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Abstract

Cardiovascular diseases are associated with high morbidity and mortality. However, it is still a challenge to diagnose
them accurately and efficiently. Electrocardiogram (ECG), a bioelectrical signal of the heart, provides crucial
information about the dynamical functions of the heart, playing an important role in cardiac diagnosis. As the QRS
complexin ECG is associated with ventricular depolarization, therefore, accurate QRS detection is vital for interpreting
ECG features. In this paper, we proposed a real-time, accurate, and effective algorithm for QRS detection. In the
algorithm, a proposed preprocessor with a band-pass filter was first applied to remove baseline wander and
power-line interference from the signal. After denoising, a method combining K-Nearest Neighbor (KNN) and Particle
Swarm Optimization (PSO) was used for accurate QRS detection in ECGs with different morphologies. The proposed
algorithm was tested and validated using 48 ECG records from MIT-BIH arrhythmia database (MITDB), achieved a high
averaged detection accuracy, sensitivity and positive predictivity of 99.43, 99.69, and 99.72%, respectively, indicating a

notable improvement to extant algorithms as reported in literatures.
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1 Introduction

The electrocardiogram (ECG) is one of the major phys-
iological signals generated by the heart. It is the graph-
ical representation of the electrical activity in the heart,
providing valuable information for diagnosing cardiac
diseases [1, 2]. In the normal condition, the pattern of
cardiac electrical propagation is not random, but spreads
over the heart in a coordinated manner, resulting in an
ordered and measurable change in the spatio-temporal
distribution of the body surface potentials, which is
reflected by recorded ECGs. A typical ECG tracing is char-
acterized by a recurrent sequence of waves including P,
QRS and T waves, corresponding to the depolarization
of the atria, ventricles and repolarization of the ventricles
respectively. P wave represents the electrical signal mark-
ing the initiation of the heartbeat, atrial depolarization
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that spreads from the sinoatrial node (SAN) towards the
atria and the atrioventricular node (AVN) with 0.08-0.11s
duration. The QRS complex reflects the combination of
three graphical deflections seen on a typical electrocar-
diogram that marks the depolarization of the ventricles.
It is usually the central and most visually obvious part of
the ECG trace because of the larger size of ventricles. It
corresponds to the depolarization of the right and left ven-
tricles of the human heart with 0.06—0.10 s duration. The
Q, R, and S waves occur in rapid succession, do not all
appear in all leads, and reflect a single event, and thus are
usually considered together. T wave represents the repo-
larization (or recovery) of the ventricles with a duration of
0.05-0.25 s. Figure 1 shows a typical ECG signal segment
from MIT-BIH arrhythmia database (ECG 100 recording).

The QRS complex is known as the reference waveform
for analysis of ECG signals, accurate and reliable detec-
tion of which affects the performance of an automatic
ECG analyzing algorithm based on heart rate variability
(variation in RR intervals) for diagnosing cardiac diseases
[3,4]. In order to detect the QRS complex more accurately,
it is vital to identify the exact R-peak locations from the
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Fig. 1 A typical cardiac cycle (heartbeat) from MIT-BIH arrhythmia database (ECG 100 recording)

recorded ECG data. Furthermore, accurate delineation of
other ECG waves also depends on this. When the location
of QRS complex is detected, then other ECG signal com-
ponents such as P and T waves may be determined by their
relative position to QRS complex [5, 6]. However, in prac-
tice, ECG records are often corrupted by various types
of artefacts and noises [7, 8]. Hence, the de-noising and
enhancement of ECG signals are perquisites for accurate
ECG analysis.

In general, most of the QRS detection algorithm in
the past few years consist of two components: the signal
processing and decision stages [9]. So far, variant meth-
ods for ECG de-noising and R-wave detection have been
proposed, including approaches of derivatives [10, 11],
digital filters [12—15], wavelet transform(WT) [1, 16-26],
artificial neural network (ANN) [27, 28], support
vector machine (SVM) [29], k-means [30], empirical
mode decomposition (EMD) [31], geometrical matching
[32-34], combined threshold method [35, 36], phase space
method [37], Hilbert Transform method [38], and mixed
approach [39, 40]. Almost all of the methods listed above
have some limitations. For most of the existing derivative
and digital filter algorithms, QRS complex was deter-
mined with an assumption on that ECG signals were free
of noise and other waves were eliminated, which were
ideal for automatic ECG analysis [11]. In general, in the
preprocessing stage, most of the above methods imple-
ment different signal processing techniques to strengthen
the QRS complex and weaken noises. But the methods
applied have some shortcomings resulting from the deci-
sion between missing or false detections which depends
on the choice of filter bandwidth and moving-window size

[12]. The WT method has a problem in the selection of
mother wavelet and scales to obtain QRS events, which
different scales may determine how much QRS complex
energies will be reserved [16]. In wavelet analysis, vari-
ant mother wavelets can be used. Generally, a mother
wavelet is a function with characteristics of orthogonality,
compact support, and symmetry. As more than one
mother wavelet with the same properties often exist for
the same signal, different analysis results may be obtained
by using different mother wavelets. To overcome this, the
similarity between signal and mother wavelet are consid-
ered in selecting a mother wavelet. For the choice problem
of the basis function, EMD-based approach can be bet-
ter than WT, but the selection of intrinsic mode functions
(IMFs) is sensitive to noise, which requires the design of
more effective filtering and selection of threshold [31].
The use of ANN and SVM require the training of spe-
cific model and adjustment of parameters, which needs
massive complicated calculations. Hence, it is difficult to
effectively address the balance between QRS enhance-
ment and noise reduction in practice [27-29].

In previous studies, the squaring transformation has
been widely used, but it considerably diminishes the mag-
nitude of the candidate R-peaks of various QRS complexes
[11]. The Hamilton—Tompkins algorithm proposed by
Tompkins in 1986 is one of the most typical QRS detec-
tion algorithms and is widely used because of its high
accuracy and capability in real-time detection [13]. Later,
this algorithm has been improved by adding an automatic
adjustment of the primary threshold in order to avoid sub-
jective selection of threshold coefficients, which is called
as Tompkins Modified Method II [11]. The performance
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Fig. 2 The block diagram of the proposed R-peak detection algorithm
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of the modified method has shown better detection per-
formance, but it is not sensitive to the change of the
integral information of QRS, leading to mistakes in the
cases of low-amplitude QRS, sudden change of amplitude
and high P and T waves. Other methods based on cluster
such as K-means have a similar problem and cost enor-
mous computation time because of the need of calculation
over the whole sample set, which makes it unrealistic for
the real-time detection [30].

In this paper, based on detailed analysis of beat features
in ECG, we proposed a simple and novel method with high
average accuracy to detect QRS in ECGs with atypically
shaped QRS complexes and noises. The method is based
on a simple peak-finding logic using the K-Nearest Neigh-
bor (KNN) and Particle Swarm Optimization (PSO). The
rest of this paper is organized as follows. In Section 2,
the method of four-stage R-peak detection is described in
details. In Section 3, the proposed method is evaluated
using the MIT-BIH arrhythmia database. Finally, Section 4
concludes our study.

2 Method

The flowchart diagram of the proposed R-peak detection
method is shown in Fig. 2. It contains four stages which
are digital filtering, enhancement of QRS complex, KNN
peak-finding, and PSO parameter selection. In general, in
the first stage of the proposed algorithm a bandpass fil-
ter was used to remove the noise in ECG signals. In the
second stage, a five-point first-order differentiation, abso-
lute and the backward cumulation operation were used to
emphasize the QRS complex. This stage plays the most
critical role in the proposed algorithm. In the third stage,
the proposed peak-finding technique based on the KNN
was implemented to identify accurate locations of the
local maxima. Finally, PSO was applied to deal with the
parameter selection, which maximizes the accuracy rate

of R-peaks. Detailed description of each stage in Fig. 2 are
presented in the following subsections.

2.1 MIT-BIH arrhythmia database

The annotated ECG records from the MIT-BIH arrhyth-
mia database consists of 48 records, which are used for
QRS detection in this study [41]. Including a modified
limb lead II and one of the modified chest leads V1, V2,
V3, V4, V5, or V6, each record has a 30-min duration and
is sampled at 360 Hz (Fs = 360 Hz). The ECG records
present a variety of waveforms such as artifacts, complex
ventricular, junctional and supraventricular arrhythmias
and conduction abnormalities. Each ECQG trace is accom-
panied by an annotation file in which the category of
each ECG beat has been identified by expert cardiolo-
gists. These labels, referred to as “truth” annotation in
this paper, are used to evaluate the performance of our
method.

Table 1 The iteration result of PSO for the training data

[terations Optimization results (gbest) Fitness (gbest)
1 gbest =(0.97,0.77,7.98, 2.56, 12.03) 19265
10 gbest = (0.65,0.58,4.82,3.69, 10.22) 25103
20 gbest = (0.69, 0.60, 1.67, 8.82, 10.83) 26156
30 gbest =(0.70, 0.60, 1.67, 8.84, 12.28) 30156
40 gbest =(0.89, 0.40, 1.67,8.82,8.10) 41269
50 gbest = (0.85,0.49, 0.95, 1.55, 8.80) 44312
60 gbest =(0.30,0.59,5.41,5.89, 11.47) 44438
70 gbest=(0.71,0.64, 1.37,4.67, 11.06) 44569
80 gbest = (0.55,0.61, 1.16,2.77,9.14) 45625
90 gbest = (0.55,0.61, 1.16,2.77,9.14) 45625
100 gbest =(0.55,0.61,1.16,2.77,9.14) 45625
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Table 2 Performance evaluation of the proposed R-wave detection method with the MIT-BIH arrhythmia database

Record TP(beats) FP(beats) FN(beats) Se(%) +P% DER(%) Accuracy(%)
100 2272 0 0 100.00 100.00 0.000 100.00
101 1864 4 1 99.95 99.79 0.268 99.63
102 2187 0 0 100.00 100.00 0.000 100.00
104 2227 50 2 99.91 97.80 2335 97.72
105 2568 67 4 99.84 97.46 2.765 97.31
106 2027 0 0 100.00 100.00 0.000 100.00
107 2134 0 3 99.86 100.00 0.141 99.86
109 2530 1 2 99.92 99.96 0.119 99.88
111 2123 1 1 99.95 99.95 0.094 99.91
112 2539 0 0 100.00 100.00 0.000 100.00
113 1794 0 0 100.00 100.00 0.000 100.00
114 1866 2 13 99.31 99.89 0.804 99.20
115 1952 0 1 99.95 100.00 0.051 99.95
116 2386 2 26 98.92 99.92 1174 98.84
117 1534 0 1 99.93 100.00 0.065 99.93
118 2278 2 0 100.00 99.91 0.088 99.91
119 1987 0 0 100.00 100.00 0.000 100.00
121 1861 0 2 99.89 100.00 0.107 99.89
122 2476 0 0 100.00 100.00 0.000 100.00
123 1515 0 3 99.80 100.00 0.198 99.80
124 1617 0 2 99.88 100.00 0.124 99.88
200 2599 6 2 99.92 99.77 0.300 99.69
201 1917 0 46 97.66 100.00 2400 97.66
202 2130 0 6 99.72 100.00 0.282 99.72
203 2942 33 38 98.72 98.89 2413 97.64
205 2654 0 2 99.92 100.00 0.075 99.92
207 2279 35 53 97.73 98.49 3.861 96.28
208 2929 1 26 99.12 99.63 1.263 98.75
209 3005 1 0 100.00 99.97 0.033 99.97
210 2598 7 52 98.04 99.73 2.271 97.78
212 2747 0 1 99.96 100.00 0.036 99.96
213 3250 0 0 100.00 100.00 0.000 100.00
214 2258 1 4 99.82 99.96 0.221 99.78
215 3361 0 2 99.94 100.00 0.060 99.94
217 2202 2 6 99.73 99.91 0.363 99.64
219 2151 0 3 99.86 100.00 0.139 99.86
220 2047 0 1 99.95 100.00 0.049 99.95
221 2420 0 7 99.71 100.00 0.289 99.71
222 2480 4 3 99.88 99.84 0.282 99.72
223 2588 16 1 99.96 99.39 0.657 99.35
228 2045 45 8 99.61 97.85 2.592 97.47
230 2256 0 0 100.00 100.00 0.000 100.00
231 1571 0 0 100.00 100.00 0.000 100.00
232 1779 15 1 99.94 99.16 0.899 99.11
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Table 2 Performance evaluation of the proposed R-wave detection method with the MIT-BIH arrhythmia database (Continued)

Record TP(beats) FP(beats) FN(beats) Se (%) +P% DER(%) Accuracy(%)
233 3073 0 6 99.81 100.00 0.195 99.80
234 2752 0 1 99.96 100.00 0.036 99.96
Overall 107,851 305 333 99.69 99.72 0.579 9943

2.2 Suppression of noise and enhancement of QRS
complex

In the realistic environments, ECG signals may be cor-
rupted by various kinds of noises, including power line
interference, electrode contact noise, motion artifacts,
muscle contraction, and baseline drift. On the other hand,
large P and T waves may also disturb the QRS detection.
In order to reduce noise, the filtering stage is constructed
using bandpass filter (10-45 Hz) which accentuates the
QRS complex and reduces noise since the frequency
domain of available ECG signal is about 10-25 Hz
[42]. Then, the filtered signal, f[n] (n denotes sampling
points), is differentiated using five-point first-order dif-
ferentiation to provide information about the slope of
the QRS complexes and reduce the influence of the P
and T waves [43]. The equation for five-point first-order
derivative of the filtered ECG is listed as follows:

dnl =% Qf M +fln—1]1—f[n—3]—2f [n—4])
(n>5)

(1)

where d[n] represents the differentiation signal. The five
point first order differentiation is applied to enhance the
QRS complex which provides the QRS complex slope
information because of the higher amplitude of QRS com-
plex in ECG signals.

The output of the differentiator is a bipolar signal and
thus a rectification is applied for the detection of negative
R-peaks by simply using absolute value as shown in Eq. (2).

Abs(d [n]) = |d [n]| (2)

The process of the absolute value can make all the
R-peaks positive which deals with the detection of the
inverted (negative) R-peaks. In order to further highlight
the QRS region, the backward cumulation of Abs(d [n])
is calculated within a window width (Ww) containing 60
sampling points as shown in Eq. (3).

n+Ww—1

Be(my= Y Abs(dli]) (3)

The use of the backward cumulation obtain waveform
feature information in addition to the slope of the R-peaks.
The backward cumulation window width we selected to
use is about 160 ms (because the ECG signal sampling
rate is 360 Hz), which is approximately the same width
as the widest possible QRS complex to ensure only one
QRS complex in each window. For the last 60 sampling
points of a ECG signal series, as all of the QRS complex are
covered in every window, so we need not to enhance the
signal with the backward cumulation algorithm. Results
after all the processes are shown in Figs. 4, 5, 6, 7, 8, 9,
and 10.

Table 3 Numbers of false-positives (FPs) comparison for specific records

Records Total beats  Ref. [10] DOM  Ref.[13] Ref.[14] Ref.[19] Ref.[24] Ref.[31] Ref.[33] Ref.[35] Ref.[42]  Our method
(each) method Algorithm 2

103 2084 0 0 0 0 0 0 0 58 0 0
106 2027 0 1 2 0 7 5 21 1 1 0
113 1794 9 2 0 1 0 6 10 0 0 0
121 1863 0 1 6 1 21 15 13 0 0 0
200 2601 5 3 47 1 137 47 4 41 12 6
209 3005 1 2 1 0 29 0 2 1 2 1
219 2154 0 1 0 0 2 0 0 0 0 0
221 2427 0 1 0 0 9 4 4 0 0 0
222 2483 0 40 3 27 43 5 1 0 0 4
233 3079 0 0 0 1 24 1 7 0 0 0
Overall 23517 15 51 59 31 272 83 62 101 15 1M
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Table 4 Numbers of false-negatives (FNs) comparison for specific records

Records Total beats  Ref. [10]DOM  Ref.[13]  Ref.[14] Ref.[19] Ref.[24] Ref.[31] Ref.[33] Ref.[35] Ref.[42]  Our method
(each) method Algorithm 2

103 2084 0 1 0 0 3 0 0 0 0 3

106 2027 6 2 17 2 66 0 20 0 15 0

113 1794 0 1 1 682 2 0 1 0 1 0

121 1863 2 0 1 0 1 0 0 0 2 2

200 2601 0 2 0 2 23 3 9 6 12 2

209 3005 0 2 0 1 52 0 9 0 1 0

219 2154 0 1 0 0 8 1 3 1 4 3

221 2427 1 1 4 4 35 2 8 1 5 7

222 2483 5 37 0 12 65 0 0 0 1 3

233 3079 9 3 7 0 21 7 8 2 4 6

Overall 23517 23 50 30 705 276 13 68 10 45 26

2.3 K-Nearest Neighbor-Based Peak-Finding The core idea of KNN algorithm is to find k sam-

K-Nearest Neighbors algorithm (KNN) is a non- ples most similar to the unknown sample among the

parametric method used for classification and regression.
It is a type of instance-based learning or lazy learning,
where the function is only approximated locally and all
computation is deferred until classification [44]. The
algorithm output is a class membership. An object is
classified by a majority vote of its neighbors, with the
object being assigned to the class most common among
its k nearest neighbors (k is a positive integer, typically
small). If k = 1, then the object is simply assigned to the
class of that single nearest neighbor.

After the noise suppression and enhancement of QRS
complex, positive peaks regardless of polarity of QRS
complexes can be obtained. The main goal of the next
step is to identify R-peaks by implementing the KNN-
based peak-finding algorithm, which relies on the use of
single-sided threshold [45]. However, it is a challenge to
determine such a threshold. After careful evaluation of
a large amount of the ECG signals, two classes of QRS
characteristics were identified as shown in Fig. 3, which
may form a basis for determining the threshold. As it was
shown in Fig. 3, in Fig. 3a, the general features of QRS
complex is temporally consistent, presenting as a contin-
uous period of QRS with large or small R-amplitude. It
means the closer the ECG signal is to the current detec-
tion position, the higher similarity to the next unknown
R-peak (calculated by the Eq. (4)). However, in Fig. 3b, the
features of the individual QRS complex alternates, with
every one or two low-amplitude QRS complex followed by
two high-amplitude QRS complex. It means the minimum
amplitude R-peak in the detected R-peaks before, which
will have the greatest influence on the next unknown
adaptive threshold (calculated by the Eq. (5)).

existed samples, which is used for classifying the unknown
sample. In this study, the detected K R-peaks were used as
samples, which are used to determine an adaptive thresh-
old for detecting the next R-peak. Thus, there are two
factors that affect KNN algorithm: (1) how to measure
the similarity among samples, which affects the precision
of computation; (2) how to find the most similar sam-
ples fast, which affects the efficiency of execution. In our
study, applying KNN algorithm to the detection of QRS
complex, we should predict the threshold of next QRS
complex through detected QRS complex. However, the
features cannot be extracted from the unknown threshold,
so we convert another thought to conduct the computa-
tion of similarity and the selection of nearest neighbor
according to the two characteristics of QRS complex men-
tioned above. We regard n detected QRS complex as the
reference set of nearest neighbor, calculate the difference
of every QRS peak value and the minimum value and
the last QRS peak time and every peak time, which is
accompanied by the proportionality coefficient and Euler

Table 5 Comparison of R-peak detection with other algorithms

Algorithm Year Se (%) +P% DER(%) Beats
Ref. [16] 1997 99.42 99.35 122 14,481
Ref. [36] 2006 99.55 99.49 0.96 102,654
Ref. [32] 2007 97.94 99.13 2.92 60,431
Ref. [11] 2008 99.57 99.59 0.84 109,903
Ref. [25] 2012 99.60 99.50 061 19,098
Ref. [42] 2015 9943 99.67 0.88 109,494
Our method 2017 99.69 99.72 0.58 108,184




He et al. EURASIP Journal on Advances in Signal Processing (2017) 2017:82

Page 7 of 14

5500

5500

5500

a
_ 2
2
o _
> 0
s E
i)
o) 2] 1 1 1 1 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
b 2
> —~
£3 o
gE
2
2] 1 1 1 1 1 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
c 05
]
T =
&
E
[=) 05 1 1 1 1 1 1 1 1 1 ]
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
d o O8F
3
©
>
2
2
©
2
2 ) ) : i
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
c
e S 10
o
3
5s
O€E 5
SE
5
% 0 1 1 ]
g 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
fe T
(]
&~
> 0
3E
3
§o)
8 2 1 1 1 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Sampling points (n)
Fig. 4 Result after performing each stage of the proposed method for the ECG with high frequency noise and artifact (ECG recording 200).
a) Original signal. b) Filtering. ¢) Differentiation. d) Absolute value. @) Backward cumulation. f) Detected peaks

5500

distance as the final similarity vector. Finally, we select
K elements according to the similarity obtained above to
calculate the next detection threshold of QRS complex.
Thus, we proposed KNN algorithm based on time dis-
tance and amplitude to dynamically generate threshold
base value (Thresbasis) by the two characteristics of QRS
complex mentioned above. There are several formulas as
the followings:

Rpeakindex (end) — Rpeaklndex (i)

5 (4)

Vectorsjme (i) =

Vector ypiitude (i) = Rpeak (i) — min (Rpeak) (5)

Eular distance(i) = \/ (o1 - Vectorsime (i) + (az - Vector amplitude (i))2

(6)
Eular distance()”.
Welght (l) = - e_ 02 (7)
koo ‘
— ht (i) - Rpeak
Thresbasis = 2 iy weight (i) - Rpeak (i) ®)

Yo, weight (i)

)

As mentioned above, how to find the most similar sam-
ples fast is another key factor affecting the efficiency of
execution of KNN approach. With respect to this prob-
lem, the influence of time in similarity calculation has
been included in Eq. (4) (RpeakIndex(end) is the last
R-peak location before detecting point and RpeakIndex(i)
is each detected R-peak location before). The degree of
similarity will obviously attenuate to zero when the sample
is far away from the R-peak to be detected. In this case, we
only calculate K R-peaks near the next detected R-peak.
In this study, K was set to 7 based on experimentation
experiences. Therefore, this model can decrease amount
of calculation and has the capability of real time analy-
sis. Equation (5) calculates the degree of R-peak amplitude
similarity in the selected K R-peaks, which Rpeak(i) repre-
sents each detected R-peak amplitude before. Equation (6)
calculates the degree of similarity of both in time and
amplitude as defined by the Eular distance way (¢; and
ay are the proportionality coefficient of time and ampli-
tude features). In the Eq. (7), Weight (i) is the weight of
each R-peak, which « and 6 are the Gaussian coefficient.
In this study, 0 was set to 1.5 based on experimentation

Threshold = Thresfrac - Thresbasis



He et al. EURASIP Journal on Advances in Signal Processing (2017) 2017:82

Page 8 of 14

a
- 2r
2
=
"> -
EE°
2
o 2 1 1 1 1 1 1 1 1 1 1
0 500 1000 1500 2000 3000 3500 4000 4500 5000 5500
2k
o —~
£
2E o
2
2 1 1 1 1 1 1 1 1 1 ]
0 500 1000 1500 2000 3000 3500 4000 4500 5000 5500
Cc 1
15
5 =
= >
(]
£
o 1 1 1 1 1 1 1 1 1 1 ]
0 500 1000 1500 2000 3000 3500 4000 4500 5000 5500
d (] r
3
< -
> -
o
2
2 o 1 1 L L L 1 1 1
0 500 1000 1500 2000 3000 3500 4000 4500 5000 5500
c
e 2 15
S
3
g —~ 10
3%
T~ 5f=
s
% 0 L 1
8 0 500 1000 1500 2000 3000 3500 4000 4500 5000 5500
f ° 2r
£
S ok
§E
2
8 2 1 1 1 1 1 1 1 1 1 1
0 500 1000 1500 2000 3000 3500 4000 4500 5000 5500
Sampling points (n)
Fig. 5 Result after performing each stage of the proposed method for the ECG with baseline wander and sudden changes (ECG recording 219).
a) Original signal. b) Filtering. ¢) Differentiation. d) Absolute value. ) Backward cumulation. f) Detected peaks

experiences. Thresbasis is the threshold base value and
Threshold is the final adaptive threshold multiplied by
Thresfrac.

After threshold selection, R peaks are identified as the
peaks larger than the threshold. Normally, if the RR inter-
val is 1.5 times larger than average RR, we think a missing
R-peak appear because of the low amplitude R-peaks, so
the secondary threshold is regarded as lower threshold
than the threshold calculated for the first time to detect
all the R-peaks, which is applied to detect the missing R-
peaks. Finally, we set a refractory period within a 200-ms
window. In the refractory period, once a peak is detected,
the largest amplitude in the vicinity of each identified peak
is removed.

2.4 Particle swarm optimization-based parameter
selection

The proposed KNN approach above contains multiple
parameters. In order to obtain the best detection results,
it is unpractical to adjust the parameters only relying on
the traditional experience and observation of ECG wave-
forms. Thus, we used the automatic optimization choice
of parameters by applying PSO.

PSO originally developed by Kennedy et al. is a com-
putational method that optimizes a problem by iteratively
improving a candidate solution with regard to a given
measure of quality [46, 47]. This method uses a popu-
lation of candidate solutions, here referred as particles,
and moves these particles around in the search-space
according to simple mathematical formula of the particle’s
position and velocity. Each particle’s movement is influ-
enced by its local best known position and is also guided
toward the best-known positions in the search-space. The
position of the particle will be updated as better posi-
tions are found, which is expected to move the swarm
toward the best solutions. The core equations are as
followings,

vi (t+1) =w- vy (t)
+ ¢y - rand; - (pbestl«j (1) — Dij (t)> (10)

+cy - rand2 . <gbest/- (t) — Dij (t)>

piE+1)=pi@)+B-vjt+1) (11)
where t represents the number of iterations, v; €

[—Vmax» Vmin] represents the movement speed of the
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particle i on the dimension of j, pbest; represents the
best value of the particle i on the dimension of j. gbest;
represents the best value of the global particles on the
dimension of j. w and 8 represent the adjustment weight
of the particle movement speed and the rate of change,
respectively. C; and C; represent the weight which con-
trol the local and global solution. In our study, we defined
a fitness function as Eq. (12),

Fitness Function = TP — FP — FN (12)
where TP, FP, and FN represent the true positives (TP),
false positives (FP) and false negatives (FN) respectively.
Finally, we apply PSO to automatically choose the opti-
mization parameters (Thresfrac, Thresfrac2, a1, as, @) to
achieve the maximum value of fitness function.

In this paper, we use particle swarm optimization to
choose the optimization parameters. We select the 100-
124 ECG recordings as the training data (the sum of the
R-peak beats is 45,882) to ensure the five optimal param-
eters and test all the ECG recordings, which achieved a
better result than others. In our study, we have set some

initial parameters. The number of particles is 50, The iter-
ations are 100. The PSO updated parameters cj, ¢; and
are 0.5, 0.5 and 1. The five parameters generated during
the iterative process of the algorithm are shown in Table 1.
Not difficult to find, gbest and fitness(gbest) tend to be
stable after 40 iterations, the values of the five optimiza-
tion parameters and the detected R-peaks are 0.55, 0.61,
1.16, 2.77, 9.14, and 45,625.

3 Results and discussions

The proposed algorithm was tested on the ECG signals
taken from the first channel (a modified limb lead II) of the
MIT-BIH arrhythmia database. From detection results,
we calculated three parameters: true-positive (TP) when
a real R-peak is identified correctly, false-negative (FN)
when a real R-peak is not detected, and false-positive
(FP) when a false R-peak detected as a real R-peak. Also,
the true-negative (TN) presents the correctly detected
other waves that are needless in this paper, so we have
not used the TNs. In order to evaluate the performance
of the proposed detection method, the sensitivity (Se)
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and the positive predictivity (+P) and the detection error
rate (DER) were calculated using the following equations,
respectively

TP

Se= — " % 100% (13)
TP + EN

P= — " x100% 14

= e 1O (14)
FP +FN

DER = 2N 100% (15)

The overall performance of the method is calculated by
the detection accuracy which is defined as follows

Accuracy = TP/ (TP + FP + FN) x 100% (16)

The performance evaluation of the proposed method
for 47 ECG recordings (except 108 recording) of the MIT-
BIH arrhythmia database are summarized in Table 2.
For the total of 107,851 beats, the proposed method
produced an averaged 99.43% accuracy, with 638 false
detections that included 333 false-negative (FN) and 305
false-positive (FP) beats. On the basis of the character-
istics of ECG signals of normal, abnormal and different

noise levels, the detection precision varied from 96.28 to
100% as shown in Table 2.

ECG recorded in the MIT-BIH arrhythmia database can
be grouped into different groups, which contain various
conditions. Among them, some ECG recordings such as
104, 105, 200, 203 and 210 include high frequency noise
and artifact. Some ECG recordings such as 103, 116, 205,
208, 219, and 228 contain sudden changes of QRS com-
plex waveforms and serious baseline wander. Some ECG
recordings such as 201, 208, 223, and 233 exhibit different
atrium and ventricular arrhythmia patterns. Some ECG
recordings such as 219 and 232 have long time cardiac
arrest. Other ECG recordings such as 222 and 106 contain
tall P and T waves. For these abnormal ECG recordings,
the FPs (ranging from 15 to 272 beats in Table 3) and
ENs (ranging from 10 to 705 beats in Table 4) detec-
tions are always high by using in all extant algorithms.
With the presented algorithm, a significant improvement
in the detection of R-peak under various QRS complex
waveforms as well as different kinds of noises has been
achieved, as shown in Tables 3 and 4 for the effectiveness
of the proposed method in terms of the number of FNs
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and FPs. In this paper, we compare specific records which
contain most of various typical arrhythmias in order to
prove that our algorithm have ability to detect R-peaks
in different ECG recordings with various conditions. The
sum of the FPs and FNs (37) are less than other algorithms
in Tables 3 and 4. The overall comparison with other
algorithms have shown in Table 5.

The ECG signal waveforms recorded in different pro-
cessing steps are shown in Figs. 4, 5, 6, 7, 8, 9, and 10
showing the performance of the proposed method under
various conditions. The TPs are labeled by the red cir-
cle compared with the manual annotation, while FPs
and FNs are also labeled as black circle. In each figure,
(a) to (f) have shown the whole detection procedure
clearly.

For ECG with high frequency noise and artifact, most
existing methods produced more missing and false detec-
tions. However, the presented method illustrates an excel-
lent detection performance as shown in Fig. 4 for ECG
recording 200.

The baseline wander and sudden changes are
mainly found in record 219 that yields more miss-
ing and false detections in most existing methods.

The detection performance of the method is shown
in Fig. 5.

The numerous long time cardiac arrest in duration are
mainly found in record 232 that yields more missing and
false detections in most existing methods. The detection
performance of the method is shown in Fig. 6.

The tall P waves are mainly found in record 222 that
yields more missing and false detections in most existing
methods. The detection performance of the method is
shown in Fig. 7.

The tall T waves are mainly found in record 106 that
yields more false-positive detections in most existing
methods. The detection performance of the method is
shown in Fig. 8.

The ventricular arrhythmia patterns are mainly found in
record 233 that yields more missing and false detections
in most existing methods. The detection performance of
the method is shown in Fig. 9.

The sudden changes of QRS complex waveforms and
serious baseline wander are mainly found in record 103
that yields more missing and false detections in most
existing methods. The detection performance of the
method is shown in Fig. 10.
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Finally, the overall performance of proposed method is
compared with some R-peak detection methods. Based
on the data shown in Table 5, an average accuracy of
99.43%, a sensitivity of 99.69% and a positive predictivity
0f 99.72% are obtained for the ECG recordings of the MIT-
BIH arrhythmia database, which is significantly better
than other detection algorithms. Based on the detection
results, we concluded that the simple and effective selec-
tion of preprocessing and decision stages can increase the
precision rate of detection of R-peaks in ECG recordings
with various normal and abnormal waveforms.

Also, as we mentioned about the proposed detec-
tion method, we used K-detected R-peaks to pre-
dict the next adaptive threshold, so the new detected
R-peaks were incorporated to update the threshold. How-
ever, it is unclear if the false positively detected R-
peaks may introduce uncertainty to the model, which
warrants future studies. However, with the specific
data sets of the public MIT-BIH database, our results
showed that a small number of false positively detected
R-peaks had no effect because of the weights of K-
detected R-peaks determined to calculate the adaptive
threshold.

4 Conclusions

In this paper, a simple and efficient four-stage method has
been proposed for automated detection of R-peaks in an
ECG signal. The processing stage is based on a bandpass
filter, five-point first-order derivative, absolute value, and
the backward cumulation that provides the enhancement
processing to the QRS complex of ECG signal. The deci-
sion stage is based on KNN and PSO, which is a simple and
effective way to detect the location of the R-peaks. The
application of time and amplitude similarity with KNN
improved the accuracy of adaptive threshold as well as
the reduction of computation time. Combining with PSO,
the method addressed the problem of manually selecting
parameters, which achieved the best result of R-peaks.
Experiments showed that combined use of KNN and PSO
significantly increases the detection accuracy for ECG
recordings with various QRS complex waveforms and may
be used for real-time detection. The MIT-BIH arrhythmia
database (except 108 recording) has been using for testing
the performance of the proposed method, which includes
the measurement of the number of false positives, true
positives, and false negatives. The overall results are
compared with the existing R-peak detection algorithms.
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The proposed method obtains a high averaged detection
accuracy, sensitivity, and positive predictivity of 99.43,
99.69, and 99.72%, respectively. Although the existence
of various normal and abnormal QRS complex wave-
forms and the influences of different noises in the
ECG signals, the proposed method also reaches much
higher accuracy rate compared with other existing
methods.
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