

(5)

However, we cannot achieve the optimum weight in
practice due to two inaccurate parameters. On the one
hand, since data covariance matrix R is unknown in prac-
tice, it is replaced by K snapshots sample covariance

matrix R̂ = 1
K

K∑
k=1

x(k)xH(k). On the other hand, steering

vector aS relates to signal frequency, direction of arrival,
sensors locations, coupling effect, as well as other factors,
any inaccurate of these factors can lead to steering vector
error.
If the signal-to-noise ratio (SNR) of desired signal is

high, even slight error of R or aS will cause the MPDR
beamformer suppresses the desired signal as an inter-
ference, which leads to a severe degradation of the per-
formance [3]. This effect is often called desired signal
cancellation.
This paper only concerns about the error of steering

vector, so we use actual covariance matrix R in all of the
following formulas.

2.2 The worst-case performance optimization-based
beamformer

The WCB [11] minimizing the total beamformer output
power, subject to the gain in desired signal steering vec-
tor’s uncertainty set, is larger than one. In rank-one signal
and spherical uncertainty set case [22], the WCB can be
expressed as

{
min
w

wHRw

s.t.
∣∣wH(âS + �a)

∣∣ ≥ 1, for all ‖�a‖ ≤ ε
(6)

where âS is the assumed steering vector of desired signal
(obtained from estimated DOA and nominal array man-
ifold). The prior known positive constant ε [20] can be
explained as a norm bound of the unknown error between
aS and âS.
Problem (6) is a nonconvex NP-hard problem. After

some release and approximation [11], it can be converted
to the following convex second-order cone programming
problem
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{
min
w

wHRw

s.t.wH âS − ε ‖w‖ = 1
(7)

There are many methods to solve the problem above,
such as, the convex optimization tools solve method [11],
the eigen-decomposition root-searching method [19], the
diagonal loading method [23], the recursive implementa-
tion [12], etc.

2.3 Approximate diagonal loading solution of the WCB
Using the Lagrange multiplier method, problem (7) can be
written as

F(w, λ) = wHRw − λ(wH âS − ε ‖w‖ − 1) (8)

where λ is the Lagrangemultiplier. Differentiating (8) with
w and equating the result to zero, we obtain the following
equation:

Rw + λε
w

‖w‖ = λâS (9)

Using the fact that multiplying the weight vector by any
arbitrary constant does not change the output SINR, we
can transform (9) to

Rw + ε
w

‖w‖ = âS (10)

So that (10) does not contain the Lagrange multiplier
anymore. Then, (10) can be written as

w =
(
R + ε

‖w‖ I
)−1

âS (11)

It can be seen from (11) that the WCB belongs to the
class of diagonal loading. Taking the norm squared of the
both sides of (11), and defining the diagonal loading level
ρ = ε/ ‖w‖, we obtain

(
ε

ρ

)2
= ∥∥(R + ρI)−1âS

∥∥2 (12)

In the following, we will solve (12). The solve idea takes
reference to [9, 23], and [24]. Using Woodbury formula of
matrix inverse, we have

(R + ρI)−1

= [
PSaSaHS + (RIN + ρI)

]−1

= (RIN + ρI)−1 − PS(RIN + ρI)−1aSaHS (RIN + ρI)−1

1 + PSaHS (RIN + ρI)−1aS
(13)

where RIN=
∑L

i=1 PiaiaHi + PN I is interference-plus-noise
covariance matrix. RIN can be expressed in eigen decom-
position form as

RIN =UI�IUH
I +UN�NUH

N =
L∑

i=1
γiuiuHi + PN

M∑

i=L+1
uiuHi

(14)

where γi and ui are the eigenvalues and corresponding
eigenvectors of RIN , eigenvalues are sorted in descend-
ing order, γ1 ≥ . . . ≥ γL � γL+1 = . . . =
γM = PN ,UI =[u1, . . .,uL] spans the interference sub-
space, UN =[uL+1, . . .,uM] spans the noise subspace, and
UIUH

I +UNUH
N=I, span{ai} = span{ui}, i = 1, 2, . . .L [7].

When DOA separation between signal and interference
is larger than a beam width,

∣∣aHS ai
∣∣ /M � 1, i = 1, . . ., L

[25] (Fig. 1 gives an example). Assuming this condition
always holds, we can make the approximation

∣∣aHS ui
∣∣2 �

M and aHS UIUH
I aS � M, which can be further expanded

to aHS UNUH
NaS = aHS (I − UIUH

I )aS = M − aHS UIUH
I aS ≈

M, and
∥∥UH

I aS
∥∥2 � ∥∥UH

NaS
∥∥2.

It is well known that the desired signal’s steering
vector aS is orthogonal to the noise subspace of data
covariance matrix R. The result aHS UNUH

NaS ≈ M
reveals a new property: aS approximately belongs to
the noise subspace of interference-plus-noise covariance
matrix RIN . The precondition is that the DOA sepa-
ration between desired signal and interference is larger
than a beam width; this condition holds under normal
conditions.
The following Lemma 1 is used in this paper:

Lemma 1

aHS
L∑

i=1
f (γi)uiuHi aS =

L∑

i=1
f (γi)

∣∣aHS ui
∣∣2

= f (γ̃ )

L∑

i=1

∣∣aHS ui
∣∣2

(15)

Fig. 1 The value of
∣∣∣âH(θi)â(θ̂S)

∣∣∣ /M
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where f (·) is a monotonic function in this paper, and γ1 >

γ̃ > γL � PN always holds. Lemma 1 is obvious, and it is
easy to be proved, so we use this lemma directly.

Using Lemma 1, and defining f (γ ) = 1/(γ+ρ), we have

aHS (RIN + ρI)−1aS = aHS
M∑

i=1

uiuHi
γi+ρ

aS

=
L∑

i=1

∣∣aHS ui
∣∣2

γi+ρ
+

M∑

i=L+1

∣∣aHS ui
∣∣2

PN+ρ

=
∥∥UH

I aS
∥∥2

γ̃+ρ
+

∥∥UH
NaS

∥∥2

PN+ρ

(16)

Since γ̃ > γL � PN , and
∥∥UH

I aS
∥∥2 � ∥∥UH

NaS
∥∥2, (16)

can be simplified as

aHS (RIN + ρI)−1aS ≈
∥∥UH

NaS
∥∥2

PN+ρ
≈ M

PN + ρ
� κ (17)

Usually, âS is very close to aS in practice, so we canmake
two approximations: aHS UNUH

N âS ≈ M and âHS UNUH
N âS ≈

M, which can be further extended to

aHS (RIN + ρI)−1âS ≈ âHS (RIN + ρI)−1âS ≈ M
PN + ρ

= κ

(18)

Similar to (16) and (17), we can obtain the following
approximations

âHS (RIN + ρI)−2âS = âHS
M∑

i=1

uiuHi
(γi + ρ)2

âS

≈ 1
(PN + ρ)2

âHS
M∑

i=L+1
uiuHi âS

= âHS UNUH
N âS

(PN + ρ)2
≈ κ2

M
(19)

aHS (RIN + ρI)−2aS ≈ aHS (RIN + ρI)−2âS

≈ âHS (RIN + ρI)−2aS ≈ κ2

M

(20)

According to (13), (18), (19), and (20), the following
approximation holds

∥∥(R + ρI)−1âS
∥∥2

=
∥∥∥∥∥(RIN+ρI)−1âS− PS(RIN+ρI)−1aSaHS (RIN+ρI)−1âS

1+ PSaHS (RIN + ρI)−1aS

∥∥∥∥∥

2

≈
∥∥∥∥(RIN + ρI)−1âS − PSκ

1 + PSκ
(RIN + ρI)−1aS

∥∥∥∥
2

=
(
âS − PSκ

1 + PSκ
aS

)H
(RIN + ρI)−2

(
âS − PSκ

1 + PSκ
aS

)

≈ κ2

M(1 + PSκ)2

(21)

The approximate diagonal loading level can be solved by
using (12) and (21) as

ρ ≈ ε (MPS + PN )√
M − ε

(22)

Finally, the weight vector of WCB is

wWCB = (R + ρI)−1âS (23)

Equation (22) indicates that the diagonal loading level
relates to the desired signal’s power PS, noise power PN ,
and steering vector error norm bound ε. The premise
behind (22) is the Eqs. (18), (19), and (20). If âS = aS,
(18), (19), and (20) are strictly true and (22) is reliable. If
there exists error between âS and aS, the following iter-
ative method will reduce this error step by step so as to
make (22) reliable.

3 The proposed beamformer
The key problem of (22) is how to obtain the accurate
value ofMPS+PN , or reliable approximate value, and how
to set a suitable ε. The idea of the proposed beamformer
is to use iterative implementation. Firstly, we estimate an
approximate value of MPS + PN , and a prior value of ε,
to obtain the weight vector. Then, we estimate a more
accurate value of MPS + PN by using this weight vec-
tor. Repeating this process, it is maybe possible that the
updatedMPS + PN approaches to its actual value.
In this section, we propose a method to estimate the

value ofMPS + PN , establish a feedback loop relationship
between desired signal’s steering vector and weight vec-
tor, and propose a novel beamformer based on iterative
implementation of this feedback loop.
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3.1 Feedback loop relationship between steering vector
and weight vector

Under the condition that the interferences are absent, the
data covariance matrix becomes R = PSaSaHS + PN I. Its
inverse is calculated by

R−1 = 1
PN

I − PSaSaHS
PN (PN + MPS)

(24)

Then, we have

1
aHS R−1aS

= PS + PN
M

(25)

Equation (25) reveals the relationship between steering
vector aS andMPS + PN .
In practice, aS is replaced by âS for MPDR beamformer

in (5). For a weight vector obtained by WCB or other
beamformers, we can define an “equivalent steering vec-
tor” for MPDR beamformer. For example, by combining
(5) and (23), we can establish the following relationship

α(R + ρI)−1âS = αwWCB = wWCB−MPDR = R−1ãS
ãHS R−1ãS

(26)

where α is a constant, ãS is an equivalent steering vec-
tor for MPDR beamformer, and we guess that ãS is more
accurate than âS if wWCB (obtained by (23)) is better than
wMPDR (obtained by (5) with âS).
It is easy to express ãS by R and w from (26) [26]

ãS = α′RwWCB (27)

where α′ = αãHS R
−1ãS. The equivalent steering vector ãS

should be scaled by the fact that the norm of ãS equals√
M, that is

ãS = √
MRwWCB/ ‖RwWCB‖ (28)

Henceforth, we obtain the feedback loop relationship
between steering vector aS, diagonal loading level ρ, and
weight vector w through (22), (23), (25), and (28).

3.2 Iterative implementation
If the ãS obtained by (28) is closer to actual value than âS,
we preliminary think that the following iteration imple-
mentation will obtain a better steering vector and simul-
taneously obtain a better weight vector, step by step.
Initialization: a(0) = âS
for k = 1, 2, . . .

τ = Mε/
(√

M − ε
)
, p(k) = 1/

(
a(k−1)HR−1a(k−1))

w(k) = (
R + τp(k)I

)−1a(k−1)

a(k) = Rw(k), a(k) = √
Ma(k)/

∥∥a(k)∥∥

We call this iterative implementation as iterative robust
adaptive beamformer (IRAB).

3.3 The performance proof of IRAB
The following two properties hold for the proposed IRAB:

Property 1
∥∥a(k) − aS

∥∥2 <
∥∥a(k−1) − aS

∥∥2 for each
iteration.

Proof The data covariance matrix R can be written in
eigen-decomposition form as

R = QS�SQH
S +QN�NQH

N =
L+1∑

i=1
riqiqHi +

M∑

i=L+2
riqiqHi

(29)

where ri and qi are the eigenvalues and corresponding
eigenvectors of R, eigenvalues are sorted in descending
order r1 ≥ . . . ≥ rL+1 � rL+2 = . . . = rM =
PN ,QS =[q1, . . .,qL+1] spans the signal-plus-interference
subspace,QN =[qL+2, . . .,qM] spans the noise subspace.
Defining a‖ = QSQH

S a
(0) and a⊥ = QNQNa(0), we have

the following formulas

⎧
⎪⎪⎨

⎪⎪⎩

a(0) = a‖ + a⊥
a‖⊥a⊥∥∥a(0)∥∥2 = ∥∥a‖

∥∥2 + ‖a⊥‖2
aS = √

Ma‖/
∥∥a‖

∥∥
(30)

The weight vector of k-th iterative step can be expressed
by a‖ and a⊥ as

a(k) = μ1Rw(k)

= μ1R
(
R + τp(k)I

)−1
a(k−1)

= μ1
(
τp(k)R−1 + I

)−1
a(k−1)

= μ1

k∏

i=2

(
τp(i)R−1+I

)−1 ·
(
τp(1)R−1 + I

)−1
a(0)

(31)

where μ1 is a constraint constant which subject to∥∥a(k)∥∥2 = M.
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We can obtain the following result from (29) and (30)

(τp(1)R−1 + I)−1a(0)

=(τp(1)R−1 + I)−1
(a‖ + a⊥)

=
L+1∑

i=1

qiqHi
τp(1)/ri + 1

a‖ +
M∑

i=L+2

qiqHi
τp(1)/PN + 1

a⊥

=
∥∥∥∥∥

L+1∑

i=1

qiqHi
τp(1)/ri + 1

a‖

∥∥∥∥∥
a‖∥∥a‖

∥∥ + a⊥
τp(1)/PN + 1

(32)

Similar to Lemma 1, by defining f (r) =
1/(τp(1)/r + 1)2, we have

∥∥∥∥∥

L+1∑

i=1

qiqHi
τp(1)/ri + 1

a‖

∥∥∥∥∥

2

=
L+1∑

i=1

aH‖ qiqHi a‖
(
τp(1)/ri + 1

)2

=
∥∥a‖

∥∥2
(
τp(1)/r(1)a + 1

)2

(33)

where r1 > r(1)a > rL+1 � PN . Substituting (33) into (32),
we have

(
τp(1)R−1 + I

)−1
a(0) = a‖

τp(1)/r(1)a + 1
+ a⊥

τp(1)/PN + 1

= μ2
(
a‖ + η̂(1)a⊥

)

(34)

where μ2 is a constant, and

η̂(1) = τp(1)/r(1)a + 1
τp(1)/PN + 1

(35)

From (31), (34), and (35), we can obtain

a(k) = μ1
(
a‖ + η(k)a⊥

)
(36)

where

η(k) =
k∏

i=0
η̂(i), η̂(i) =

⎧
⎪⎨

⎪⎩

τp(i)/r(i)a + 1
τp(i)/PN + 1

, i > 0

1, i = 0
(37)

Since r(i)a > PN , we have 0 < η̂(i) < 1, i > 0; therefore,
0 < η(k) < η(k−1) ≤ 1, k ≥ 1. Then, the norm error of
steering vector per iterative step is

∥∥∥a(k) − aS
∥∥∥
2 = 2M − 2Re

{
a(k)HaS

}

= 2M − 2Re
{√

M
(
a‖ + η(k)a⊥

)H
∥∥a‖ + η(k)a⊥

∥∥

√
Ma‖∥∥a‖

∥∥

}

= 2M − 2M
∥∥a‖

∥∥
√∥∥a‖

∥∥2 + η(k)2‖a⊥‖2
(38)

Therefore, η(k) < η(k−1) ⇒ ∥∥a(k) − aS
∥∥2 <

∥∥a(k−1) − aS
∥∥2. Equation (37) shows that η(k) is a product

of k number of variables that are less than one, so η(k) will
approach to zero. If η(k) = 0,

∥∥a(k) − aS
∥∥2 = 0, the actual

steering vector is obtained.

Property 2 SINR(k) > SINR(k−1) for each iterative step,
and SINR has an upper bound.

Proof

w(k)HaS

=(R−1a(k))
HaS

=(a‖ + η(k)a⊥)
H

(QS�
−1
S QH

S + QN�−1
N QH

N )

√
Ma‖∥∥a‖

∥∥

=aH‖ QS�
−1
S QH

S a‖
√
M∥∥a‖
∥∥

=
L+1∑

i=1

1
ri

∣∣∣aH‖ qi
∣∣∣
2
√
M∥∥a‖
∥∥

(39)

Similar to Lemma 1, we have

L+1∑

i=1

1
ri

∣∣∣aH‖ qi
∣∣∣
2 = 1

rb

L+1∑

i=1

∣∣∣aH‖ qi
∣∣∣
2 = 1

rb

∥∥a‖
∥∥2 (40)

where r1 > rb > rL+1 � PN . Therefore, w(k)HaS =√
M

∥∥a‖
∥∥ /rb. Then, we have
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w(k)HRw(k)

= a(k)HR−1RR−1a(k)

=
(
a‖ + η(k)a⊥

)H (
QS�

−1
S QH

S + QN�−1
N QH

N

)

(
a‖ + η(k)a⊥

)

= 1
rb

∥∥a‖
∥∥2 + 1

PN
η(k)2‖a⊥‖2

(41)

SINR(k)

1 + SINR(k) = PS
∣∣w(k)HaS

∣∣2

w(k)HRw(k) =
1
r2b
MPS

∥∥a‖
∥∥2

1
rb

∥∥a‖
∥∥2 + 1

PN η(k)2‖a⊥‖2
(42)

Therefore, η(k) < η(k−1) ⇒ SINR(k)

1+SINR(k) > SINR(k−1)

1+SINR(k−1) ⇒
SINR(k) > SINR(k−1). The upper bound of SINR(k) is
achieved if η(k) = 0.

3.4 Some remarks on the IRAB
3.4.1 The setting of prior parameter
Equation (22) indicates that not only MPS + PN but also
the prior parameter ε can affect the diagonal loading level.
Many existed RABs use the constraint condition ‖�a‖ ≤
ε, so they face the same problem: how to set a suitable ε?
Jian Li suggest that ε should be chosen as small as pos-
sible but ε ≥ ε0=min

φ

∥∥âSejφ − aS
∥∥ [20]. If ε < ε0, the

desired signal will be suppressed as interference. If ε is
chosen much larger than ε0, the ability of beamformer to
suppress interferences that are close to the desired signal
will degrade.
The parameter τ is defined in the implementation of

IRAB in Section 3.2. It can be seen from (37) that, if τ > 0,
the two properties of IRAB will always hold, which indi-
cates that the iteration will always converge if ε <

√
M.

Therefore, the ε does no longer subject to the constraint
ε ≥ ε0; any 0 < ε <

√
M is suitable for IRAB.

Notice that the value of ε
(k)
0 =min

φ

∥∥a(k)ejφ − aS
∥∥ will

decrease and approach to zero as the iterative step
increases and the ε is better to be decreased as the itera-
tion time increases. An experiential way is to reduce ε by
half per iterative step. Thus, the proposed IRAB can be
modified as follows

ε(0) = ε, a(0) = âS,β = 0.5

for k = 1, 2, . . .
ε(k) = βε(k−1), τ (k)= Mε(k)√

M−ε(k) , p(k) = 1
a(k−1)HR−1a(k−1)

w(k) = (
R + τ (k)p(k)I

)−1a(k−1)

a(k) = Rw(k), a(k) = √
Ma(k)/

∥∥a(k)∥∥

3.4.2 The stopping criterion
The iteration should be stopped under certain criterions,
and the performance should not deteriorate on special
occasions. On the one hand, three parameters are updated
as the iterative step increases, the p(k), w(k), and a(k). The
p(k) relates to a(k−1), the w(k) relates to p(k), and a(k−1),
the a(k) relates to w(k). Therefore, we can make the stop-
ping criterion only by the parameter a. If a(k) changes less
than a threshold, such as a very small δ, with respect to
a(k−1), we consider the iteration converges. Wei Jin uses∥∥a(k) − a(k−1)∥∥ ≤ δ as the stopping criterion [26]. How-
ever, because the phase rotate of a does not affect the per-
formance of beamformer, using min

φ

∥∥a(k) − a(k−1)ejφ
∥∥ ≤

δ is better, but the amount of calculation is increased.
As the norm of a(k) and a(k−1) are both equal to

√
M, the

stopping criterion 1 of IRAB is as follows
∣∣∣a(k)Ha(k−1)

∣∣∣ /M ≥ 0.999999 (43)

It is obvious that the smaller difference between a(k)

and a(k−1) is, the larger of the value of
∣∣a(k)Ha(k−1)∣∣ is;

the maximum value of
∣∣a(k)Ha(k−1)∣∣ equals to M if a(k) =

a(k−1)ejφ ; the phase rotate of a does not affect the value of∣∣a(k)Ha(k−1)∣∣.
On the other hand, two scenes should be considered.

Firstly, when SNR of desired signal is very low, the updated
steering vector cannot be able to converge to its actual
value, even if it may converge to interferences or noise
peaks. To avoid the desired signal’s steering vector devi-
ating its actual value too large, we add the following
stopping criterion 2 [27]

∣∣∣a(k)H â(θ̂S)
∣∣∣ < min

{∣∣∣∣â
H

(
θ̂S + θW

2

)
â
(
θ̂S

)∣∣∣∣ ,
∣∣âH

(
θ̂S − θW

2

)
â
(
θ̂S

)∣∣∣∣

}

(44)

where θ̂S is the prior DOA of desired signal and θW is the
uncertainty range. Stopping criterion 2 is based on the fact
that, if |θi − θS| is larger,

∣∣∣âH(θi)â(θ̂S)
∣∣∣ is smaller (Fig. 1

shows an example, ignore the ripple). Therefore, the iter-
ation stops when the corresponding DOA of a(k) is out of
uncertainty range.
However, these two stopping criterions have a defect.

When angular separation between θi and θ̂S is larger than
a beam width,

∣∣∣âH(θi)â(θ̂S)
∣∣∣ � M, i = 1, . . ., L. At

some specific angles,
∣∣∣âH(θi)â(θ̂S)

∣∣∣ approaches to zero.
Using a ULA with M=16 as example, we plot the value
of

∣∣∣âH(θi)â(θ̂S)
∣∣∣ /M, θ̂S = 82◦ , θi = 1 : 180◦. As Fig. 1

shows,
∣∣∣âH(110◦

)â(θ̂S)
∣∣∣ /M ≈ 0. If the interference’s DOA
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happens to be equal to 110◦,
∣∣∣[ a(k) + â(110◦

)]H â(θ̂S)
∣∣∣ ≈

∣∣∣a(k)H â(θ̂S)
∣∣∣, thus the stopping criterion 2 may not work,

and it does not affect the stopping criterion 1, which fur-
ther means the updated steering vector may converge to
the sum of desired signal and interferences. To deal with
this special case, we add the following stopping criterion 3

∥∥∥a(k) − â
(
θ̂S

)∥∥∥ >max
{∥∥∥∥a

(k) − â
(

θ̂S + θW
2

)∥∥∥∥ ,
∥∥∥a(k) − â

(
θ̂S − θW

2

)∥∥∥∥

}

(45)

Stopping criterion 3 is based on the fact that if
∣∣∣θi − θ̂S

∣∣∣

is larger than a threshold,
∥∥∥â(θi) − â(θ̂S)

∥∥∥ is large. Figure 2

shows the value of
∥∥∥â(θi) − â(θ̂S)

∥∥∥ /
√
M, θ̂S = 82◦ , θi =

1 : 180◦ for a ULA with M=16. Once the interferences
component in a(k) surplus threshold, the iteration stops.

3.4.3 The IRAB does not belong to the class of diagonal
loading

When the iteration stops at k-th step, the weight vector of
IRAB is

w(k) =
(
R + τ (k)p(k)I

)−1
a(k−1)

=
(
τ (k)p(k)R−1 + I

)−1
w(k−1)

=
k∏

i=1

(
τ (i)p(i)R−1 + I

)−1
âS

= Q diag
{

1
τ (i)p(i)/r1 + 1

, . . .,
1

τ (i)p(i)/rM + 1

}
QâS

(46)

Fig. 2 The value of
∥∥∥â(θi) − â(θ̂S)

∥∥∥ /
√
M

where the columns of Q contain the eigenvectors of R.
Therefore, the IRAB does not belong to the class of diag-
onal loading.

3.4.4 The computational complexity
The computational complexity of IRAB is determined by
the inversion of aM×Mmatrix, which is equal toO(M3),
per iterative step.

3.4.5 Relationship between the IRAB and some similar
beamformers

Notice that the proposed IRAB relates to the follow-
ing three beamformers: the DLWCB in [23], the IWCB
in [26], and the IRCB2 in [24]. Their similarities and
differences are as follows: (1) the equivalent diagonal load-
ing levels of IRAB, DLWCB, and IRCB2 are the same,
which is derived from the method in [9]; (2) DLWCB
cannot be implemented in practice while IRAB is easy
to be implemented; (3) although the equivalent steer-
ing vectors of IRAB and IWCB have the same form,
which are deriving from Appendix B in [13], their solv-
ing methods per iterative step are quite different; (4)
although the equivalent diagonal loading levels of IRAB
and IRCB2 are the same, and their proof methods are sim-
ilar, they are based on two different methods ([11] and
[13]); and (5) the stopping criterion of IRAB is different to
others.

4 Simulation results
In the following simulation examples, a ULA with M=16
antennas and half-wavelength antenna spacing is consid-
ered. Assume each antenna is omni-directional, the array
has been calibrated and omit the coupling effect. The
desired signal and interferences are stationary Gaussian
random process, and the additive noise is a spatially white
Gaussian process. There are two interferences with DOAs
and interference-to-noise ratios (INR) of [55◦, 20 dB]
and [115◦, 30 dB], respectively. One desired signal is
impinging on the array from 80◦, but its prior DOA is
82◦, except example 5. The DOA uncertainty range of
desired signal is θW = 8◦. The actual norm bound
of the error between aS and âS is calculated by ε0 =
min

φ

∥∥aS − âSejφ
∥∥. 1000 runs are performed except for

example 2. The number of snapshots is 200 except for
example 6.
The proposed IRAB is contrasted with some classical

and similar RABs; they are as follows:
OPT: The MPDR beamformer of (5) with actual R and

aS.
WCB: The WCB of [11]. The method proposed in [19]

is used to solve WCB. The norm bound of steering vector
error is set as εWCB = 1.1 × ε0, which is suggested by Jian
Li [20], excepted for examples 1 and 5.
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Fig. 3 SINR versus SNR with difference ε for WCB

DLWCB: The diagonal loading approach ofWCB, which
is proposed in [23]. Its diagonal loading level has the same
form with (22). Notice that the DLWCB cannot be imple-
mented in practice, actual PS and PN are used to calculate
the diagonal loading level in the simulations. The norm
bound of steering vector error is set as εDLWCB = 1.1× ε0,
except for example 5.
IWCB: The iterative implementation of worst-case

performance optimization-based beamformer [26]. The
norm bound of steering vector error is set as εIWCB = 0.1.

4.1 SINR versus steering vector error bound
The first example simulates the SINR performance
affected by norm bound of steering vector error. We set
a group of different ε for WCB and IRAB. The actual
norm bound of steering vector error corresponding to
2◦ pointing error is about ε0 = 1.96. The input SNR
of desired signal changes from −20 to 40 dB. Figures 3
and 4 show the results of WCB and IRAB, respectively.
Results indicate that, when ε is set smaller than ε0, the
SINR performance of WCB decreases rapidly, while the
performance of IRAB always keep stable. The theoretical
analysis in Section 3.4 that the ε does no longer subject to
the constraint ε ≥ ε0 is verified. Figure 4 also shows that,

Fig. 4 SINR versus SNR with difference ε for IRAB

Fig. 5 The convergence properties of IRAB and IWCB: steering vector
error versus iterative steps

the εIRAB should be set appropriately, not too small or too
large. An experience value is set εIRAB = √

M/2; we use
this setting in all the following examples.

4.2 Iterative convergence property
The second example evaluates the convergence properties
of IRAB and IWCB, SNR=25 dB. Figure 5 shows the norm
bound error between the updated steering vector and
actual steering vector per iterative steps. Figure 6 shows
the updated SINR per iterative steps. Results show that as
the iterative step increases, the error of updated steering
vector grows smaller, and the updated SINR increases to a
stable value. Additionally, the proposed IRAB has a faster
convergence speed than IWCB.

4.3 Output SINR performance
The third example evaluates the output SINR perfor-
mance versus input SNR. The result in Fig. 7 shows that
the proposed IRAB outperforms other RABs almost at any
input SNR.

Fig. 6 The convergence properties of IRAB and IWCB: SINR versus
iterative steps
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Fig. 7 Output SINR versus input SNR

4.4 Array beam pattern gain
The fourth example presents the array beam pattern gain
of four RABs, SNR=25 dB. The results of Fig. 8 show that
the main beam peak of IRAB and IWCB nearly points
to the actual DOA of desired signal, while the WCB and
DLWCB do not. The theoretical result of (37) indicates
that, as the iterative step increases, the η(k) approaches to
zero, the a(k) gets closer to actual value, and therefore the
main beam peak points to the actual DOA. For this reason,
the IRAB and IWCB have better SINR performance than
WCB and DLWCB, especially at SNR<20 dB, as shown
in Fig. 7.

4.5 SINR versus pointing error
The fifth example evaluates the SINR versus pointing
error, SNR=25 dB. Setting εWCB = εDLWCB = 2, which
corresponds to about 2◦ pointing error. The results in
Fig. 9 show that the SINR performance of WCB decreases
greatly when pointing error exceeds 2◦; the IRAB and
IWCB exhibit stable performance in the DOA uncer-
tainty range θW = 8◦; the DLWCB has a wilder pointing

Fig. 8 Array beam pattern gain

Fig. 9 Output SINR versus pointing error

error range and does not subject to the 2◦ pointing error
constraint.
4.6 SINR versus snapshots
We use actual data covariance matrix R in the theoreti-
cal analysis; the affect of finite sample effect with different
snapshots is simulated in the sixth example, SNR=25 dB.
The results in Fig. 10 show that as the snapshots increase
from 16 to 400, the output SINR of WCB, DLWCB,
IWCB, and IRAB increases about 7.5, 5.5, 8.0, and 7.0 dB
respectively. The SINR performance of IRAB outperforms
other RABs and goes to stable when snapshots number
surplus 200.
4.7 SINR versus DOA separation and array size
As declared in Section 2.3, the effectiveness of the
proposed algorithm requires “DOA separation between
desired signal and interference is larger than a beam
width”. In this section, we simulate the SINR performance
versus different DOA separations between desired signal
and interference and versus different array size. In the sim-
ulations, three arrays with element number M=10, 15, 20
are used; their mainbeam width are about 24◦, 16◦, and

Fig. 10 Output SINR versus snapshots
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Fig. 11 SINR versus DOA separation: M=10, mainbeam width=24◦

12◦, respectively (calculated by conventional beamformer
with weight vector equals to the steering vector of desired
signal). The SNR of desired signal is 20 dB. There is only
one interference with INR=15 dB. The DOA separation
between desired signal and interference varies from 0.4
to 5 times of main beam width. Other parameters are the
same with the parameters declared in the beginning of
Section 4.
The results in Figs. 11, 12, and 13 show that there are

some ripples; they are caused by the nulls of beam pattern;
the performance of IRAB is better than others in most
cases; the proposed IRAB can work even when DOA sep-
aration between desired signal and interference is smaller
than a mainbeam width (The IRAB can work with DOA
separation larger than half a mainbeam width); and as the
DOA separation increases, the performance of IRAB gets
better.

5 Conclusions
We have derived an approximate diagonal loading solu-
tion of theWCB in this paper. A novel beamformer named

Fig. 12 SINR versus DOA separation: M=15, mainbeam width=16◦

Fig. 13 SINR versus DOA separation: M=20, mainbeam width=12◦

IRAB have been proposed based on this solution. Theo-
retical analysis indicates that the proposed IRAB has three
properties: the iteration will converge; the performance
gets better as the iterative step increases; the IRAB does
not subject to the steering vector error norm bound con-
straint and exhibits stable performance through a wide
steering vector error bound range. Simulation results not
only verify these properties but also show that the pro-
posed IRAB outperforms other contrasted RABs under
the set parameters.
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