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Abstract

Background: Diseases like cancer can manifest themselves through changes in protein abundance, and microRNAs
(miRNAs) play a key role in the modulation of protein quantity. MicroRNAs are used throughout all kingdoms and
have been shown to be exploited by viruses to modulate their host environment. Since the experimental detection
of miRNAs is difficult, computational methods have been developed. Many such tools employ machine learning for
pre-miRNA detection, and many features for miRNA parameterization have been proposed. To train machine learning
models, negative data is of importance yet hard to come by; therefore, we recently started to employ pre-miRNAs from
one species as positive data versus another species’ pre-miRNAs as negative examples based on sequence motifs and
k-mers. Here, we introduce the additional usage of information-theoretic (IT) features.

Results: Pre-miRNAs from one species were used as positive and another species’ pre-miRNAs as negative training data
for machine learning. The categorization capability of IT and k-mer features was investigated. Both feature sets and their
combinations yielded a very high accuracy, which is as good as the previously suggested sequence motif and k-mer
based method. However, for obtaining a high performance, a sufficiently large phylogenetic distance between the
species and sufficiently high number of pre-miRNAs in the training set is required. To examine the contribution of the IT
and k-mer features, an information gain-based feature ranking was performed. Although the top 3 are IT features, 80%
of the top 100 features are k-mers. The comparison of all three individual approaches (motifs, IT, and k-mers) shows that
the distinction of species based on their pre-miRNAs k-mers are sufficient.

Conclusions: IT sequence feature extraction enables the distinction among species and is less computationally expensive
than motif calculations. However, since IT features need larger amounts of data to have enough statistics for producing
highly accurate results, future categorization into species can be effectively done using k-mers only. The biological
reasoning for this is the existence of a codon bias between species which can, at least, be observed in exonic miRNAs.
Future work in this direction will be the ab initio detection of pre-miRNA. In addition, prediction of pre-miRNA
from RNA-seq can be done.
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1 Introduction
Proteins define a phenotype, and their dysregulation
often leads to a disease. Protein abundance is highly
regulated, and microRNAs are responsible for its
post-transcriptional modulation. Mature microRNAs
(miRNAs), which act as recognition sequences for
their target messenger RNAs, are produced from a
molecular pathway which is different for plants and
animals [1]. They have in common that pri-miRNAs
are transcribed from the genome and that hairpins
(pre-miRNAs) are excised from these transcripts. Each
pre-miRNA can have multiple mature miRNAs (18–24
nucleotides in length) which are incorporated into a pro-
tein complex, responsible for modulating the translation
efficiency of multiple targets. MicroRNAs have been
shown to exist in a variety of species ranging from viruses
[2] to plants [3]. MicroRNAs need to be co-expressed with
their targets [4] in order to be functional, and many tran-
scripts in an organism are only produced in response to
internal or external stresses. Thus, it may not be possible
to experimentally determine all miRNAs, their targets,
and their interactions. Computational approaches to
detect miRNAs have been developed to overcome the
limitation, and most methods for pre-miRNA detection
are based on machine learning [5–7]. With the exception
of few approaches based on one class classification [8–10],
most methods rely on two class classification. While all
parts contributing to model establishment are important
[11], the selection of negative data is crucial since no gold
standard is available. Although other databases like
miRTarBase [12], TarBase [13], and MirGeneDB [14] are
available, positive data is generally derived from miRBase
[15]. While negative data is of unknown quality, also positive
data from miRBase contains questionable entries [14, 16]
and even MirGeneDB which filters miRBase entries is not
free from questionable examples [17].
Parameterization of pre-miRNAs is important for ap-

plying machine learning algorithms, and numerous fea-
tures have been proposed [18]. Short sequences (k-mers)
have been used early on for the machine learning-based
ab initio detection of pre-miRNAs [19]. Since miRNA
genesis depends on a pathway involving several protein
complexes, structural features of pre-miRNAs have been
found to be important [20]. Additionally, we have
recently established the use of sequence motifs as
features enabling the detection of pre-miRNAs [21, 22].
Many machine learning models for pre-miRNA detection
have been established using a variety of learning algo-
rithms and training schemes [23–26]. All the established
models suffer from the selection of arbitrary examples for
the negative class. Gao and colleagues [27], for example,
reasoned that exons and other non-coding RNAs would
be useful as negative data, but miRNAs can be derived
from anywhere in the genome, including exons [28].

Due to the unknown quality of the negative data, in
a previous work, we successfully used the one-class
classification approach for the detection of pre-miRNAs
[29, 30]. However, we realized that using positive examples
to represent the negative class from different species holds
a number of promises [31]. One of the promises is that it
enables the categorization of pre-miRNAs into species.
Hairpins can be structurally classified fairly well, and
many approaches are available despite data quality issues
[32–35]. Categorization of the identified pre-miRNAs into
their species of origin or a very closely related one adds a
further line of evidence to their identification. We
established random forest machine learning models using
two-class classification with the positive class being pre-
miRNAs from one species and the negative pre-miRNAs
from a different species. Therefore, both positive and
negative classes for training and testing were derived from
known pre-miRNAs, effectively removing the need for
pseudo negative data. We have previously proposed the
same strategy [31] using sequence motifs and k-mers. In
this study, we further introduced information-theoretic
approaches and important additional analyses. In our
previous work, we showed that discrimination among
miRNAs from different species is possible which is likely
due to alleged fast evolution for some miRNAs [36–38],
supporting the possibility to differentiate among evolu-
tionary distant species based on miRNAs. We then
focused on sequence motifs since structure is evolutionarily
more conserved than sequence. Due to the large impact of
k-mers on the categorization in our previous work, in an
attempt to add more discriminating power, here, we added
information theory (IT)-based features. Apart from our pre-
vious study [31], only Lopes and colleagues attempted to
use pre-miRNAs to discriminate between species [33].
However, they resorted to establishing ab initio pre-miRNA
detection models with the same bias on negative data as
existing pre-miRNA detection methods [26, 39–42]; using
the same training and testing strategies [32, 42–44]. Fur-
thermore, a large part of the features they used assesses
structural features of pre-miRNAs, which poses problems
when analyzing closely related species since structure is
more conserved than sequence. In this work, we analyzed
the discriminative power of sequence motifs, information-
theoretic quantities, and k-mers for the categorization of
pre-miRNAs into species. It became clear that k-mers alone
can separate between species that are not strongly related.
We also showed that the number of examples is important
for the establishment of suitable machine learning models.
If enough examples are not available for a species, a model
can be established for the next higher level (genus), which
may even outperform all species-based models. Since
sequence motifs and IT features are computationally expen-
sive compared to k-mers, it would be extremely difficult to
establish models for all pairs of species for automatic
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categorization. However, since we were able to show
that k-mers have enough discriminative power, auto-
matic species categorization will become possible in the
future. All in all, this work not only provides an import-
ant additional line of evidence for detecting pre-
miRNAs but is also useful for studies depending on
deep sequencing data which often contains contami-
nated sequences [45].

2 Methods
2.1 Datasets
All data were downloaded from miRBase [46] Release 21.
From the family Hominidae (3629 hairpins), Gorilla gorilla
(ggo, 352), Homo sapiens (has, 1881), Pan paniscus (ppa,
88), Pongo pygmaeus (ppy, 642), Pan troglodytes (ptr, 655),
and Symphalangus syndactylus (ssy, 11) were acquired.
From the clade Nematoda (1856 hairpins), 10 species
were downloaded: Ascaris suum (asu, 97), Brugia
malayi (bma, 115), Caenorhabditis brenneri (cbn, 214),
Caenorhabditis briggsae (cbr, 175), Caenorhabditis
elegans (cel, 250), Caenorhabditis remanei (crm, 157),
Haemonchus contortus (hco, 188), Pristionchus pacificus
(ppc, 354), Panagrellus redivivus (prd, 200), and Stron-
gyloides ratti (str, 106). From the clade which miRBase
still calls pisces (1623 hairpins), the following species’ data
hairpins were attained: Cyprinus carpio (ccr, 134), Danio
rerio (dre, 346), Fugu rubripes (fru, 131), Hippoglossus
hippoglossus (hhi, 40), Ictalurus punctatus (ipu, 281), Ory-
zias latipes (ola, 168), Paralichthys olivaceus (pol, 20),
Salmo salar (ssa, 371), and Tetraodon nigroviridis (tni,
132). Finally, from the group of hexapoda (3119 hairpins),
Aedes aegypti (aae, 101), Anopheles gambiae (aga, 66),
Apis mellifera (ame, 254), Acyrthosiphon pisum (api, 123),
Bombyx mori (bmo, 487), Culex quinquefasciatus (cpu,
74), Drosophila ananassae (dan, 76), Drosophila erecta
(der, 81), Drosophila grimshawi (dgr, 82), Drosophila mela-
nogaster (dme, 256), Drosophila mojavensis (dmo, 71),
Drosophila persimilis (dpe, 75), Drosophila pseudoobscura
(dps, 210), Drosophila sechellia (dse, 78), Drosophila simu-
lans (dsi, 135), Drosophila virilis (dvi, 134), Drosophila
willistoni (dwi, 77), Drosophila yakuba (dya, 76), Helico-
nius melpomene (hme, 92), Locusta migratoria (lmi, 7),
Manduca sexta (mse, 98), Nasonia giraulti (ngi, 32),
Nasonia longicornis (nlo, 28), Nasonia vitripennis (nvi,
53), Plutella xylostella (pxy, 133), and Tribolium casta-
neum (tca, 220). In addition to these data, several clades
from miRBase (e.g., the fabaceae dataset consisting of
Acacia auriculiformis, Arachis hypogaea, Acacia man-
gium, Glycine max, Glycine soja, Lotus japonicus,
Medicago truncatula, Phaseolus vulgaris, and Vigna
unguiculata with a total of about 1400 pre-miRNAs)
were used by combining all the hairpins of the spe-
cies within the clade.

All hairpins were filtered for sequence similarity as in
Yousef et al. [31] before training machine learning
models using the Usearch tool [47].

2.2 Parameterization of pre-miRNAs
In order to allow the application of machine learning,
biological features need to be translated into mathemat-
ical parameters. It is our hypothesis that structural and
thermodynamic features which have previously been
described [18] are evolutionarily more conserved than
sequence features. Therefore, only sequence-based
features were used for parameterization in this study.
Sequence motifs (200) as in [31] were used as well as 84
k-mers and their information-theoretic transformations
(91). In the following, the parameters used in this study
are detailed.

2.3 k-mer features
Many studies performing pre-miRNA detection based
on machine learning include simple sequence-based
features. These features are words, k-mers, or n-grams,
all of which describe a short sequence of nucleotides.
Here, we use k-mers to describe a short nucleotide
sequence of length k. For example, a 1-mer over the
alphabet {A, U, C, G} can produce the words A, U, C,
and G; a 2-mer can generate AA, AC, …, UU, and a 3-
mer leads to 64 short nucleotide sequences ranging from
AAA to UUU. Higher k have also been used [48], but
here, we chose 1-, 2-, and 3-mers as features. The k-mer
counts in a given sequence were normalized by the total
number of k-mers in the sequence (i.e., len(sequence)− k + 1)
[49]. Hence, for k-mers with k = {1, 2, 3}, 84 features were
calculated per example. The k-mer frequency ranges
between 0 (if the k-mer is not present in the sequence) and
1 (if the sequence is a repeat of a mononucleotide which is
not observed since such a sequence does not fold into
secondary structures).

2.4 Motif features
Motif features differ from k-mers since they are approxi-
mate sequence matches instead of an exact match.
Motifs are discovered by searches for short overrepre-
sented approximate sequences within a larger pool of
sequences. The MEME Suite (Multiple Expectation
Maximization for Motif Elicitation) [50] was used for
motif discovery in our previous study [31], and the
discovered motifs were used. For positive and negative
data, 100 motifs were discovered, and thus, 200 features
were created.

2.5 Information-theoretic features
Information-theoretic (IT) features have been widely
used in computational biology and bioinformatics to
measure, analyze, and model the structural and
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organizational properties of biological sequences. In
[51], we used theses IT features for the classification of
essential and non-essential genes. The IT features used
in this study are 4 entropy (E), 17 mutual information
(MI), 65 conditional mutual information (CMI), 1
Kullback-Leibler divergence (DKL), and 4 Markov
model (M) related. Next, we will present a brief
description of the information-theoretic quantities used
in this study. For a more detailed explanations, we refer
the reader to [52].

2.6 Mutual information
We used mutual information to measure the informa-
tion between consecutive bases X and Y. The mutual in-
formation measures the dependency between two
random variables and is mathematically defined as

I X;Yð Þ ¼
X
x∈Ω

X
y∈Ω

P x; yð Þ log2
P x; yð Þ
P xð ÞP yð Þ ; ð1Þ

where P(x) and P(y) are the marginal probabilities and
P(x, y) is the joint probability and Ω is the set of nucleo-
tides {A, C, G, U}. The probabilities are estimated from
the relative frequencies in the corresponding pre-
miRNA sequences. Along with the total mutual informa-
tion computed according to Eq. (1), for each base pair
(x, y), the quantity P(x, y)log2(P(x, y)/P(x)P(y)) is calcu-
lated and used as a feature. Thus, 17 mutual information
related features are defined in this manner.

2.7 Conditional mutual information
The mutual information between two random variables
X and Y conditioned on a third random variable Z hav-
ing a probability mass function (pmf) P(z) is given by

I X;Y jZð Þ ¼ P
z∈Ω

P zð ÞP
x∈Ω

P
y∈Ω

P x; yjzð Þ log2
P x; yjzð Þ

P xjzð ÞP yjzð Þ ;

¼
X
x∈Ω

X
y∈Ω

X
z∈Ω

P x; y; zð Þ log2
P zð ÞP x; y; zð Þ
P x; zð ÞP y; zð Þ ;

ð2Þ

where P(xyz), P(xz), and P(yz) are the joint pmfs of the
random variables shown in parentheses. The three posi-
tions in a triplet are regarded as the random variables
X, Z, and Y. The mutual information between the bases
at the first and the third position conditioned on the
base in the middle is calculated according to Eq. (1) and
used as a feature. In addition, for each possible triplet,
we computed the quantity p x; y; zð Þ log2 P zð ÞP x;y;zð Þ

P x;zð ÞP y;zð Þ. A total
of 65 conditional mutual information based features are,
therefore, considered.

2.8 Entropy
The Shannon [53] and Gibbs [54] entropies were used
to measure the average information content and the
thermodynamic stability of the miRNA sequences, re-
spectively. In [55] and [56], we used these entropy mea-
sures to quantify digital information content and
thermodynamic stability of bacterial genomes. The
Shannon entropy for a block size of N is defined as

HN ¼ −
X
i

PN
S xið Þ log2P Nð Þ

S xið Þ ð3Þ

PN
S xið Þ is the probability of the ithword of block size

N. Likewise, the Gibbs entropy is defined as

SG ¼ −kB
X
i

PN
G xið Þ ln P Nð Þ

G xið Þ ð4Þ

where PN
G xið Þ is the probability to be in the xith state

and kB is the Boltzmann constant (1.38 × 10 ^ − 23 J/K).
Gibbs’ entropy is similar to Shannon’s entropy except for
the Boltzmann constant (kB = 1.38 × 10 ^ − 23 J/K).
Nevertheless, unlike the Shannon case, where the prob-
ability is defined according to the frequency of occur-
rence, we associated the probability distribution with the
thermodynamic stability quantified by the nearest-
neighbor free energy parameters. The probability distri-
bution, P Nð Þ

G , was modeled by the Boltzmann distribution
[57], which provides a functional relationship between
energy and temperature

P Nð Þ
G xið Þ ¼ nxie

−E xið Þ
kBT

P
jnxj e

−E xjð Þ
kBT

: ð5Þ

T is the temperature in Kelvin, nxi the frequency, and
E(xi) the energy of the ith word of block size N. We used
SantaLucia’s unified free energy parameters for di-
nucleotide steps at 37°C [58]. For block sizes greater
than two, the energies were computed by adding the in-
volved di-nucleotides. Shannon and Gibbs entropies for
block size of 2 and 3 were calculated and used as
features.

2.9 Kullback-Leibler divergence
The Kullback-Leibler divergence or distance (DKL) [59]
is a quantitative measure of how similar a probability
distribution P(x) is to a model distribution Q(x):

DKL ¼ −
X
i

P xð Þ log2
P xð Þ
Q xð Þ : ð6Þ

The relative frequencies of the nucleotides in the given
miRNA sequence, P(x), were compared against a uni-
form distribution Q(x), i.e., the divergence from a uni-
form distribution is computed.
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2.10 Markov model
Assuming that the sequences in the positive and nega-
tive classes were generated by two separate Markov
sources, we construct a Markov chain and use the scores
of miRNA sequences as Markov features. The training
set is subdivided into a subset containing the positive
and negative samples. Thereafter, each subset is used to
generate a Markov chain of a preselected order m (MC

+(m) and MC−(m)). The transition probabilities of the
two Markov chains are empirically estimated using the
so-called Lidstone estimator [60]. Let Nx(v) denote the
number of times a word v of length m appears in a se-
quence x. The probability that the next nucleotide is a,
where a ∈Ω = {A,C,G,U}, conditioned on the context
v ∈Ωm is

pv;a ¼
Nx vað Þ þ δ

Nx vð Þ þ 4δ
: ð7Þ

The parameter δ assigns a pseudo count to unseen
symbols. In this work, we experimentally checked and
found that better results were obtained using smaller
values for δ and consequently set δ = 0.001. After the
Markov chains for the positive and negative classes were
constructed, they were used to score each miRNA
sequence. If we represent the sequence as b1b2b3…bL,
the score is calculated as

Score ¼
X
i¼1

L−m

p bibiþ1…biþmð Þ log2
p biþmjbibiþ1…biþm−1ð Þ

p biþmð Þ
� �

:

ð8Þ
The score gives an indication of how likely the miRNA

sequence is generated by the given mth order Markov
chain. The scores of the miRNA sequence on the Mar-
kov chains MC+(m) and MC−(m) were used as features.
In a previous work [51], we estimated the Markov orders
from the training set. However, due to the very short
length of the miRNA sequences, the results of order
estimation were too poor. Hence, to capture both short
and relatively longer dependencies, we decided to select
two Markov orders. A combination of orders 1 and
either 4 or 5 (i.e., m = 1, 4) were found to give better
results. Thus, we used four Markov features obtained
from scoring the miRNA sequences with the Markov
chains MC+(1), MC−(1), MC+(4), and MC−(4).

2.11 Feature vector and feature selection
For feature selection on a per experiment basis, we have
considered the information gain measurement [61] im-
plemented in KNIME (version 3.1.2) [62]. We defined
four feature sets, one consists of sequence motifs com-
bined with k-mers (284 features) of which 100 features
with highest information gain were used during model
training, the second is a combination of IT features with

k-mers (175 features), the third comprises of IT features
(91 features), and the last considered only k-mers (84
features). Previously [18], it was shown that 50 features
might be enough to establish successful models, but we
chose to be more conservative here and used 100
features.

2.12 Classification approach
Following the study of [31], we used the random forest
(RF) classifiers implemented by the platform KNIME
[62]. Classifiers were trained and tested with a split into
80% training and 20% testing data. Negative and positive
examples were forced to equal amounts while perform-
ing a 100-fold Monte Carlo cross-validation (MCCV)
[63] for model establishment.

2.13 Performance evaluation
For each established model, we calculated a number of
statistical measures like the Matthews’s correlation coef-
ficient (MCC) [64], sensitivity, specificity, and accuracy
for evaluation of model performance. The following
formulations were used to calculate the statistics (with
TP true positive, FP false positive, TN true negative, and
FN referring to false negative classifications):

Sensitivity SE;Recallð Þ ¼ TP= TPþ FNð Þ
Specificity SPð Þ ¼ TN= TNþ FPð Þ
Precision ¼ TP= TP þ FPð Þ
F‐Measure ¼ 2� precision� recallð Þ= precision þ recallð Þ
Accuracy ACCð Þ ¼ TPþ TNð Þ= TPþ TNþ FPþ FNð Þ;ACC
MCC ¼ TP=TN‐FP=FNð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TPþ FPð Þ TPþ FNð Þ TNþ FNð Þ TNþ FPð Þp

All reported performance measures refer to the aver-
age of 100-fold MCCVs.

3 Results and discussion
We have previously shown that sequence motifs and k-
mers together (k-mers + motifs) can be used to
categorize pre-miRNAs into their species of origin using
a machine learning approach [31, 49]. Here, we wanted
to test whether IT features and k-mers alone (or their
combination k-mers + IT) would be able to achieve bet-
ter or equal performance. Therefore, we trained a num-
ber of classifiers using a 100-fold MCCV with the data
split into 80% training and 20% testing ensuring equal
shares of positive and negative examples. Random forest
is a successful machine learning methodology and was
used for setting up all models. In Table 1, we present the
performance of machine learning models trained with
Hominidae pre-miRNAs as the positive class versus pre-
miRNAs from a variety of other groups as negative
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classes. Similarly to [31], classification between Homini-
dae and Hexapoda was very accurate (~ 0.93 average
accuracy) while classification into Hominidae and
Cercopithecidae was impossible (~ 0.50 average accur-
acy) which is likely due to the very close evolutionary
relationship. Moreover, compared to k-mers + motifs
(0.793 on average), the average accuracy of IT (0.786) is
almost as equal whereas k-mers + IT (0.803) perform
slightly better. The difference between highest and
lowest accuracies among feature sets is quite similar.
K-mers + motifs (0.423), IT (0.426), k-mers (0.427),
and k-mers + IT (0.500). The latter range is the
largest which we interpret as being best suited for
discriminating between species. The distribution of
accuracies for categorization into different clades is
similar and with increasing phylogenetic distance the
average model accuracy also increased for all feature
sets, in general (Table 1). Due to the smaller evolu-
tionary distance, a classification between Homo
sapiens and Hominiae (without Homo sapiens) yielded
a relatively low accuracy.
Interestingly, k-mers only and IT features achieved a

similar performance on average and the results were
close to that of IT + k-mers as well as sequence
motifs + k-mers. This is very promising observation
which could mean that one can rely only on IT and/or
k-mer features thereby dropping the computationally

expensive generation of sequence motifs and in turn sim-
plifying the process of miRNA categorization. K-mers can
be calculated in O(n), but motif discovery is NP complete
[65] and it is likely that IT features are probably at most
O(n2). A classification of Hominidae as the positive class
and the combination of all the other data as the negative
class using k-mers lead to an accuracy of 0.751 which is
close to the average accuracy (0.793; Table 1).
To assess the contribution of IT and k-mer features,

we performed a feature selection experiment on the
combined k-mer + IT feature set selecting the top
ranked features using information gain (Fig. 1). Among
the top 100 features, IT features constitute between 22
and 45%, depending on the groups used to establish the
categorization model. However, the contribution of IT
features to selected features is high for a smaller number
of features (Fig. 1), i.e., they are ranked higher. On aver-
age, 76% of the top 2 features are IT. Regardless of the
groups used to establish a model for categorization,
feature selection considers similar amounts of IT
features among the top features (Fig. 1). However, only a
small amount of IT features are initially selected (most
notably Markov features; Additional file 1: Table S1)
while other IT features are included later during feature
selection (e.g., MI_CG and Shannon; Additional file 1:
Table S1). Additionally, we realized that since miRNAs
can stem from any part of a genome, with a significant

Table 1 Average performance of models trained to classify into Hominidae or one of the listed clades

The table shows a comparison between IT and k-mers + sequence motif features. For the k-mers + motif, the best 100 features were selected based on IG
(information gain). For the IT, the whole set of features was used. The training/testing was performed with 80%/20% training-testing split, and the average results
of 100-fold MCCVs are presented. The table is sorted according to average model accuracy. Note that for the test Hominidae versus H. sapiens, the H. sapiens
examples were removed from Hominidae. Highest performance per statistics is highlighted in gray
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amount harbored in exons [28], that codon bias [66]
would be able to explain how k-mer features attain their
distinction power between species (k-mers were co-
dominating the top 10).
Table 1 considers categorization into Hominidae and

other groups but apart from Homo sapiens, individual
species were not considered. The aim, however, is to
categorize pre-miRNAs into their species of origin.
Therefore, Homo sapiens and Gorilla gorilla were used
as positive data to create models with negative data
coming from species from the Pisces class or Nematoda
genus (Tables 2 and 3). G. gorilla and H. sapiens, both in
the Hominidae group, have a sufficient amount of pre-
miRNA examples to establish a model and are very

closely related so that they should show similar average
model accuracies when trained against the same set of
species. Model establishment, training, and testing were
performed as before and the same four feature sets were
considered (Tables 2 and 3).
Similar average accuracy over all species was obtained

with all four feature sets. However, with the exception of
k-mers + motifs for ggo, the results were less than the
accuracy measured for the Nematoda versus Hominidae
experiment (Table 1). To mention one example, the
achieved accuracy using k-mers + motifs is 0.906 for
Hominidae versus Nematoda whereas the average accur-
acies for categorizing Homo sapiens (hsa) and Gorilla
(ggo) using models trained on the Nematoda species are

Fig. 1 Percentage of IT features within the top selected features (IT and k-mers, no motifs). Ranked using information gain

Table 2 Average accuracy (ACC) for 100-fold MCCV model training using Homo sapiens (hsa) or Gorilla gorilla (ggo) as the target
class and species nematoda as the other class (sorted by accuracy of k-mers and motifs for hsa). Species are abbreviated according
to miRBase and the expansions are available in our Section 2
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0.891 and 0.912, respectively. The generated models
mostly agree on the order of species based on the sorted
accuracies, which can be seen from the highlighted high-
est performance per feature set (Table 2). As expected,
the performance of the hsa and ggo trained models are
comparable. In summary, the distinction into Hominidae
and Nematoda can be performed with a very high
accuracy and the categorization into specific species
is also satisfactory. Nematoda are evolutionary distant
to Hominidae and may, therefore, perform particularly
well. Fish are evolutionary closer and were tested in
the same manner (Table 3).
As observed for Nematoda, the average accuracy of

discriminating the individual species from the Pisces
clade against hsa and ggo (Table 3) is lower than that of
classifying between Pisces and Hominidae (Table 1). For
example, k-mers and motifs averaged over species
achieve an accuracy of 0.811 while the model Hominidae
versus Pisces achieved 0.877, hence, about 0.06 points
more accurate. The Pisces species yielded a similar result
in both hsa and ggo models (see highest performing
model per feature set highlighted in gray; Table 3). This
confirms the hypothesis that species from one group
should lead to similar models when trained against spe-
cies from a different group. A notable outlier is the k-
mer feature set for hsa which lead to a different sorting
of species compared to all other models (Table 3).
Comparing Table 1 with Tables 2 and 3 leads to the

observation that categorizing based on the combined
species, e.g., for Nematoda (0.906 average accuracy) is

more successful than using individual species (average
for Nematoda species 0.891). The same holds true for all
feature sets and Pisces as well. Some of the species con-
tained only few hairpins, so we wanted to investigate the
impact of the amount of available hairpins on the
categorization performance. Figure 2 shows that species/
clades with more example hairpins tend to perform
better. Drosophila (1351 hairpins) and Hexapoda (2014
hairpins) have a large number of hairpins compared to
some individual species (lmi 7, dme 256) and conse-
quently produce models which perform well. This
analysis further shows that about 100 hairpin examples
are needed to establish a successful model and that
performance increases when models are created based
on the genus rather than individual species (e.g., aver-
aged drosophila species 0.85, genus drosophila, 0.94).
This confirms the findings supported by Tables 1, 2, and
3. The Hexapoda model, however, is performing worse
than the Drosophila and Nasonia models, which we
attribute to an increasing share of non-miRNAs among
the hairpin examples. It has been shown before that
entries in miRBase are questionable and the chance of
incorporating a large share of low-quality hairpins
increases with the number of hairpins available when
using MCCV. Additional files 1 and 2 contain all the re-
sults of this study.

4 Conclusions
Machine learning is important for pre-miRNA detection,
but negative data is of an unknown quality [5], which

Table 3 Average accuracy (ACC) for 100-fold MCCV model training using Homo sapiens (hsa) or Gorilla gorilla (ggo) as target class
and species from pisces as other class (sorted by k-mers and motif result for hsa). Species are abbreviated according to miRBase, and
the expansions are available in our Section 2
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highlights the need for models that do not depend on
negative data. The usage of an arbitrary negative data
can be avoided by utilizing the one-class classification
approach, or as pointed out in [29, 22], by using
known pre-miRNAs of other species. Detection of
pre-miRNAs in next generation sequencing data or
directly from a genome is the main aim of the field,
and many approaches have been developed. For this,
hundreds of features have been described and the
success rate for pre-miRNA detection is high. With
this study, we confirmed that it is possible to distin-
guish between miRNAs from different species using
sequence motifs, IT features, and k-mers. Precious
studies have also classified miRNAs, for example, into
families [67], but it has been shown that miRNAs can
evolve rapidly [36, 37, 66], which is detrimental for
their categorization into families. However, categorization
based on miRNA sequence features (motifs, k-mers, and
IT) may be possible due to the rapid evolution. Especially,
miRNAs originating from exons can be good discrimina-
tors when using 3-mer features as they describe codon bias
very well (6 3-mer features in top 10; Additional file 1:
Table S1). Additionally, we found that k-mers are perform-
ing almost on a par with the combination of k-mer and
other features (Tables 1, 2, and 3). Due to the low com-
plexity of calculating k-mers and their discriminative
power, we suggest that future attempts at categorizing
miRNAs into their species can be based on k-mer features
only. By using both species data directly (Tables 2 and 3)
and groups (Table 1), it became clear that models trained
are showing consistent performance and are clearly biased
by evolutionary distance. The trained models can reliably
distinguish between distantly related species. However, the
accuracy of the classifiers reduces when the species are
closely related (Table 1). To solve this problem, in the
future, models will be created for each pair of species and
groups in miRBase. Then, for a new example, a distance
vector can be determined using the confidence levels of all
established models. This confidence vector can be used
to categorize any new example to their species of

origin or very close to it (e.g., genus). Such a system
offers an independent line of evidence for pre-miRNA
detection. In addition, this supports pre-miRNA
detection from genomes and even more so from
next generation sequencing data which is often
contaminated [45].

5 Additional files

Additional file 1: Table S1. Contains 38 feature selection experiments.
(XLSX 141 kb)

Additional file 2: Table S2. Contains all the results in this study.
(XLSX 72 kb)
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