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Abstract

In this paper, the problem of direction of arrival (DOA) estimation is considered in the case of multiple polarized
signals impinging on the conformal electromagnetic vector-sensor array (CVA). We focus on modeling the manifold
holistically by a new mathematical tool called geometric algebra. Compared with existing methods, the presented
one has two main advantages. Firstly, it acquires higher resolution by preserving the orthogonality of the signal
components. Secondly, it avoids the cumbersome matrix operations while performing the coordinate
transformations, and therefore, has a much lower computational complexity. Simulation results are provided to
demonstrate the effectiveness of the proposed algorithm.
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1 Introduction
The direction of arrival (DOA) estimation has received a
strong interest in wireless communication systems such
as radar, sonar, and mobile systems [1]. In this corres-
pondence, the problem of DOA estimation is considered
in the case of multiple polarized signals impinging on
the conformal vector-sensor array (CVA). We name our
target array CVA since it is a conformal array whose ele-
ments are electromagnetic vector sensors. Interest in
this problem can be divided into two topics: (1) con-
formal array and (2) electromagnetic vector sensors.
A conformal antenna is an antenna that conforms to a

prescribed shape. The shape can be some part of an air-
plane, high-speed missile, or other vehicle [2]. Their
benefits include reducing aerodynamic drag, covering
wide angle, space-saving and so on [3, 4]. Nevertheless,
due to the curvature of the bearing surface, the far-field
contribution in the incident direction of one element is
different from that of others [5]. The pattern synthesis
theorem is not available resulting from the fact that the
conformal arrays can no longer be regarded as simple
isotropic ones. In [4], Wang et al. proposed a uniform
method for the element-polarized pattern transform-
ation of arbitrary three-dimensional (3-D) conformal ar-
rays based on Euler rotation. However, the Euler

rotation involves cumbersome matrix transformations,
and therefore, has a considerable computational burden.
Zou et al. analyzed the 3-D pattern of arbitrary con-
formal arrays using geometric algebra in [6]. Neverthe-
less, this mathematical language was not transplanted to
the DOA estimation. In view of this, Wu et al. combined
the geometric algebra with multiple signal classification
(MUSIC), termed as GA-MUSIC, to solve the DOAs for
cylindrical conformal array [7]. It used short dipole as
the element which made the array belong to a scalar
array. In addition, the electromagnetic vector sensors are
not taken into account.
As for the second point, we know the electromagnetic

vector sensor can measure the three components of the
electric field and the three components of the magnetic
field simultaneously. And, considerable studies on the
extensions of traditional array signal processing tech-
niques to the vector sensors are available in literature. In
[8], Nehorai concatenated all the output vectors into a
long vector and derived the Cramer-Rao bound (CRB).
However, the orthogonality of the signal components
was lost in this case. In view of this, a hypercomplex
model for multicomponent signals impinging on vector
sensors was presented in [9]. This model was based on
biquaternions (quaternions with complex coefficients).
Subsequently, Jiang et al. introduced geometric algebra
into the electromagnetic vector-sensor processing field
[10]. However, the model cannot be applied to the
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conformal array since the pattern is assumed to be a sca-
lar and the same for each element.
In this correspondence, we will combine the electro-

magnetic vector sensors with the conformal array, and
present a unified model based on geometric algebra to
estimate the DOAs. The proposed technique in this
paper is regarded as a generalization of the one pre-
sented in [10] to the case of the conformal arrays. Com-
pared with existing methods, the proposed one has two
main advantages. Firstly, it can give a more accurate esti-
mation by preserving the orthogonality of the signal
components. Secondly, it largely decreases the computa-
tion complexity for the coordinate transformations are
avoided. In addition, it has a strong commonality, that is
to say, it is not limited to any specific conformal array.
The rest of this paper is as follows. In Section 2, some

notations about geometric algebra are briefly introduced,
and on this basis, the manifold for the conformal vector-
sensor array is derived. Section 3 analyzes the computa-
tional burden. Illustrative examples are carried out to
verify the effectiveness of the proposed algorithm in Sec-
tion 4, followed by concluding remarks.
Throughout this correspondence, we use lowercase

boldface letters to denote vectors and uppercase bold-
face letters to represent matrices for notational conveni-
ence. Moreover, the uppercase letters symbolize the
multivectors whenever there is no possibility of confu-
sion. Superscripts “*”, “T”, and “H” represent the conju-
gation, transpose, and conjugate transpose, respectively.
In addition, (⋅)+ and (⋅)~ symbolize the conjugate trans-
pose in geometric algebra and the reverse operator, re-
spectively. Finally, ℜmn

3 stands for the m × n real matrix
in 3-D space and E{⋅} denotes the expectation operator.

2 The proposed algorithm
2.1 Some notations about geometric algebra
Geometric algebra is the largest possible associative alge-
bra that integrates all algebraic systems (algebra of com-
plex numbers, matrix algebra, quaternion algebra, etc.)
into a coherent mathematical language [11]. In view of
its widespread usage in subsequent sections, it is worth-
while to review some notations about geometric algebra
before proceeding to the physical problems of interest.
The geometric product is considered as the fundamental

product of geometric algebra, and its definition is as follows

xy ¼ x⋅yþ x∧ y ð1Þ

where the wedge symbol “ ” denotes the outer product
with the properties listed in Table 1.
Exchanging the order of x and y in (1),and utilizing

the symmetry of the inner product and the anti-
symmetry of the outer product, it follows that

yx ¼ x⋅y‐x∧ y ð2Þ

Combining (1) with (2), we can find that the inner
product and the outer product can be uniformly repre-
sented by the geometric product, that is,

x⋅y ¼ xy þ yx
2

ð3Þ

x∧y ¼ xy ‐ yx
2

ð4Þ

In general, we call an outer product of k vectors a k-
blade. The value of k is referred to as the grade of the
blade. Specially, the top-grade blade En in an n-dimen-
sional space is called pseudo-scalars. Essentially, blades
are just elements of the geometric algebra. It is noted
that we restrict the discussion to 3-D Euclidean space
[12], that is, a space with an orthonormal basis {ex, ey,
ez}. As shown in Fig. 1, E3 is the pseudo-scalar, relative
to the origin denoted by O. The three-blade is drawn as
a parallelepiped. The volume depicts the weight of the
three-blade. Nevertheless, blades have no specific shape.
A linear combination of blades with different grades is

called a multivector [13]. Multivectors are the general el-
ements of geometric algebra. Thus, a generic element
can be expressed by

Table 1 Properties of the outer product

Property Meaning

Anti-symmetry (x ʌ y) = − (y ʌ x)

Scaling x ʌ (γy) = γ(x ʌ y)

Distributivity x ʌ (y + z) = (x ʌ y) + (x ʌ z)

Associativity x ʌ (y ʌ z) = (x ʌ y) ʌ z

Fig. 1 The geometry of 3-blade
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A ¼ a0 þ a1ex∧ey þ a2ez∧ex þ a3ey∧ez
þ a4ex∧ey∧ez þ a5ez þ a6ey þ a7ex ð5Þ

where a0, a1, …, a7 are real numbers. For ex, ey, ez are
mutually orthogonal, using the definition of the geomet-
ric product, (5) can be represented by another shape.

A ¼ a0 þ a1exy þ a2ezx þ a3eyz þ a4exyz þ a5ez þ a6ey þ a7ex
¼ Ah i0 þ Ah i1 þ Ah i2 þ Ah i3

ð6Þ
where the notation 〈A〉k means to select or extract the
grade k part of A and the reverse of 〈A〉k can be calcu-
lated as follows

AeD E
k
¼ −1ð Þk k−1ð Þ

2 Ah ik ð7Þ

Thus, the reverse of A is given

Ae ¼ Ah i0 þ Ah i1− Ah i2− Ah i3 ð8Þ
In the discussion up to this point, we can define the

norm of a multivector.

Ak k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AAeD E

0

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3
k¼0

Ah ik AeD E
k

D E
0

vuut ð9Þ

We will next introduce the rotor, one of the most im-
portant objects in applications of geometric algebra. As
shown in Fig. 2, vector y is acquired through rotating
the vector x with θ. The rotation can be regarded as two
consecutive reflections, first in a, then in b. Correspond-
ingly, the expression that reflects x in the line with dir-
ection a is

x
0 ¼ axa ¼ 2 a� xð Þa‐x ð10Þ

The expression appears to be strange at first, but it is
actually one of the most important rationales why the
geometric product is so useful.
Similarly, y can be obtained by reflecting x’ in the line

with direction b

y ¼ bx
0
b‐1 ¼ baxa‐1b‐1 ¼ bað Þx bað Þ‐1 ¼ RxR‐1 ð11Þ

As shown in Eq. (11), R is identified as the rotor. If we
want to rotate a vector counterclockwise by a specific
angle, we only need to apply the rotor to the vector.
And, the rotation must be over twice the angle between
a and b. In Appendix 1, a brief proof is given.

2.2 Complex representation matrix (CRM)
As stated above, we adopt multivector as a generic elem-
ent of geometric algebra. However, the analysis of the
mulitvector and its attendant theory are scarce. In view
of this, we will introduce the CRM since the matrix the-
ories are mature [14]. Similar to the multivector, we con-
struct the matrix in geometric algebra, noted Gmn

3 , as
follows

A ¼ A0 þ A1exy þ A2ezx þ A3eyz þ A4exyz þ A5ez þ A6ex þ A7ex

ð12Þ
where A0, A1,…, A7∈ℜ

mn
3 . Thus, the CRM can be de-

fined as

ψ Að Þ ¼ A0 þ A4exyz þ A1exyz þ A5 −A2 þ A6exyz−A3exyz−A7

A2−A6exyz−A3exyz−A7 A0 þ A4exyz−A1exyz−A5

� �
ð13Þ

Given a matrix A∈Gmn
3 and its CRM ψ(A), then the

following equalities stand

A ¼ P2mψ Að ÞPþ
2n ð14Þ

ψ Að Þ ¼ Q2m
A

A

� �
Q2n ð15Þ

where

P2m ¼ 1
2

1þ ezð ÞIm ezx−exð ÞIm½ �∈G3m�2m ð16Þ

Q2m ¼ 1
2

1þ ezð ÞIm ezx−exð ÞIm
−ezx−exð ÞIm 1−ezð ÞIm

� �
∈G32m�2m ð17Þ

with Im being the identity matrix of dimension
m × m. Properties (14) and (15) can be verified by
direct calculation using Eq. (16) and Eq. (17). For exyz
is isomorphic to complex imaginary unit j [9],
ψ(A)can be regarded as a complex matrix. Then, all
the operation rules of the complex matrix are applic-
able to ψ(A). Some properties [15] which will be used
in the sequel are listed as follows.

Fig. 2 Rotation of vector x
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a) A = B⇔ψ(A) = ψ(B);
b) ψ(A + B) = ψ(A) + ψ(B) , ψ(AC) = ψ(A)ψ(C);
c) ψ(A+) = ψ+(A).

It is also worthwhile to note that the following three
properties regarding P2m and Q2m will be of use in the
forthcoming calculations.

d) P2mPþ
2m ¼ Im;

e) Pþ
2mP2mψ Að Þ ¼ ψ Að ÞPþ

2nP2n;
f ) Q2m ¼ Qþ

2m:

2.3 Manifold modeling of vector sensors in the conformal
array
In this subsection, we will combine the electromagnetic
vector sensors with the conformal array, and present a
unified model based on geometric algebra to estimate
the DOAs. To illustrate the versatility of this algorithm,
we consider a M × N cylindrical conformal array as
shown in Fig. 3. The array contains N uniformly spaced
rings on the surface. In addition, there are M electro-
magnetic vector sensors distributed on each ring. The
angle between two consecutive elements on the same

ring is β. In addition, the radius of the cylinder and the
distance between adjacent rings are R and W,
respectively.
Since the electromagnetic vector sensor consists of six

spatially collocated antennas, the three electric field
components (Ex, Ey, Ez) and the three magnetic field
components (Hx. Hy, Hz) can be measured simultan-
eously. Thus, we can use two multivectors, Xe and Xh, to
represent the electric field signal and the magnetic field
signal, respectively.

Xe ¼ Exex þ Eyey þ Ezez ð18Þ
Xh ¼ Hxex þ Hyey þ Hzez ð19Þ

Similarly, the noise can be written as

Ne ¼ NExex þ NEyey þ NEzez ð20Þ
Nh ¼ NHxex þ NHyey þ NHzez ð21Þ

Then, the output of single element can be obtained in
the frame of geometric algebra.

Y ¼ Xe þ exyzXh þ Ne þ exyzNh ð22Þ
From (22), we see that exyz not only provides a vital

link between electric field components and magnetic
field components, but also offers the possibility to han-
dle the data model in geometric algebra. Due to the lim-
ited length, the relationship between the two fields will
be derived in Appendix 2. In addition, from (18, 19, 20,
and 21), we see that the orthogonality of the signal com-
ponents is reserved. Compared with the conventional
methods, such as the long vector algorithm [8], this or-
thogonality constraint implies stronger relationships be-
tween the signal components. The proof can be seen in
Appendix 3. And it is also the most important advantage
of the output model. Using the Maxwell equations in the
formalism of geometric algebra, Eq. (22) can be written
in another shape.

Y ¼ 1þ uð ÞSE þ Ne þ exyzNh ð23Þ
where

u ¼ cosφ sinθex þ sinφ sinθey þ cosθez ð24Þ
with u representing the unit vector of the signal
propagation andSEbeing the complex envelope of the
electric field. In addition, the signal has an elevation
angle θ and an azimuth angle φ. The derivation of
(23) is omitted here and the interested reader will
find more material in [10].
Considering the polarization information, the afore-

mentioned complex envelope, SE, can be written as

SE ¼ ΘhS ð25Þ
Fig. 3 The cylindrical conformal array consisting of MxN
electromagnetic vector sensors

Meng et al. EURASIP Journal on Advances in Signal Processing  (2017) 2017:64 Page 4 of 12



where h is the signal polarization vector [16] and can be
described by the auxiliary polarization angle (γ) and the
polarization phase difference (η), that is, h ¼
cosγ sinγeexyzη½ �T. And S is the multivector symboliz-
ing the complex envelope of the signal. Moreover, the
parameter Θ denotes the steering vector of the angle
field [17] and is independent of the space location:

Θ ¼
− sinφ cosθ cosφ

cosφ cosθ sinφ

0 − sinθ

24 35 ð26Þ

Thus, the polarized version of (23) can be expressed as

Y ¼ 1þ uð ÞΘhS|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
X

þNe þ exyzNh|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Ny

ð27Þ

As stated above, the cylindrical conformal array is
composed of M × N elements. In addition, suppose that
there are K narrowband sources impinging on the array.
The manifold of the conformal array as shown in Fig. 3
corresponding to the kth source is

as θk ; ;φk

� � ¼ ask ¼
g1 θk ; ;φk

� �
e−exyz2π uT θk ;;φkð Þr1ð Þ=λk

g2 θk ; ;φk

� �
e−exyz2π uT θk ;;φkð Þr2ð Þ=λk

⋮
gMN θk ; ;φk

� �
e−exyz2π uT θk ;;φkð ÞrMNð Þ=λk

#26664
ð28Þ

where gmn(θk, φk), m = 1,2,…,M, n = 1,2,…,N is the elem-
ent pattern in the array global Cartesian coordinate sys-
tem. In subsequent equations the range of m and n is
the same and is omitted. Rmn and λk are the (m, n)th
element location vector and the kth signal wavelength
respectively. The received signals of the array are the
superposition of the response of each signal, the output
can be expressed as

Y ¼
XK
k¼1

askXk þ Ny ¼ A θk ; ;φk ; ; γk ; ; ηk
� �

S þ Ny ð29Þ

where Xkis a special case of X regarding the kth source.
And

S ¼ S1 S2 ⋯ SK½ �T ð30Þ

Ny ¼ Ny1 Ny2⋯NyK
� 	T ð31Þ

with Sk being the complex envelope of the kth signal.
For notational convenience, we will simply write A in-
stead of A(θk, φk, γk,ηk) whenever there is no possibility
of confusion.
Let us refer back to Eq. (28). It is worthwhile to note

that the aforementioned manifold of the conformal
array, ask, is derived under the global coordinate system.
The azimuth and elevation angles are defined in Fig. 3.
In most ready-made algorithms, the element pattern,

gmn(θk, φk), is always considered to be identical. Never-
theless, due to the effects of the curvature of conformal
carriers, the above assumption is not satisfied in the cy-
lindrical conformal array.
In what follows, we will use the rotor in geometric al-

gebra to model the conformal array, together with the
vector-sensor array. The most important advantage of
geometric algebra in analyzing conformal arrays is that
we are able to express the geometry and the physics in a
coordinate-free language. As stated above, the rotor can
be used to realize the rotation between the two coordin-
ate systems. Thus, we define the local coordinate system
of the (m, n)th element as shown in Fig. 4.
The exmn axis is the same as ex axis in the global co-

ordinate system, ezmn is perpendicular to the element
surface and eymn is tangent to the surface which can
form a standard Cartesian coordinate system. Then,
transforming the global coordinate into the local one is
equivalent to rotating the global coordinate about ex
axis. The corresponding rotation angle is

ξ ¼ m−1ð Þβ−M−1
2

β ¼ m−
M þ 1

2


 �
β ð32Þ

Substituting ez and ey for b and a, respectively (see
Appendix 1, the exponential form of the rotor), the rotor
is

Fig. 4 The local coordinate of the (m, n)th element
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Rmn ¼ e‐ ez∧eyð Þξ2 ð33Þ
Utilizing E3 = exeyez as the pseudo-scalar in 3-D Eu-

clidean space, Eq. (33) can be further simplified

Rmn ¼ eE3ex
ξ
2 ð34Þ

Through (11), we can acquire the standard orthogonal
basis in the local coordinate. And the specific procedure
can refer to Appendix 4. We herein directly give the
results

exmn ¼ RmnexRmn‐1 ¼ ex ð35Þ

eymn ¼ RmneyRmn‐1 ¼ cos m−
M þ 1

2


 �
β

� �
ey‐ sin m−

M þ 1
2


 �
β

� �
ez

ð36Þ

ezmn ¼ RmnezRmn‐1 ¼ sin m−
M þ 1

2


 �
β

� �
ey þ cos m−

M þ 1
2


 �
β

� �
ez

ð37Þ
Thus, from (35, 36 and 37), we can obtain the element

pattern, gmn(θk, φk).
Up to present, the remaining unknown variable is the

location vector. From Fig. 3, we can obtain its specific
expression

rmn ¼ −nδð Þex þ R sin m−
M þ 1

2


 �
β


 �
ey þ R cos m−

M þ 1
2


 �
β


 �
ez

ð38Þ
where δ means the spacing between adjacent rings.
Then, the mainfold of the conformal vector-sensor array,
A, can be obtained.
Since the geometric algebra is introduced in modeling

the manifold, the eigendecomposition is different from
the conventional methods, such as [18]. In fact, similar
to the quaternion case [19], the noncommutativity of the
geometric product leads to two possible eigenvalues,
namely the left and the right eigenvalue. However, in this
paper, we select the right eigenvalue since the right
eigendecomposition of A can be converted to the right
eigendecomposition of the CRM.
We construct the covariance matrix

RY ¼ E YYþf g ¼ AE SSþf gAþ þ 6σ2IMN ð39Þ
Here, we assume that the noise is identical and uncor-

related from element to element, with covarianceσ2.
For RY is a unitary matrix, its eigendecomposition can

be written as

RY ¼ UY sDY sU
þ
Y s þUYnDYnU

þ
Yn ð40Þ

Where UYs is the MNxK matrix composed of the K ei-
genvectors corresponding to the K largest eigenvalues of
RY, termed as the signal subspace. UYn represents the
matrix composed of the eigenvectors corresponding to

the 2 M–K smaller eigenvalues, i.e., the noise subspace.
According to the principles of the MUSIC algorithm, the
array manifold spans the signal subspace and is orthog-
onal to the noise subspace. In this case, we have

AþUYn ¼ 02M−K ð41Þ
where 02M −K is a 2 M–K row vector with all elements
equal zero. The proof can be seen in Appendix 5.

In practice,RY ¼ 1
L

PL
l¼1YY

þ ¼ UY sDY sUþ
Y s þUYnDYn

Uþ
Yn , the maximum likelihood estimation ofRY, is always

used as the covariance matrix. Among which, L represents
the number of snapshots. In this case, (41) becomes

AþUYn≈02M−K ð42Þ
Up to present, the DOA estimation model of con-

formal vector-sensor array has been established. This is
also the focus of our paper. The contents of constructing
the spatial spectra and searching the peak are omitted
here. The readers can refer to literature [18]. It is worth-
while to note that in introducing the rotor, the spatial lo-
cation of the sensor is not required. Then, the proposed
method can be easily extended to other arrays.
It is also worthwhile to note that {ex, ey, ez} is not only

the basis for the multivector in the vector-sensor array,
but also represents the coordinate in the conformal array.
And, it can be used for transformation between the global
and the local coordinates with the help of the rotor. Under
this circumstance, there are some links between those two
arrays. The commonality is one of the motivations for es-
tablishing a unified model to estimate the DOAs.

3 Complexity analysis
To better explain the superiority of the geometric alge-
bra in modeling the conformal vector-sensor array, we
will introduce the computational complexity from the
standpoint of deriving the manifold. And, the computa-
tional burden is evaluated in terms of the number of
multiplications, additions, and transpositions.
To this end, we will briefly introduce the conventional

methods of analysis based on Euler angle in this section.
Generally, the transformations between the element
local coordinates and the array global coordinates may
be implemented by three continuous Euler rotations [3].
The specific rotation matrix can be expressed as

R C;D; Fð Þ ¼ Rx Cð ÞRy Dð ÞRz Fð Þ

¼
1 0 0
0 cosC − sinC
0 sinC cosC

24 35 cosD 0 − sinD
0 1 0

sinD 0 cosD

24 35 cosF − sinF 0
sinF cosF 0
0 0 1

24 35

¼
cosD cosF − cosD sinF − sinD

cosC sinF− cosF sinC sinD cosC cosF þ sinC sinD sinF − cosD sinC
sinC sinF þ cosC cosF sinD cosF sinC− cosC sinD sinF cosC cosD

24 35
ð43Þ

where C, D, and F are, respectively, three consecutive
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Euler rotation angles about ex axis, ey axis and ez axis.
The matrices Rx(C), Ry(D), and Rz(F) are the corre-
sponding Euler rotation matrices. It is noted that two
successive Euler rotations are usually adequate to deal
with the cylindrical conformal array. The third Euler ro-
tation matrix is added here to cope with some irregular
or special conformal arrays. Additionally, we know the
rotation matrix is invertible from Eq. (43). Consequently,
taking the inversion with respect to R(C, D, F), we have

R C;D; Fð Þ−1 ¼ Rz−1 Fð ÞRy−1 Dð ÞRx−1 Cð Þ

¼
cosF sinF 0
− sinF cosF 0

0 0 1

24 35 cosD 0 sinD
0 1 0

−sinD 0 cosD

24 35 1 0 0
0 cosC sinC
0 − sinC cosC

24 35

¼
cosD cosF cosC sinF− cosF sinC sinD sinC sinF þ cosC cosF sinD
− cosD sinF cosC cosF þ sinC sinD sinF cosF sinC− cosC sinD sinF

− sinD − cosD sinC cosC cosD

24 35
ð44Þ

Combining Eq. (43) with Eq. (44), it is not hard to find
that

R C;D; Fð Þ−1 ¼ R C;D; Fð ÞT ð45Þ
Thus, R(C, D, F) is the so-called orthogonal matrix. In

this case, transforming the local coordinate into the glo-
bal one is equivalent to imposing the transposition/in-
version with respect to the above rotation matrix. If we
model the conformal array based on the Euler angle,
three matrix multiplications and one matrix transpos-
ition are required for each element.
In fact, the matrix operations are essentially the multi-

plications and the additions between elements. To quan-
tify this, the amounts of multiplications and additions of
the two methods (i.e., the proposed method and the Eu-
ler angle method) are calculated, respectively. The corre-
sponding results are shown in Table 2. We assume that
one matrix transposition is considered as one multiplica-
tion or addition operation. And it is obvious that the
multiplication between two 3 × 3 matrices involves
9 × 3 multiplications and 9 × 2 additions. For conveni-
ence, the multiplication and the addition are collectively
referred to as the operation. Then, Eq. (43) contains
2 × 9 × 3 + 2 × 9 × 2 operations. For the conformal
array consisting of M × N electromagnetic vector sen-
sors, the transformation between different coordinates
involves 91 × 6 × MN operations. Compared with the
Euler rotation angle, the proposed method effectively
avoids the cumbersome matrix transformations. From
Eqs. (35, 36, and 37), we know eymn and ezmn are inde-
pendent of ex. In addition, exmn can be obtained directly
from Eq. (35) without extra operations. Thus, Eqs. (35,
36 and 37), can be expressed as a 2 × 2 matrix. While
using the rotor to establish the array manifold, the com-
putational process is equivalent to a 2 × 2 matrix multi-
plied by a 2 × 1 vector. In this case, the operations for
each element involve four multiplications and two

additions. The total amount of operations is
6 × 6 × MN. Thus, the geometric algebra-based method
significantly decreases the computational burden.
In general, the Euler rotation and its matrix represen-

tation cannot intuitively exhibit the complete procedure.
In addition, as the configuration of the conformal array
becomes more irregular and complex, the level of com-
plexity involved in the transformations and the number
of calculations required increases largely.

4 Simulation results
In this section, Monte-Carlo simulation experiments are
used to verify the effectiveness of the proposed algo-
rithm. The array structure is shown in Fig. 3. Among
which, we select M and N as 4 and 4, respectively. The
angle between two consecutive elements on the same
ring, β, is 5°. The number of snapshots, L, is 200. Under
these premises, 200 independent simulation experiments
are carried out. The root mean square error (RMSE) is
utilized as the performance measure and is defined as

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
200

X200
i¼1

θ̂ i−θi
� 
2

þ φ̂i−φið Þ2
� �vuut ð46Þ

where θ i; ;φif g are the estimates of elevation angles and
azimuth angles, respectively, at the ith run.
Provided that there are three polarized signals can be

received. The incident angles are (10°, 15°), (35°, 40°),
and (60°, 35°), respectively. The corresponding
polarization auxiliary angles and the polarization phase
differences are (15°, 25°), (30°, 45°), and (50°, 65°). Fig-
ure 5 shows the simulation results of the proposed algo-
rithm. The position of the spectrum peak represents the
possible DOA. Intuitively, the estimation accuracy of the
proposed algorithm is high.
To better demonstrate the performance of the pro-

posed method, Qi’s method [3] and Gao’s algorithm [20]
are included for comparison. We study the performance
with a varying SNR from 0 to 30 dB. Without loss of
generality, we select the first source (T1) and the second
source (T2), respectively, to verify it. Figure 6 shows the
RMSE versus SNR with the snapshots being 200. It can
be seen that the proposed method outperforms the Qi’s
method [3] by preserving the orthogonality of the re-
ceived signal components. In addition, the performance
of Gao’s algorithm is also worse than the proposed one.
Two main reasons lead to this difference. Firstly, the
proposed method imposes stronger constraints between
the components of the signals. Secondly, the conformal
array in [20] essentially belongs to the scalar array from
the standpoint of elements while the conformal vector-
sensor array presented in this paper belongs to the vec-
tor array. And the vector array contains more signal
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information compared with the scalar array. Moreover,
in contrast to those two algorithms, the proposed one
effectively avoids the cumbersome matrix transforma-
tions, and therefore, has a much lower computational
complexity. It is noted that, for the statistical data have
certain randomness, the simulation curve in Fig. 6 is not
smooth.
Figure 7 illustrates the RMSE versus the number of

snapshots with the SNR fixed at 10 dB. Compared with
Fig. 6, we can draw similar conclusions. In particular, if we
pick the points with snapshots being 300 and 600, respect-
ively, we may find that the corresponding RMSEs are
0.5805 and 0.2902. This means the former value is nearly
twice as much as the latter one. In fact, these improve-
ments can be predicted from the derivation of CRB. The
specific derivation process can refer to literature [21]. The
number of snapshots can be extracted from the Fisher in-
formation matrix. Moreover, the CRB is found as the
element of the inverse of that matrix. So, we can conclude
that the RMSE is inversely proportional to L.
To better demonstrate the computational efficiency,

the specific operations, such as the multiplications, addi-
tions, and transpositions, are simulated in Fig. 8. The
value of the x-axis (or the abscissa) represents the product
of M and N. It can be seen that the multiplications take
up the most resources. Compared with Euler rotation an-
gles, the proposed method reduces the computation by
one order of magnitude. Thus, the proposed algorithm
provides the possibility for real-time processing.

5 Conclusions
In this correspondence, we combine the electromagnetic
vector sensors with the conformal array, and present a
unified model based on geometric algebra to estimate
the DOAs. Compared with existing methods, the pro-
posed one has two main advantages. Firstly, it can give a
more accurate estimation by preserving the orthogonal-
ity of the signal components. Secondly, it avoids the
cumbersome matrix operations while performing the co-
ordinate transformations, and therefore, has a much
lower computational complexity. In addition, it has a
strong commonality, that is to say, it is not limited to
any specific conformal array. The simulation results ver-
ify the effectiveness of the proposed method.

6 Appendix 1
6.1 Here we will give a brief proof to demonstrate that
the rotation must be over twice the angle between a and
b
To proceed further, we rewrite R according to the defin-
ition of the geometric product:

R ¼ ba ¼ b⋅aþ b∧a ð47Þ

Here, we consider the case that the vectors are unit
length. This assumption is reasonable, because the basic
vectors of the Cartesian coordinate system satisfy it as
well. The geometric product of b ʌ a itself is:

Table 2 The computational complexity of the proposed method and Euler angle

Multiplications Additions Transpositions Operations

Euler angle 2 × 9 × 3 × 6 × MN 2 × 9 × 2 × 6 × MN 6 × MN 91 × 6 × MN

Proposed method 4 × 6 × MN 2 × 6 × MN 0 6 × 6 × MN

Fig. 5 The spatial spectrum of the proposed algorithm Fig. 6 RMSE versus SNR with the snapshots being 200
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b∧að Þ b∧að Þ ¼ ba‐b⋅að Þ b⋅a‐abð Þ
¼ b•a baþ abð Þ‐ b⋅að Þ2‐baab
¼ b⋅a 2b⋅að Þ‐ b⋅að Þ2‐b aað Þb
¼ b⋅að Þ2‐bb
¼ cos2θ‐1
¼ ‐sin2θ

ð48Þ

Thus, we define the 2-blade E2:

E2 ¼ b∧a
sinθ

ð49Þ

R can be further simplified by substituting (49) into (47):

R ¼ cosθ‐E2 sinθ ð50Þ

The expression is similar to the polar decomposition
of a complex number with the unit imaginary replaced
by the 2-blade E2. (50) can also be written as the expo-
nentials of E2:

R ¼ e‐E2θ ð51Þ

This formalism is more useful for the log-space of ro-
tors is linear. We split x into a part (xp) parallel to b ʌ
a-plane and a part (xo) orthogonal to b ʌ a-plane. Then,
xo is not affected by the application R. And we infer that
the rotation must be in the b ʌ a-plane. As stated above,
the rotation consists of two successive reflections which
are orthogonal (angle-preserving) transformations. Thus,
it allows us to pick any vector in the b ʌ a-plane to de-
termine the angle. Without loss of generality, we choose
vector a, and construct the “sandwich product” RaR−1

as shown in (11):

RaR‐1 ¼ baaa‐1b‐1 ¼ bab‐1 ð52Þ

where bab−1 is the reflection of a in b. From this it is
clear that the rotation must be over twice the angle be-
tween a and b, since the angle between a and bab−1 is
twice the angle between a and b. The negative signature
in (51) represents the rotation direction.

7 Appendix 2
7.1 We demonstrate how exyz links the electric field with
the magnetic field
First, let us refer back to the famous Maxwell equations
described by the vector algebra are

∇� Ε ¼ ‐μ
∂H
∂t

ð53Þ

∇⋅Ε ¼ ρ

ε
ð54Þ

∇�Η ¼ ε
∂E
∂t

ð55Þ

∇⋅Η ¼ 0 ð56Þ

where E = Exex + Eyey + Ezez and H =Hxex +Hyey +Hzez
are, respectively, the electric and magnetic fields. In
addition, the parameters ε, μ, and ρ symbolize the

Fig. 7 RMSE versus snapshots with the SNR fixed at 10 dB

Fig. 8 The computational efficiency (a) the proposed method (b) the Euler rotation method
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permittivity, the permeability, and the density of the
source charges, respectively.
It is worthwhile to give some results before proceeding

to the physical problems of interest:

x∧y ¼ exyzx� y ð57Þ

x� y ¼ ‐x⋅ yexyz
� 


ð58Þ

x⋅y ¼ ‐exyz x∧ exyzy
� �� � ð59Þ

Using Eqs. (57, 58 and 59), the Maxwell equations in
geometric algebra can be expressed as follows:

∇∧Ε þ μ
∂H
∂t

exyz ¼ 0 ð60Þ

∇⋅Ε ¼ ρ

ε
ð61Þ

∇⋅ Ηexyz
� �þ ε

∂E
∂t

¼ 0 ð62Þ

∇∧ Ηexyz
� � ¼ 0 ð63Þ

Since the arriving signals are assumed to be far-field,
so the signals received on different positions differ only
by a transmission delay, that is,

E r; tð Þ ¼ E 0; t‐τð Þ ð64Þ
H r; tð Þ ¼ H 0; t‐τð Þ ð65Þ

where r = rxex + ryey + rzez, and τ is the so-called trans-
mission delay,

τ ¼ u⋅r
c

ð66Þ

with c representing the propagation speed and u denot-
ing the signal propagation as defined in (24). Let

E tð Þ ¼ E 0; tð Þ ¼ Ex tð Þex þ Ey tð Þey þ Ez tð Þez ð67Þ
H tð Þ ¼ H 0; tð Þ ¼ Hx tð Þex þHy tð Þey þHz tð Þez ð68Þ

Then,

E r; tð Þ ¼ E t‐τð Þ ð69Þ
H r; tð Þ ¼ H t‐τð Þ ð70Þ

For plane waves, we know

∇ ¼ u
c
∂
∂t

ð71Þ

Substituting Eqs. (67, 68, 69, 70 and 71) into Maxwell
equations, we have

u
c
∧E

�
tð Þ þ μH

�
tð Þexyz ¼ 0 ð72Þ

u
c
⋅E

�
tð Þ ¼ ρ

ε
ð73Þ

u
c
⋅ H

�
tð Þexyz

� 

þ εE

�
tð Þ ¼ 0 ð74Þ

u
c
∧ H

�
tð Þexyz

� 

¼ 0 ð75Þ

where E tð Þ ¼ dE
dt and H tð Þ ¼ dH

dt .
From (75), we know u is in the plane H tð Þexyz . In

addition, combining the geometric implication of the
inner product with Eq. (74), we know E tð Þ is the orthog-
onal complement of u in the plane H tð Þexyz . That is to
say, E tð Þ and u are orthogonal in that plane. Thus, the
parameter ρ in (73) equals to zero. Then, Eqs. (72, 73)
are equivalent to Eqs. (74, 75). We rewrite (73),

u
c
⋅E

�
tð Þ ¼ 0 ð76Þ

Combining (72) and (76), we haveffiffiffi
μ

ε

r
H

�
tð Þexyz ¼ uE

�
tð Þ ð77Þ

where
ffiffi
μ
ε

q
denotes the intrinsic impedance of the

medium.
Integrating (77) with respect to time t,ffiffiffi

μ

ε

r
H

�
tð Þexyz ¼ uE

�
tð Þ þ q ð78Þ

where q is a constant and equals to zero in the far-field
assumption.
Up to this point, we have derived how exyz links the

electric field with the magnetic field.

8 Appendix 3
8.1 We show the orthogonality constraint implies
stronger relationships between the signal components
Consider two electric field multivectors Xe1, Xe2, with
their expressions given by

Xe1 ¼ Ex1ex þ Ey1ey þ Ez1ez ð79Þ
Xe2 ¼ Ex2ex þ Ey2ey þ Ez2ez ð80Þ

By imposing the orthogonality for the two
multivectors

Xe2; Xe1h ig ¼ XH
e1⋅Xe2 ¼ 0 ð81Þ

where 〈⋅〉g represents the inner product in geometric
algebra.
We can get the following relationships between the

signal components:
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EH
x1Ex2 þ EH

y1Ey2 þ EH
z1Ez2 ¼ 0 ð82Þ

Ex2E
H
y1 ¼ Ey2E

H
x1 ð83Þ

Ey2E
H
z1 ¼ Ez2E

H
y1 ð84Þ

Ex2E
H
z1 ¼ Ez2E

H
x1 ð85Þ

However, for long vector algorithm, the multivec-
tors are replaced by the vectors xe1, xe2, and
correspondingly,

xe1 ¼
"
Ex1
Ey1
Ez1

#
; xe2¼

"
Ex2
Ey2
Ez2

#
ð86Þ

Similarly, imposing the orthogonality for the two vectors

xe2; xe1h iv ¼ xHe1⋅xe2 ¼ 0 ð87Þ
where 〈⋅〉v denotes the inner product between two vectors.
We can get the same result as in (82). However,

Eqs. (83, 84 and 85) cannot be obtained. In other
words, using geometric algebra to model the output
imposes stronger constraints between the compo-
nents of the vector sensor array.

9 Appendix 4
9.1 The detailed calculation procedures of Eqs. (35, 36 and
37), are given as follows. Since the derivations of Eqs. (36,
37) are similar to that of Eq. (35), we will take Eq. (35) as an
example. And the other two equations can be obtained
similarly. The derivation of (35) is

exmn ¼ RmnexRmn‐1

¼ e

E3ex
ξ

2
exe

‐E3ex
ξ

2

¼ cos
ξ

2
þ E3ex sin

ξ

2

0@ 1Aex cos
ξ

2
‐E3ex sin

ξ

2

0@ 1A
¼ ex cos

ξ

2
þ E3 sin

ξ

2

0@ 1A cos
ξ

2
‐E3ex sin

ξ

2

0@ 1A
¼ excos2

ξ

2
‐exE3ex cos

ξ

2
sin

ξ

2
þ E3 sin

ξ

2
cos

ξ

2
‐E3E3exsin

2 ξ

2

¼ excos
2 ξ

2
‐exexeyezex cos

ξ

2
sin

ξ

2
þ exeyez sin

ξ

2
cos

ξ

2
‐exeyezexeyezexsin

2 ξ

2

¼ excos
2 ξ

2
‐eyezex cos

ξ

2
sin

ξ

2
þ exeyez sin

ξ

2
cos

ξ

2
‐exexeyezeyezexsin

2 ξ

2

¼ excos
2 ξ

2
‐exeyez sin

ξ

2
cos

ξ

2
þ exeyez sin

ξ

2
cos

ξ

2
‐eyezeyezexsin

2 ξ

2

¼ excos
2 ξ

2
þ exsin

2 ξ

2 ¼ ex

ð88Þ

10 Appendix 5
10.1 We will verify the rationality of Eq. (41)
Using property (b) and Eq. (39), we can obtain the CRM
ofRY, that is

ψ RYð Þ ¼ ψ Að Þψ Rsð Þψ Aþð Þ þ 6σ2IMN

¼ ψ Að Þψ Rsð Þψþ Að Þ þ 6σ2IMN
ð89Þ

where

Rs ¼ E SSþf g ð90Þ

SinceRsis full rank, it is easy to obtain

rank ψ Að Þψ Rsð Þψþ Að Þf g ¼ K ð91Þ

According to the principle of MUSIC, we have

ψþ Að ÞUψn ¼ 02K� 2M−Kð Þ ð92Þ

Where Uψn∈G32M� 2M−Kð Þ composed of the eigenvectors
corresponding to the 2 M–K smaller eigenvalues of
ψ(RY). Using the property (d), Eq. (92) is equivalent to
the following equation.

P2KP
þ
2Kψ

þ Að ÞUψn ¼ 02K� 2M−Kð Þ ð93Þ

By means of the property (e), Eq. (93) can be further
expressed as

ψþ Að ÞPþ
2MP2MUψn ¼ 02K� 2M−Kð Þ ð94Þ

Taking the multiplication on the left byP2K, we have

AþUYn ¼ 0K� 2M−Kð Þ ð95Þ

Where UYn ¼ P2MUψn∈G3M� 2M−Kð Þ is composed of the ei-
genvectors corresponding to the 2 M–K smaller eigen-
values of RY. Thus, Eq. (41) holds.
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