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Abstract

A desired speech signal in hands-free communication systems is often degraded by noise and interfering speech.
Even though the number and locations of the interferers are often unknown in practice, it is justified to assume in
certain applications that the direction-of-arrival (DOA) of the desired source is approximately known. Using the known
DOA, fixed spatial filters such as the delay-and-sum beamformer can be steered to extract the desired source.
However, it is well-known that fixed data-independent spatial filters do not provide sufficient reduction of directional
interferers. Instead, the DOA information can be used to estimate the statistics of the desired and the undesired
signals and to compute optimal data-dependent spatial filters. One way the DOA is exploited for optimal spatial
filtering in the literature, is by designing DOA-based narrowband detectors to determine whether a desired or an
undesired signal is dominant at each time-frequency (TF) bin. Subsequently, the statistics of the desired and the
undesired signals can be estimated during the TF bins where the respective signal is dominant. In a similar manner, a
Gaussian signal model-based detector which does not incorporate DOA information has been used in scenarios
where the undesired signal consists of stationary background noise. However, when the undesired signal is
non-stationary, resulting for example from interfering speakers, such a Gaussian signal model-based detector is
unable to robustly distinguish desired from undesired speech. To this end, we propose a DOA model-based detector
to determine the dominant source at each TF bin and estimate the desired and undesired signal statistics. We
demonstrate that data-dependent spatial filters that use the statistics estimated by the proposed framework achieve
very good undesired signal reduction, even when using only three microphones.
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1 Introduction
In applications that require hands-free capture of speech,
the desired speech signal is often corrupted by back-
ground noise and interfering speech signals. Such appli-
cations involve human-to-human and human-to-machine
communication, where speech enhancement is crucial: in
the former, to improve the communication comfort, and
in the latter, to ensure low error rate of speech recognis-
ers. In this work, we address scenarios where the desired
speaker has a known DOA with respect to the micro-
phones, such as in-car applications, or voice-controlled
devices where the source of interest is restricted to a
pre-defined DOA. Given the DOA of the desired source
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and assuming anechoic propagation, fixed spatial filters
such as the delay-and-sum beamformer (DSB) [1] or
superdirective beamformers [2] can be used. However,
these filters are suboptimal as they do not consider the
spatio-temporal statistics of the signals, and often pro-
vide insufficient interference reduction. Moreover, prop-
agation model mismatch due to reverberation and DOA
errors further limit the performance. In this work, we
focus on optimal data-dependent spatial filters [3, 4].
Two main paradigms can be distinguished which aim at
optimal filtering given the source DOA: robust adaptive
beamformers (RABs) and informed spatial filters (ISFs).
While RABs seek to improve the robustness to errors in
the DOAs and the signal propagation vectors, ISFs address
the estimation of propagation vectors and signal statistics
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from the microphone signals, and their usage for optimal
spatial filtering.
RAB representatives include Bayesian beamformers

[5, 6] and spatial filters with eigenvector constraints
[7, 8], which are implemented using linearly constrained
minimum variance (LCMV) filters. These filters seek
to minimise the undesired signal power at the output,
while imposing constraints to ensure that the desired sig-
nal from the DOA of interest is undistorted. Another
approach is proposed in [9], where the desired signal
power spectral density (PSD) matrix is computed by inte-
grating the free field-based PSDmatrices across the region
of possible source DOAs. Note that the increased robust-
ness in these approaches often comes at the cost of
worse undesired signal reduction. RABs can also be imple-
mented in a general sidelobe canceler (GSC) structure,
where the robustness to DOA and propagation vector
mismatches is ensured by using an adaptive blocking
matrix [10, 11], and by imposing constraints to the adap-
tive noise cancellers [10]. The robust GSCs require a
desired signal detector, as the noise cancellers need to
be updated when the desired signal is absent, while the
blocking matrix when the desired signal is present [12].
ISFs, in contrast to RABs, estimate the desired sig-

nal propagation vector and the undesired signal statis-
tics from the data, and substitute them in optimal filter
expressions such as the minimum variance distortion-
less response (MVDR) or the multichannel Wiener filter
(MWF) [13–16]. As the ISFs are estimated and imple-
mented in the frequency domain, the relevant statistics
correspond to the PSD matrices of the desired and the
undesired signals at each frequency. The advantage of esti-
mating the propagation vectors from the data, rather than
using anechoic propagation models, is well-known since
the development of the transfer function-GSC [17] and
the relative transfer function (RTF)-GSC [18]. However,
a less often addressed question is how to design nar-
rowband signal detectors which are required to estimate
the propagation vectors and the PSD matrices, or per-
form the filter adaptations in the adaptive GSCs. Signal
detection in the presence of non-stationary interferers is a
very challenging problem [19]. The Gaussianmodel-based
detectors used in state-of-the-art systems [15, 20, 21]
assume that the noise is significantly more stationary than
speech, which is not true for speech interferers.
The question addressed in this paper is how to design

a robust narrowband signal detector, by using the micro-
phone signals, narrowband DOA estimates extracted
from the signals, and the information about the desired
source DOA. Narrowband DOAs have been previously
used for desired speech detection in the literature. For
instance, in [22], the authors use narrowband DOAs to
control the a priori desired speech presence probabil-
ity (DSPP) in a Gaussian signal model, while in [23] a

Gaussian DOA model is used to compute a DSPP and
apply it as a single-channel gain to the output of a spa-
tial filter. We propose a different statistical model for the
narrowband DOA estimates which is used for desired sig-
nal detection and estimation of the propagation vectors
and the PSD matrices in an ISF framework. Initial results
obtained using the proposed framework were presented
in [24]. In this paper, we provide a more detailed descrip-
tion of the system, further discussions and comparison to
the state-of-the-art approaches, as well as an extended set
of experiments to evaluate the performance of the nar-
rowband signal detector and the quality of the extracted
source signal at the ISF output.

2 Signal model and problem formulation
A compact array ofM microphones captures the signal of
a desired speaker, unknown number of competing speak-
ers, and background noise. The STFT-domain signal of
themth microphone is given by

Ym(t, k) = Sm(t, k) + Im(t, k) + Vm(t, k), (1)

where Sm, Im, and Vm are the signals of the desired
speaker, the sum of competing speakers, and the noise,
and t and k are time and frequency indices. Let the
M×1 vectors y(t, k), s(t, k), i(t, k), and v(t, k) contain the
respective signals from all M microphones. The corre-
sponding PSD matrices are given by �s = E

[
s sH

]
, �i =

E
[
i iH

]
, and �v = E

[
v vH

]
, where E [·] denotes statistical

expectation. As the signals are zero-mean and mutually
uncorrelated, the following holds

�y(t, k) = �s(t, k) + �i(t, k) + �v(t, k). (2)

In addition, we define the undesired signal PSD matrix
containing the speech interferers and the noise as
�u(t, k) = �i(t, k) + �v(t, k). We seek to estimate the
desired signal Sm(t, k) at the mth microphone, and with-
out loss of generality, we consider the first microphone as
a reference, i.e.,m = 1. The desired signal estimate Ŝ1(t, k)
is obtained by applying a time and frequency-dependent
optimal linear filter wopt to the microphone signals as
follows

Ŝ1(t, k) = wH
opt(t, k) y(t, k). (3)

Two fundamental assumptions underlie the proposed
framework for computing the optimal filter coefficients
wH
opt(t, k). The first assumption is used in many existing

multi-channel speech enhancement approaches and states
that the PSD matrix of the desired signal is a rank-one
matrix given by

�s(t, k) = φS1(t, k) g1(k) g
H
1 (k), (4)

where g1(k) is the RTF vector of the desired source
with the first microphone as a reference, and φS1(t, k) =
E

[|S1(t, k)|2
]
is the PSD of the desired signal at the first
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microphone. The second assumption is that the speech
signals are sparse in the STFT domain, so that each TF
bin can be associated to one of the following mutually
exclusive hypotheses

Hs : y(t, k) ≈ s(t, k) + v(t, k) desired signal is
dominant, (5a)
Hi : y(t, k) ≈ i(t, k) + v(t, k) speech interferer
is dominant, (5b)
Hv : y(t, k) ≈ v(t, k) background noise is
dominant. (5c)

In addition, we introduce the hypothesis Hu = Hi ∪ Hv
that undesired signal is dominant, regardless whether it is
a competing speaker or background noise.
The objective in this work is to define likelihood models

for the hypotheses in (5), design a detector that asso-
ciates each TF bin to the correct hypothesis, estimate the
PSD matrices and the RTF vector g1, and finally, compute
the ISF coefficients wopt required for source extraction
in (3). Narrowband DOA estimates play a key role in the
framework, and appropriate state-of-the art estimators
are briefly discussed in the following section.

3 Narrowband DOA estimation
The most important criteria when choosing a DOA
estimator for our framework is the ability to obtain
nearly instantaneous narrowband DOA estimates with-
out requiring temporally averaged covariance matrices
as the subspace-based estimators [25], and a sufficiently
low complexity suitable for real-time implementation.
We briefly review two estimators which satisfy these
requirements.

3.1 Least squares (LS)-fitting of instantaneous phase
differences [26]

Assuming that a single source is dominant at each TF
bin, its DOA can be estimated using the phase differences
between the microphone signals at each TF bin. Denoting
the 2Dmicrophone locations as d1, . . . ,dM, the frequency
corresponding to the index k by fk (in Hertz), the DOA
of the dominant source as θtk (in radians), and the corre-
sponding DOA vector as q(t, k) =[cos(θtk), sin(θtk)], the
anechoic RTF vector with respect to the first microphone
reads

g1(t, k)=
[
1, ej

2π fk
c (d2−d1)T q(t,k), . . . , ej

2π fk
c (dM−d1)T q(t,k)

]
.

(6)

Due to the relation s(t, k) = g1(t, k) S1(t, k), the phase
differences of the source signal at each microphone with
respect to the first microphone (provided that S1(t, k) �=
0) are given by

∠ s(t, k)
S1(t, k)

=
[
0,

2π fk
c

(d2 − d1)
T q(t, k) , . . . ,

2π fk
c

(dM−d1)
T q(t, k)

]
.

(7)

If we introduce the (M − 1) × 1 vector s̄ =[
∠ S2

S1 ,∠
S3
S1 , . . . ,∠

SM
S1

]
, and the (M − 1) × 2 matrix D con-

taining (di − dj)T as rows for i ∈[ 2,M], Eq. (7) can be
rewritten as

s̄ = 2π fk
c

Dq(t, k), (8)

and can be solved for the DOA vector q(t, k). However, in
practice, the signal s̄ is not observable. Instead, the noisy
phase vector ȳ =

[
∠Y2

Y1 ,∠
Y3
Y1 , . . . ,∠

YM
Y1

]
, is used in (8) to

obtain an estimate of the DOA vector by solving the LS
problem

q̂(t, k)=argmin
q

‖ȳ(t, k)−2π fk
c

Dq‖22= c
2π fk

D+ȳ(t, k),

(9)

where ()+ denotes Moore-Penrose pseudoinverse of a
matrix.

3.2 LS-fitting of cross PSD phase differences [27]
Instead of instantaneous phase differences, the authors in
[27] use phase differences between the short-term cross
PSDs to estimate the DOA. According to the model in (6),
the cross PSD between the mth and nth microphone is
given by

φS,mn(t, k) =E
[
Sm(t, k) Sn(t, k)∗

] = E
[|Sm(t, k)|2]

ej
2π fk
c (dm−dn)Tq(t,k).

(10)

Introducing the (M − 1) × 1 vector φ̄(t, k) =[
∠φS,12(t,k)

φS,11(t,k) , . . . ,∠
φS,1M(t,k)
φS,11(t,k)

]
, and using the matrix D simi-

larly as in (8) we obtain the relation

φ̄s = 2π fk
c

Dq(t, k). (11)

As the signals S1(t, k), . . . SM(t, k) are unobservable, the
noisy cross-PSDs φY ,mn(t, k) can be used instead. By
defining φ̄Y (t, k) =

[
∠φY ,12(t,k)

φY ,11(t,k) , . . . ,∠
φY ,1M(t,k)
φY ,11(t,k)

]
, the DOA

vector estimate is obtained analogously to (9), as

q̂(t, k) = c
2π fk

D+φ̄Y (t, k). (12)

The estimators given by (9) and (12) assume that
for each microphone pair, the spatial aliasing frequency
lies above Fs

2 , where Fs is the sampling rate. Alterna-
tively, frequency-dependent binary weights can be used
to exclude microphone pairs at the frequency bins where
spatial aliasingmight occur for those pairs, as done in [27].
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4 State-of-the-art DOA-informed source
extraction

4.1 DSB andMPDR beamforming
If the signal propagation is modelled as a pure delay, the
DSB is the simplest filter which can be applied for source
extraction. However, the DSB offers suboptimal perfor-
mance as it does not consider the signal statistics and the
reverberation.
Data-dependent spatial filters such as the MVDR or the

LCMV filter can be applied if the locations or the PSD
matrices of the interfering sources are known. However,
in the considered application, this information is unavail-
able. One possibility to employ data-dependent spatial fil-
tering without requiring the undesired signal PSD matrix
is by using a minimum power distortionless response
(MPDR) beamformer [28], computed using the anechoic
RTF vector (6) and the microphone signal PSDmatrix �y.
An MPDR filter that provides an estimate of the desired
signal received at the first microphone is given by

wmpdr(t, k) = �−1
y (t, k) g1(k)

g1H(k) �−1
y (t, k)g1(k)

. (13)

In contrast to the MVDR filter which is expressed in
terms of the undesired signal PSD matrix �u, the MPDR
filter is expressed in terms of �y, which contains the
desired signal as well. Therefore, if the RTF vector is inac-
curate due to the anechoicmodel mismatch in reverberant
environments, or due to DOA errors, the MPDR filter
causes severe distortion of the desired signal [28].

4.2 Informed spatial filtering
To extract a desired source from a given DOA, while
reducing noise and directional interferers using ISFs, the
narrowband detectors used for RTF and PSD matrix esti-
mation need to distinguish TF bins where desired signal
is dominant from TF bins where undesired signal is domi-
nant. Such framework was developed in [22] for spatial fil-
tering in the spherical harmonic domain, where the signal
detector was obtained by estimating a Gaussian model-
based DSPP. To estimate the DSPP, the likelihoods of the
signal vector are modelled as (indices t and k omitted for
brevity)

f
(
y |Hu

) = (
πMdet[�u]

)−1 e−yH�−1
u y, (14a)

f
(
y |Hs

) = (
πMdet [�s + �v]

)−1 e−yH(�s+�v)−1y.
(14b)

Given an a priori DSPP qs = p(Hs), the a posteriori
DSPP follows from the Bayes theorem as follows

p
(
Hs | y

) = qs f
(
y |Hs

)

qs f
(
y |Hs

) + (1 − qs) f
(
y |Hu

) . (15)

The authors in [22] incorporate the DOA information
in the a priori DSPP qs, to provide more robust dis-
crimination between desired and undesired speakers. If
�

θ ,θ̂ (t, k) denotes the angle between the true DOA θ of
the source of interest, and θ̂tk the DOA estimate at TF bin
(t, k), the a priori DSPP in [22] is computed as qs(t, k) =
w

(
�

θ ,θ̂ (t, k)
)
, where w(�) is a Gaussian window centred

at � = 0.

5 Proposed DOAmodel-based signal detection
The Gaussian model-based DSPP is very sensitive to non-
stationarity of the undesired signal, as the expression (15)
requires an estimate of the PSDmatrix�u. To estimate the
DSPP at TF bin (t, k), the PSDmatrix estimate �̂u(t−1, k)
from the previous frame t − 1 is used, which leads to
estimation errors when the undesired signal changes in
consecutive frames. The DOA-based a priori DSPP used
in [22] in the spherical harmonic domain, seeks to reduce
this sensitivity in scenarios with non-stationary interfer-
ers. Nevertheless, our experiments for a posteriori DSPP
estimation in the traditional signal domain indicated that
the DOA-based a priori DSPP is often insufficient to com-
pensate for errors in the likelihoods (15) occurring due to
erroneous �̂u estimates. This is our motivation to develop
a different method to incorporate DOA information in
the a posteriori DSPP estimation, by using a generative
probabilistic model of the narrowband DOAs.

5.1 Likelihoodmodel for the narrowband DOA estimates
To derive the a posteriori DSPP, we propose likelihood
models for the DOA estimates under the hypotheses Hs,
Hi, andHv. As the DOA estimates represent circular ran-
dom variables, we propose to model f

(
θ̂tk |Hs

)
by a von

Mises distribution, which closely approximates a wrapped
normal distribution on the circle [29]. The von Mises dis-
tribution is characterised by a mean θ̃ and a concentration
κ , and is given by

f
(
θ̂tk |Hs; θ̃ , κ

)
= cM(κ) eκ cos

(
θ̂tk−θ̃

)

. (16)

The normalisation cM(κ) =[ 2π I0(κ)]−1 is derived in
[30], where I0 is the modified Bessel function of the first
kind. If the DOA estimator is unbiased, the mean θ̃ is
equal to the DOAof the desired source. The concentration
parameter κ reflects the uncertainty in the DOA esti-
mates, where larger concentration indicates larger DOA
estimation error variance, while smaller concentration
indicates smaller DOA estimation error variance. Fac-
tors which commonly affect the concentration include the
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array geometry, the number of microphones, the coherent
signal-to-diffuse signal ratio, as well as the DOA estima-
tor. The concentration κ is an unknown model parameter
and its computation is discussed in Section 5.3.2.
Assuming spatially isotropic background noise, where

the sound may originate from all directions with equal
probability, the likelihood f

(
θ̂tk |Hv

)
is modelled by a

uniform distribution on the circle, i.e., f
(
θ̂tk |Hv

)
=

(2π)−1. It remains to define the likelihood of the DOA
estimates under the hypothesisHi. If the number and the
DOAs of the interferers were known, a multimodal distri-
bution on the circle would accurately model f

(
θ̂tk |Hi

)
.

In practice, this information is unavailable and difficult
to estimate. Instead, we propose to model f

(
θ̂tk |Hi

)
as

approximately uniform in regions sufficiently far from the
desired source, andwith a notch centred at the DOAof the
source. We construct such a distribution by considering
the following function g(θ , θ̃ , κ)

g(θ , θ̃ , κ) = −eκ cos
(
θ−θ̃

)

+ eκ , (17)

which attains theminimum value at θ = θ̃ and approaches
a uniform distribution as θ deviates from θ̃ . To obtain a
probability density, g(θ , θ̃ , κ) is normalised by cA such that
∫

cA g(θ , θ̃ , κ) dθ = cA
∫

−eκ cos(θ−θ̃ ) + eκ dθ = 1. (18)

The integral of the first term is equal to the normalisa-
tion constant of the von Mises distribution, and

∫
eκ dθ =

2πeκ . Therefore, the constant cA is given by

cA(κ) = [−2π(I0(κ) − eκ)
]−1 and

f
(
θ̂tk |Hi; θ̃ , κ

)
= cA(κ)

(
−eκ cos

(
θ̂tk−θ̃

)

+ eκ

)
.

(19)

The von Mises distribution and the proposed notched
distribution are illustrated in Fig. 1 for different values of
the concentration parameter κ .

5.2 Desired speech presence probability and optimal
detection

Having defined the likelihoods, the a posteriori DSPP
and the a posteriori desired speech absence probability
(DSAP) are given by the Bayes theorem as

p
(
Hs | θ̂tk

)
=

qs f
(
θ̂tk |Hs; θ̃ , κ

)

qs f
(
θ̂tk |Hs; θ̃ , κ

)
+ qi f

(
θ̂tk |Hi; θ̃ , κ

)
+ qv f

(
θ̂tk |Hv

) ,

(20)

p
(
Hu | θ̂tk

)
=

qi f
(
θ̂tk |Hi; θ̃ , κ

)
+ qv f

(
θ̂tk |Hv

)

qs f
(
θ̂tk |Hs; θ̃ , κ

)
+ qi f

(
θ̂tk |Hi; θ̃ , κ

)
+ qv f

(
θ̂tk |Hv

) ,

(21)

where the a priori probabilities qs = p(Hs), qi = p(Hi)
and qv = p(Hv) satisfy qs + qi + qv = 1.
In scenarios with stationary undesired signals, such as

background noise, the a posteriori DSPP is directly used for
recursive estimation of the noise PSD matrix [15, 20, 21].
However, if the undesired signal contains speech, recur-
sive updates using the DSPP introduce leakage of unde-
sired signal into the desired signal PSD matrix and vice
versa. Therefore, in this work, we employ the estimated
DSPP and DSAP to compute an optimal binary detec-
tor at each TF bin, which minimises the Bayes risk for a
false positive and a false negative costs Csu,Cus > 0, as
follows [31]

decide IHs = 1, IHu = 0 if
p

(
Hs | θ̂tk

)

p
(
Hu | θ̂tk

) >
Csu
Cus

,

(22)
decide IHu = 1, IHs = 0 otherwise,

where IHa is a binary indicator which equals one if the
hypothesis in the subscript is true, and zero otherwise.
Using the binary indicator, only the PSD matrix of the
dominant signal is updated, as discussed in Section 6 in
more detail.

a b

Fig. 1 Illustration of the DOA-based likelihoods under the different hypotheses a Von Mises distribution. b Notched distribution
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5.3 Estimation of the likelihoodmodel parameters
5.3.1 Estimation of the a priori probabilities qs, qi, and qv
The Gaussian signal model has been successfully used
to compute the DSPP in scenarios where the undesired
signal consists of stationary noise [15, 20, 21, 32]. Denot-
ing the speech presence hypothesis (desired or undesired
speech) by Hsi = Hs ∪ Hi, we can define the Gaussian
likelihoods f (y |Hv) and f (y |Hsi) according to (14), with
the appropriate PSD matrices �v and �y − �v, and com-
pute an a posteriori speech presence probability (SPP)
p

(
Hsi | y(t, k)

)
using the Bayes rule. The a posteriori SPP

from the Gaussian model can then be used as an a priori
SPP in our proposed DOA-based model, such that

qv(t, k) = 1 − p
(
Hsi | y(t, k)

)
and

qs(t, k) = qi(t, k) = 0.5 (1 − qv(t, k)) .
(23)

In this manner, the a priori SPP in the proposed model
exploits the spatio-temporal properties of the signal vec-
tor y(t, k) and knowledge of the noise PSD matrix to aid
the discrimination between noise and speech-dominated
TF bins, prior to the estimation of the narrowband DOA
at the current TF bin.

5.3.2 Estimation of the concentration parameter κ
It was mentioned in Section 5.1 that the concentration
parameter κ related to the mode and the notch of the
DOA-related likelihoods often depends on the coherent-
to-diffuse ratio (CDR), the array geometry, and the DOA
estimator. For a given array geometry and a given DOA
estimator, a single concentration parameter can be esti-
mated for instance by collecting the DOA estimates from
all TF bins during a training period when only the desired
speech source and background noise are present, and
finding the maximum likelihood (ML) estimate. However,
this way of obtaining a single concentration parameter
does not take into account the fact that many of the
TF bins used for training are noise-dominated and do
not contain significant speech energy. Instead, of pro-
viding an average concentration parameter, we seek to
quantify the uncertainty of the DOA estimate at each TF
bin. By quantifying the certainty of each DOA estimate,
we provide additional information to the proposed sig-
nal detector for determining the dominant source at each
TF bin. Therefore, the concentration parameter κ of the
von Mises distribution needs to estimated for each TF bin
as well.
In this work, we propose to use the short-time CDR �̂tk

estimated from the microphone signals at each TF bin to
control the concentration parameter. The motivation to
use the CDR, stems from the fact that if the CDR is high
at a given TF bin, it is more likely that the estimated DOA

accurately indicates the DOA of the coherent sound. In
such TF bins, f (θ̂tk |Hs) and f (θ̂tk |Hi) should have a high
concentration κ , resulting in narrow mode or notch. If the
CDR is low, the concentration should be lower, to reflect
larger uncertainty in the DOA estimates. To estimate the
CDR, we use the estimator proposed in [33], which is
based on the short-term complex coherence between two
microphone signals. The underlying assumption for this
CDR estimator is that the sound field at each TF bin
can be modelled as a superposition of a direct sound
component with a given DOA (originating from a direc-
tional source, such as a speaker), and a diffuse sound
component corresponding to late reverberation and dif-
fuse background noise. If we express the CDR in dB, and
consider that the range [−∞,∞] of the CDR needs to
be mapped to the non-negative concentration parame-
ter, we propose the following sigmoid-like function for
the mapping

κtk = f
(
�̂tk

) = lmax
10−cρ

10−cρ + 10 −ρ �̂tk/10
, (24)

where lmax determines the maximum value of the func-
tion, c ∈ R controls the offset along the �̂tk axis, and
ρ ∈ R

+ controls the steepness of transition region of the
sigmoid-like function. Theminimum value of the function
f
(
�̂tk

) = 0, attained in the limit �̂tk → −∞ indicates that
the distribution of the DOA is a uniform distribution on
the circle in the absence of a coherent signal.
The remaining question is how to determine the param-

eters of the sigmoid function, so that the concentration
parameter κ accurately describes the distribution of the
DOA estimates for each value of the CDR. To do this,
we perform a training phase in a controlled simulated
environments as follows:

1. Simulate a short signal segment by convolving white
Gaussian noise signal with an anechoic room impulse
response, and add an ideally diffuse noise signal
simulated according to [34], with a specified signal-
to-noise ratio (SNR). Note that although the CDR
also depends on the reverberation from directional
sources, the spatial properties of late reverberation
closely resemble those of a diffuse sound field.

2. Repeat the simulation for different SNRs (we used
the range [−30, 30] dB, with steps of 5 dB), and for
each simulation store the CDR estimates and the
DOA estimates for each TF bin.

3. Make a histogram of the CDR estimates stored from
all simulations and associate to each histogram bin
the corresponding DOA estimates.

4. If the set of DOA estimates associated with the n-th
histogram bin is �n = {

θ1, . . . , θLn
}
, a maximum
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likelihood estimate of the concentration parameter
for this histogram bin is obtained by first computing

r =

√√
√√
√

(
1
Ln

Ln∑

i=1
cos θi

)2

+
(

1
Ln

Ln∑

i=1
sin θi

)2

,

(25)

and using the following approximation (see ([29],
Section 5.3.1) for details)

κn,ML =
⎧
⎨

⎩

2 r + r3 + 5
6 r

5 if r < 0.53,
−0.4 + 1.39 r + 0.43

1−r if 0.53 ≤ r < 0.85
1

2(1−r) if r ≥ 0.85.
(26)

5. For each histogram bin n, store the CDR value of the
bin centre and the corresponding ML estimate of the
concentration parameter as a pair (�n, κn,ML).

Following this data-driven procedure, we have experi-
mentally found a correspondence between the CDR esti-
mates and the concentration parameter κ . Given the pairs(
�n, κn,ML

)
, we can now determine the parameters of the

sigmoid-like mapping function. First, note that although
in theory the logarithmic range of the CDR is [−∞,∞],
in practice, the CDR estimators saturate and are limited
to a relatively small range of values around 0 dB. For our
particular estimator, we observed that the range of esti-
mates was [−10, 20] dB, which allows us to determine the
maximum value lmax of the concentration parameter by
observing the values of κn,ML for the histogram bins where
�n ≈ 20 dB. To find the parameter c that determines the
offset along the �̂ axis, we note that for any value of ρ, the
value of �̂ for which the resulting κ is exactly in the mid-
point of its range [ 0, lmax], satisfies �̂ = 10 c. Therefore,
by looking for the pair (�n, κn,ML) in our training results
where κn,ML is as close as possible to lmax/2, we can use
the corresponding �n to compute the parameter c. Having
fixed c and lmax and noting that due to the aforemen-
tioned saturation of the CDR estimator, the concentration
parameter is approximately 0 for �n ≈ −10, there is only
a small range of values for ρ which satisfy the constraints
on the maxima and the minima of the sigmoid-like func-
tion (i.e., f (−10) ≈ 0 and f (20) ≈ lmax). This range was
ρ ∈ [0.2, 2] in our case, and the best fit for ρ can be easily
found by visual inspection of the curves obtained by sub-
stituting several values for ρ from this range. The above
described procedure for our data resulted in lmax = 8,
c = 1.5, and ρ = 1.2, which we kept constant for all the
experiments.

6 Application to informed spatial filtering
We use the detector proposed in Section 5 to obtain
the PSD matrix estimates �̂u and �̂s, and the RTF vec-
tor estimate ĝ1. The RTF vector can be obtained using

the generalized eigenvalue decomposition (GEVD) of the
matrix pencil

(
�̂s+v(t, k), �̂v(t, k)

)
[35], such that if u(t, k)

denotes the generalised eigenvector corresponding to the
maximum generalised eigenvalue, ĝ1(t, k) is given by

ĝ1(t, k) = �̂v(t, k)u(t, k)
eT1 �̂v(t, k)u(t, k)

, with e1 = [1, 0 . . . , 0] ,

(27)

where the denominator normalises the first entry to one.
The PSDmatrices are computed using the standard recur-
sive updates

�̂s+v(t, k) = αs(t, k) �̂s+v(t − 1, k)
+ (1 − αs(t, k)) y(t, k) yH(t, k) (28a)

�̂u(t, k) = αu(t, k) �̂u(t − 1, k)
+ (1 − αu(t, k)) y(t, k) yH(t, k), (28b)

where the averaging parameters are computed using the
output of the detector in (22) as follows

αs(t, k) = 1 + IHs(t, k) (α̃s − 1) ,
αu(t, k) = 1 + IHu(t, k) (α̃u − 1) ,

(29)

where the values α̃s, α̃u ∈ [0, 1) are pre-defined constants
determining the effective range of the averaging param-
eters, i.e., αs ∈ [ α̃s, 1] and αu ∈ [ α̃u, 1]. The noise PSD
matrix is computed using similar recursion as (28), how-
ever, the parameter αv is computed using the Gaussian
model-based SPP [15, 21] as follows

αv(t, k) = α̃v + p(Hsi | y(t, k)) (1 − α̃v) . (30)

where α̃v ∈ [0, 1) is a pre-defined constant. In contrast
to (29), the noise averaging parameter (30) leads to a soft
recursive update, as often done when the undesired signal
is stationary [15, 20, 21].
Given the estimates �̂u and ĝ1, an informed MVDR fil-

ter to extract the desired source in (3) is computed as

wmvdr(t, k) = �̂
−1
u (t, k) ĝ1(t, k)

ĝH1 (t, k) �̂u(t, k)−1ĝ1(t, k)
. (31)

Note that, as the desired source PSD matrix �s is of rank
one, theMVDR filter can be expressed only in terms of�u
and �s [4]. However, when the undesired signal is non-
stationary, �̂s contains errors which can be detrimental
to the signal quality when used in such filter formulation.
Therefore, we first estimate the desired signal RTF vec-
tor ĝ1(t, k), and compute an MVDR filter using (31). The
complete source extraction framework is summarized in
Fig. 2. In addition, the DSPP p

(
Hs | θ̂tk

)
can be applied as

amultiplicative factor to the output of theMVDR filter, i.e.,

Ŝm(t, k) = p
(
Hs | θ̂tk

)
· wH

mvdr(t, k) y(t, k), (32)
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Fig. 2 Processing blocks of the DOA-informed spatial filtering framework

which has a similar role as the single-channel DOA-based
gain in [23] and the DOA-based TF mask common for
source separation [36]. Applying the DSPP as a multiplica-
tive factor provides additional undesired signal reduction,
however, when inaccurately estimated, it causes audible
distortion to the desired signal. This is further evaluated
in the experiments in Section 7.2.

7 Performance evaluation
To evaluate the proposed system, measurements were
performed in a room with T60 = 0.16 s using the setup
illustrated in Fig. 3. We simultaneously recorded three
sources captured at three arrays, and the objective is to
extract each source using the nearest array to that source,
while reducing the remaining two sources. Each array
(uniform circular with a diameter of 3 cm) consisted
of three omnidirectional DPA microphones (model DPA
d:screet SMK-SC4060). The distance between each source
and the nearest array is 0.7 m, and each source is extracted
using the nearest array only (hence the framework is
implemented with only three microphones). To generate
background noise, ten loudspeakers were placed facing
the walls and babble speech signals were convolved with

Array 2

Source 2

Source 3

Source 1

Array 3

Array 1

4.5 m

4 m

Fig. 3Measurement setup

the measured room impulse responses (RIRs) of the ten
loudspeakers. Finally, clean speech signals were convolved
with the measured RIRs for the three sources in Fig. 3, and
added with the babble noise signal, appropriately scaled to
provide a desired SNR (exact values are given in the exper-
iment descriptions). In addition, measured sensor noise
was added with an SNR of 35 dB for all experiments. The
SNRs were computed segmentally over 30 ms signal seg-
ments, as the power ratio of the desired speech signal and
the background (or sensor) noise captured at the reference
microphone. The final SNRs indicated in the experiments
are obtained by averaging across all segments with SNR in
the range [-20,40].
To evaluate the performance for different reverberation,

simulated data was used. RIRs were computed using the
simulator in [37]. Diffuse noise was simulated as described
in [34] and the microphone signals were obtained by
adding the speech signals convolved with the RIRs, the
diffuse noise signal, and spatially and temporally uncorre-
lated noise signal. The processing was done at a sampling
rate of 16 kHz, with an STFT frame length of 64 ms with
50% overlap, windowed by a Hamming window. Unless
stated otherwise, the DOA estimator with instantaneous
phase differences, described in Section 3.1 was employed.

7.1 Detector evaluation in terms of receiver operating
characteristics (ROC)

We compare a minimum Bayes risk detector obtained
using the proposed DOA model-based DSPP, to the one
obtained using the Gaussian signal model, as in [22]. The
false positive rate (FPR) and the false negative rate (FNR)
are defined as

FPR = ∑
t,k [Hs=1∧Hideal=0]/

∑
t,k [Hideal=0],

FNR = ∑
t,k [Hs=0∧Hideal=1]/

∑
t,k [Hideal=1], (33)

where
∑

t,k [· ] denotes summation of the value of the log-
ical expression in the brackets. The ideal detectorHideal is
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obtained by comparing the spectra of the desired signal to
the sum of all undesired signals, namely,

Hideal(t, k) =
{

1, if |Sm(t, k)|2 >

∣
∣
∣Im(t, k) + Vm(t, k)

∣
∣
∣
2

0, otherwise.
(34)

The ROC curves are obtained by computing the FPR and
FNR as Csu

Cus
varies from 0 to ∞. The FPR and FNR are

computed for the three sources (French female, English
female, and English male) during 20 s of multi-talk. The
average FPR and FNR used for the ROC curves are
obtained by averaging over the segments for each of the
three sources (hence over 60 s of speech in total). In
all experiments, the desired-to-interfering speech ratio
(DSIR) was in the range [5, 8] dB. The DSIR for each
source is computed at one of the microphones from the
nearest array.

7.1.1 Experiment 1
In this experiment, we evaluate the detection accuracy for
different noise and reverberation levels. To investigate the
effect of background noise, the experiment was repeated
for input SNR of 3, 8, 13, and 18 dB using the measure-
ment data. The ROC curves for the different SNRs are
shown in Fig. 4a, for the two detectors. The detection
accuracy is not notably affected by the SNR, as shown by
the overlapping ROC curves and only a minor increase
in the error rate can be observed for decreasing SNR. It
is worthwhile noting that although in non-stationary sce-
narios, both types of errors are critical for the extracted
signal quality [28], false positives are more detrimental as
they lead to errors in the RTF vector and distortion of the
desired signal. In contrast, if the RTF vector is accurate,
which can be achieved if the FPR is low, false negatives do
not affect the performance.
To evaluate the detectors for different reverberation lev-

els, the setup shown in Fig. 3 was simulated for T60 of
0.2 s, 0.35 s, 0.5 s, and 0.65 s and diffuse babble noise
with an SNR of 22 dB. As shown in Fig. 4c, reverberation
has a stronger effect on the ROC than the noise, as the
curves shift more notably with increasing reverberation.
However, the proposed detector clearly outperforms the
signal-model based detector in all cases.

7.1.2 Experiment 2
In this experiment, we simulated scenarios with one
desired source and one interferer, for different angular
separations between the desired source and the interferer,
namely, 160°, 95°, 50°, 25°, and 0°. In all cases, the desired
source is located at 0.7 m from the array, whereas the
interferer at 1.5 m from the array. The reverberation time
was T60 = 0.35 s and diffuse babble noise with an SNR
of 22 dB and uncorrelated sensor noise with an SNR of

35 dB were added. As expected, with decreasing angular
separation, the detection accuracy deteriorates, as visible
in Fig. 4b. Note that even when the desired and the unde-
sired source have equal DOA, the detector provides good
accuracy due to the fact that the desired signal is stronger
than the interferer at its respective nearest array. Another
reason is that the CDR in interferer-dominated TF bins is
lower than the CDR in desired signal-dominated TF bins,
hence allowing the CDR-controlled concentration κ to aid
the detection even when the sources have equal DOA.

7.1.3 Experiment 3
The detector ROC curves obtained with the two DOA
estimators discussed in Section 3, the one with instanta-
neous, and the one with time-averaged phase differences,
are illustrated in Fig. 4d. Although time averaging of
the phase differences generally provides less noisy DOA
estimates (i.e., smoother across the TF spectrum), the
detector performance is better when instantaneous DOA
estimates are used.

7.2 Objective evaluation of extracted signals
To estimate the PSDmatrices and the RTF vector, we com-
puted a Bayes detector according to (22), where we used
Csu = 1 and Cus = 2. These costs were chosen after
investigating the objective performance measures and the
results of informal listening tests in different acoustic
conditions, where they proved to achieve the best perfor-
mance from all (Csu,Cus) pairs across the ROC. The cho-
sen costs resulted in an FPR of 0.1 and an FNR of 0.9 on
average (across the different experiments), which corrob-
orates the observation made in Section 7.1.1, that the FPR
needs to be very low in order to ensure a good extracted
signal quality. The averaging constants for the PSD matri-
ces were α̃v = 0.95, α̃s = α̃u = 0.92 (corresponding
to time constants of 0.62 and 0.38 s). The performance
was evaluated in terms of segmental noise reduction (NR),
segmental interference reduction (IR), speech distortion
(SD) index νsd, PESQ score improvement �PESQ [38],
and improvement of the short-time objective intelligibility
(STOI) score [39],�STOI. Five spatial filtering frameworks
are evaluated: (i) An oracle MVDR filter, where the PSD
matrices are computed using recursive averaging with
an ideal detector, denoted by Did, (ii) a DSB steered to
the desired source DOA, (iii) an MPDR filter steered to
the desired source DOA, iv) an informed MVDR filter
obtained using the Gaussian signal model-based detector
with a DOA-based a priori SPP, denoted by Dsm and v)
an informed MVDR filter obtained using the proposed
DOA-based detector, denoted byDdm.

7.2.1 Experiment 1
This experiment is performed using measured data for
two SNR conditions, indicated in Table 1. Although Dsm
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a

c

b

d

Fig. 4 ROC curves. Comparison of the Gaussian model-based detector with a DOA-based a-priori SPP, and the proposed DOA model-based
detector, in different scenarios. a Vary SNR, measured data. b Vary interferer DOA, simulated data. c Vary reverberation time simulated data.
d Compare DOA estimators, measured data

and Ddm perform similarly in terms of NR, Ddm offers
by of up to 8 dB better IR than Dsm for SNR of 10 dB,
and up to 6 dB better IR for SNR of 2 dB. The SD index
is lower for the proposed Ddm in all cases. The better
performance of the proposed system is due to the higher
accuracy of the DOA-based detector compared to the
Gaussian model-based one. The improvement in PESQ
and STOI scores at the output of the proposed systemwith
respect to the unprocessed signal is notably higher than
the improvement offered by the other systems. The severe
distortions of MPDR filter often result in lower PESQ
and STOI scores than the unprocessed signal, as visible
in Table 1.

7.2.2 Experiment 2
In this experiment, the proposed systemDdm and the out-
put of the DSB are multiplied by the a posteriori DSPP.
A system where DOA-based DSPP is applied at the out-
put of a fixed spatial filter is proposed in [23], and the goal
of the current experiment is to confirm that the benefit
of the DSPP is even larger when it is used in combination
with a data-dependent, informed spatial filter, rather than

a fixed spatial filter. The experiment is repeated with the
two DOA estimators discussed in Section 3.
The results in Table 2 are shown for average input SNR

of 10 dB and confirm that the informed MVDR filter out-
performs the DSB when the DSPP-based mask is applied
after spatial filtering. We also note that multiplying the
DSPP is critical as it introduces SD, even though, the NR
and IR are significantly improved. The choice whether to
multiply the MVDR output by the DSPP, depends on the
accuracy of the DSPP and the importance of undistorted
speech for a given application. Finally, note that the system
with the DOA estimator based on instantaneous phase
differences slightly outperforms the one with cross PSD
phase differences, which is consistent with the detection
performance evaluation in Fig. 4d. Time-averaged phase
differences result in time-smoothing of the DSPP, which
can distort the speech onsets and degrade the overall
performance.

7.2.3 Experiment 3
In this experiment, we investigate the performance for
varying angular separation between the desired and
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Table 1 Results for Source1 (top), Source2 (middle), and Source3 (bottom)

Average input SNR 10 dB Average input SNR 2 dB

DSB MPDR Did Dsm Ddm DSB MPDR Did Dsm Ddm

NR 1.4 6.4 7.5 6.1 7.2 1.4 7.0 8.9 7.6 9.2

IR 1.9 8.1 14.4 5.5 12.9 1.9 8.0 12.8 6.3 11.8

νsd 0.03 0.25 0.02 0.11 0.06 0.03 0.28 0.03 0.08 0.07

�PESQ 0.02 0.17 0.75 -0.02 0.68 0.02 0.12 0.59 0.17 0.53

�STOI 0.01 0.07 0.17 -0.01 0.15 0.01 0.05 0.18 0.04 0.16

NR 0.9 4.3 7.1 7.0 6.0 0.9 2.8 11.7 7.5 6.1

IR 0.5 2.9 15.7 5.3 13.9 0.5 2.1 13.9 6.2 11.0

νsd 0.06 0.19 0.03 0.11 0.03 0.06 0.17 0.03 0.10 0.03

�PESQ 0.03 -0.01 0.85 0.20 0.76 0.03 0.04 0.73 0.31 0.51

�STOI 0.01 -0.03 0.13 0.01 0.12 0.01 -0.02 0.16 0.05 0.11

NR 1.4 10.6 6.4 5.6 6.5 1.4 12.8 8.4 7.7 8.1

IR 1.7 15.9 13.8 5.6 11.8 1.7 15.0 11.2 6.4 10.4

νsd 0.03 0.87 0.02 0.09 0.04 0.04 0.81 0.02 0.07 0.04

�PESQ 0.02 -1.10 0.61 0.20 0.53 0.02 -0.63 0.51 0.31 0.47

�STOI 0 -0.37 0.07 0.01 0.07 0.01 -0.25 0.10 0.06 0.09

The segmental DSIR at the reference microphone of each Source is 6.8, 5.7, and 8 dB. The result with the oracle detector and the second best result are indicated in bold

the interfering source. Signals were simulated with
reverberation time T60 = 0.2 s and T60 = 0.4 s. The dis-
tances of the desired source and the interferer from the
array were 0.7 and 1.5 m, respectively, and the results in
Fig. 5 are averaged over three experiments with different
locations of the constellation. The NR and SD of the

Table 2 Results when the spatial filter output is multiplied by the
estimated DSPP

DSB-inst DSB-cPSD Ddm-inst Ddm-cPSD

NR 14.3 14.2 19.3 18.9

IR 15.7 15.6 24.9 24.3

νsd 0.36 0.36 0.33 0.34

�PESQ 0.52 0.47 0.88 0.79

�STOI 0.10 0.08 0.13 0.11

NR 9.1 8.2 15.7 15.4

IR 12.3 11.5 25.0 23.1

νsd 0.12 0.13 0.15 0.15

�PESQ 0.67 0.60 1.07 1.00

�STOI 0.08 0.07 0.11 0.10

NR 12.2 11.4 16.7 16.0

IR 14.0 13.2 22.5 21.6

νsd 0.27 0.26 0.24 0.23

�PESQ 0.54 0.48 0.87 0.84

�STOI 0.04 0.02 0.05 0.04

Source1 (top), Source2 (middle), and Source3 (bottom). The segmental DSIR
at the reference microphone of each source is 6.8, 5.7, and 8.0 dB, "-inst" indicates
the DOA estimator with instantaneous phase differences, while “-cPSD” the one
with cross-PSD phase differences. The best result is indicated in bold

different frameworks are rather unaffected by the angular
separation, while the IR decreases with decreasing angular
separation. As the angular separation decreases, Ddm and
Dsm achieve similar IR, due to the fact that in both cases,
the performance is limited by the spatial resolution of
the array.

7.2.4 Experiment 4
An important motivation for the current work was to
mitigate the sensitivity to DOA mismatch typical for the
MPDR beamformer, where DOA errors lead to severe dis-
tortion of the desired signal. Provided that the desired
signal detector is accurate besides the presence of small
DOA errors, the RTF vector and the undesired signal PSD
matrix can be estimated and the desired signal can be
extracted with a good quality using an informed MVDR
filter. In Fig. 6, the DOA mismatch is varied such that the
system is given a wrong information about the true source
DOA, with an error from 1 to 19°, including an error-
free case. The difference between the DOA of the desired
source and the interferer is 100 degrees. In Fig. 6a, the
SD index and the PESQ improvement are shown on the
y-axis, whereas in Fig. 6b, the NR and the IR are shown.
Notably, besides minor performance loss as the mismatch
angle increases, the ISF is very robust to DOA errors,
which is crucial for practical applications where the DOA
might be given only approximately.

8 Conclusions
We addressed the problem of source extraction in the
presence of background noise and speech interferers.
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Fig. 5 Evaluation of the extracted signal quality as a function of the DOA difference between the desired and the undesired source. Input SIR = 9 dB
and input SNR = 14 dB

The DOA of the desired source was assumed to be
approximately known, while the number and locations
of the interferers were unknown. Designing robust spa-
tial filters is a challenging task in such scenarios, as the
PSD matrix of the undesired speech signals needs to
be estimated from the data. We proposed an informed
spatial filtering framework, where the first step is to
design appropriate desired signal detector. We discussed
and experimentally showed that the commonly used
Gaussian signal model-based detector is not suitable

when the undesired signals contain speech. Therefore,
we proposed a DOA model-based detector, where nar-
rowband DOA estimates are used for discrimination
of desired and undesired speakers, while the Gaussian
signal model aids the detection of noisy TF bins.
The performance of the detector was evaluated in
terms of ROC curves, and by objective evaluation of
the extracted signals when the detector is applied for
PSD matrix estimation in an informed MVDR filtering
framework.

a b

Fig. 6 Evaluation of extracted signal quality in the presence of DOA mismatch. The y-axis on the left plot illustrates the SD index and the PESQ
improvement, while the y-axis on the right plot illustrates the NR and IR. Input SIR = 9 dB and input SNR = 14 dB a Speech distortion and PESQ
improvement b Noise reduction and interference reduction
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