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Abstract

We present a computationally efficient blind sequential detection method for data transmitted over a sparse
intersymbol interference channel. Unlike blind sequential detection methods designed for general channels, the
proposed method exploits the channel sparsity by using estimated channel sparsity to assist in the detection of the
transmitted sequence. A Gaussian mixture model is used to describe sparse channels, and two tree-search strategies
are applied to estimate the channel sparsity and the transmitted sequence, respectively. To demonstrate the
performance improvement achieved by the proposed blind detector, we compare it to conventional joint channel
and sequence detection methods that use sparse channel estimation techniques. Simulation results show that the
proposed detector not only reduces computational complexity compared to existing methods but also provides
superior performance, particularly when the signal to noise ratio is low.
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1 Introduction
Intersymbol interference (ISI) poses a great challenge
for reliable high-speed wireless communications, signif-
icantly degrading system performance, and hence chan-
nel equalization is typically employed at the receiver
to mitigate its harmful effects. Due to the wide variety
of physical conditions that induce frequency selectivity,
wireless channels are often unknown and time-varying,
thus posing an additional challenge to the receiver. One
approach to combating time-varying distortion is via
adaptive equalizers [1] that first use training symbols
to estimate the channel and then perform conventional
detection using the channel estimate. Transmitting a
training sequence consumes bandwidth that could oth-
erwise be used for transmission of information, however,
and training sequences must be transmitted at regular
intervals when the channel is time varying.
In order to improve spectral efficiency, considerable

research effort has been devoted to the application of
blind equalization techniques in wireless communication
systems in recent decades [2–8]. A popular approach
to blind equalization is to jointly estimate the unknown
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channel and transmitted data based on the maximum
likelihood (ML) criterion [9]. The joint estimates are
obtained using the least-squares (LS) algorithm for chan-
nel estimation and the Viterbi algorithm (VA) for data
detection. The LS algorithm is applied iteratively using
the data along each surviving path of the VA trel-
lis, generating channel estimates that are used in the
search extending from each path. One major drawback of
joint estimation methods is their potentially prohibitive
complexity, particularly for long channels and/or large
symbol alphabets. In order to simplify the blind equal-
ization process, researchers have proposed blind sequen-
tial detection approaches that avoid explicit estimation
of the channel [10, 11]. In [10], for example, a frame-
work is developed for applying a blind Bayesian maxi-
mum likelihood (ML) sequence detector for ISI channels.
The channel taps are modeled as stochastic quantities
drawn from a known probability distribution, and the
tree-based stack algorithm is used to estimate the trans-
mitted sequence based on a Bayesian probability met-
ric that incorporates implicit estimation of the channel.
While the Bayesian ML method achieves promising per-
formance results for moderate channel lengths, computa-
tional complexity continues to be a drawback for longer
channels.
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Most existing blind equalization approaches have been
designed to recover data transmitted over general (non-
sparse) ISI channels. In high-speed wireless applications
such as underwater acoustic (UWA) communications,
ultrawide band (UWB) communications, and high-
definition television (HDTV) systems, the discrete-time
channel impulse response has a very large channel mem-
ory, but only a small number of significant channel coef-
ficients contribute to the distortion of the transmitted
signal. When blind equalization approaches that have
been designed for general channels are applied to sparse
channels, all channel coefficients are treated as significant
when estimating the transmitted signal, yielding high-
computational burden for the receiver and decreasing the
accuracy of the resulting data detection. If we take chan-
nel sparsity into consideration when designing the blind
equalizer, both computational efficiency and performance
can be improved.
In order to blindly estimate a sequence transmitted over

a sparse channel, popular sparse channel estimationmeth-
ods such as matching pursuit (MP), orthogonal matching
pursuit (OMP), and basis pursuit (BP) [12–14] can be
combined with the VA or stack algorithm using a joint
channel estimation and data detection framework. As we
show in Section 5, however, these conventional meth-
ods result in high complexity, particularly when signal to
noise ratio (SNR) is low. In this paper, we propose a com-
putationally efficient blind sequential detection method
for recovering data transmitted over sparse ISI channels.
Two tree-search-based algorithms are used in the blind
detection process: the breadth-first M-algorithm (MA)
is used to estimate channel sparsity, and the best-first
stack algorithm (SA) exploits the channel sparsity esti-
mate to efficiently detect the transmitted sequence. The
two algorithms use different strategies to search a tree
structure. The MA extends all possible paths and retains
the M paths with the highest likelihood at a given depth,
while the SA extends only the path with the highest
likelihood but retains unextended paths. The proposed
method moves beyond existing blind sequential detec-
tion approaches by incorporating a statistical model of the
sparse channel characteristics to reduce the number of
path explorations required in the tree search. By combin-
ing the two tree-search algorithms in an iterative frame-
work, we avoid the need for training data. Additionally,
simulations show that computational complexity savings
can be achieved when tree-search algorithms are used in
place of conventional MP, OMP, and BP for sparse channel
estimation.
The remainder of the paper is organized as follows. In

Section 2, the overall system model is described, and the
sparse channel model is presented. Section 3 provides an
overview of the stack-based sequential detection method
for unknown sparse ISI channels. The proposed blind

sequential detection algorithm, which combines stack-
based sequential detection with channel sparsity estima-
tion using the MA, is described in Section 4. In Section 5,
the proposed approach is compared to conventional joint
channel estimation and data detection methods that use
MP, OMP, and BP with respect to both performance and
computational complexity. Section 6 concludes the paper.

2 Systemmodel
We consider a discrete-time, baseband equivalent com-
munication system, a block diagram of which is shown in
Fig. 1. The information bits are passed through an error
control encoder with rate R = 1

r . No training sequence is
transmitted. For a block of information bits with lengthN,
denoted by bN1 , a length-rN sequence of coded bits, xrN1 ,
is generated. The encoded sequence is transmitted over
a length-Lh sparse ISI channel h = [h0, . . . , hLh−1] with
additive white Gaussian noise (AWGN) wk of variance σ 2.
The received sequence yrN1 = [y1, . . . , yrN ]T is the input
to a detector that blindly estimates the transmitted infor-
mation bits bN1 , where the received signal at time instant
k, yk , k = 1, 2, . . . , rN , is defined as

yk =
Lh−1∑

i=0
hixk−i + wk . (1)

The length-rN received sequence can be expressed in
matrix form as yrN1 = X(rN)h+w, where the signal matrix
X(rN) is defined as

X(rN) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1 0 . . . 0
x2 x1 . . . 0
...

...
...

...
xLh xLh−1 . . . x1
...

...
...

...
xrN xrN−1 . . . xrN−Lh+1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We assume that the channel has only La active (non-
zero) taps, h̄a = [h0, h1, . . . , hLa−1]T , where La � Lh.
In order to better describe the channel sparsity, we use
di ∈ {0, 1} as an indicator to denote whether the i-th tap,
hi, is active or inactive:

di =
{
0, hi is inactive,
1, hi is active.

(2)

Hence, d = {d0, . . . , dLh−1} is a binary vector that
denotes the sparsity of the channel. We assume that di is
equally likely to be 0 and 1. The number of active channel
taps, La, therefore, can be expressed as La = ||d||0, where
the l0-norm of the vector d counts the number of non-zero
elements in d.
In practical communication systems, channels cannot

be exactly sparse; the inactive taps have very small (but
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Fig. 1 System model for sparse ISI channel with blind sequential detector. The data bk is passed through an error control encoder with rate R = 1
r .

The coded sequence xk is transmitted over a sparse ISI channel with additive white Gaussian noise wk . The received sequence yk is processed by a
blind sequential detector and decoder to detect the transmitted data sequence

non-zero) values. To reflect this, we use a Gaussian mix-
ture to describe the channel tap values. Active taps are
drawn from a zero-mean Gaussian distribution with rel-
atively large variance, while inactive taps are drawn from
a zero-mean Gaussian distribution with much smaller
variance [15, 16]:

hi ∼ (1 − di) · N (0, σ 2
0
)+ di · N

(
0, σ 2

1
)
, (3)

where σ 2
0 denotes the variance of hi in the inactive state,

and σ 2
1 � σ 2

0 denotes the variance of hi in the active state.
We further assume that the Lh channel taps are inde-

pendent. This assumption is well justified, especially
for wireless fading channels that are rich in scattering
[17–19]. The distribution of the channel h is then given by

P(h) =∑
d
p(h|d)p(d) =∑

d

Lh−1∏
i=0

p(hi|di)p(di)

= 1
2Lh

∑

d

||d||0∏
P(hi|di = 1)

Lh−||d||0∏
P(hi|di = 0)

= 1
2Lh

∑

d

⎛

⎜⎜⎝

exp
(

− h2i
2σ21

)

√
2πσ2

1

⎞

⎟⎟⎠

||d||0 ⎛
⎜⎜⎝

exp
(

− h2i
2σ20

)

√
2πσ2

0

⎞

⎟⎟⎠

Lh−||d||0

= 1
2Lh

∑

d

(
1√

2πσ2
1

)||d||0 (
1√

2πσ2
0

)Lh−||d||0
exp
(

− hT�dh
2σ2

)
,

(4)

where

�d = Diag{{αi}},

αi =
⎧
⎨

⎩
γ0 = σ 2

0
σ 2 , for di = 0

γ1 = σ 2
1

σ 2 , for di = 1
, i = 0, . . . , Lh − 1. (5)

Under this model, the channel is treated as a stochastic
random vector at the receiver. The receiver has no knowl-
edge of the channel taps hi nor of the sparsity vector d.
The diagonalmatrix�d that describes the channel sparsity
in (4) varies with realizations of the vector d. The diagonal
element αi = γ1 indicates that the channel tap hi is active,
and αi = γ0 indicates that hi is inactive. We assume that
the receiver has knowledge of the variance of active and
inactive taps σ 2

0 and σ 2
1 . We also assume that the receiver

has knowledge of the code generator polynomial C, the
variance of the AWGN σ 2, and the channel length Lh. For
simplicity, only binary phase shift keying (BPSK) encoded

data is considered. Extension to transmission of data from
larger constellations is straightforward.

3 Stack algorithm for unknown sparse ISI
channels

The stack algorithm (SA), which was originally proposed
for decoding convolutional and tree codes [20], is a best-
first tree-search technique that can be used to approxi-
mate the ML solution to sequential detection problems
[21]. When the SA is applied to sequential detection,
the tree represents the space spanned by a sequence of
transmitted bits. Each path in the tree represents a pos-
sible realization of the transmitted sequence. A metric is
computed for each path; the path metric represents the
likelihood that the corresponding bit sequence was trans-
mitted, conditioned on the observations. At each time
step, the SA extends the path with the highest likelihood
(metric) and stores a set of possible paths and their asso-
ciated metrics in a stack (or list) in order of decreasing
metric value. The SA terminates when the top path in the
stack reaches a leaf of the tree, or equivalently when the
top path represents a full block of transmitted bits.
To navigate a tree using the SA, paths are progressively

extended from depth 1 to depth N. Hence, the algo-
rithm must compute the path metric for a partial-length
sequence given a full block of observations; this partial-
path metric is used to decide which path in the stack will
be extended in the next stage. The metric derivation for
unknown general ISI channels is introduced in [10]. For
sparse ISI channels, we derive a new form for the path
metric using the model defined in [10]. The probability
that a length-n sequence bn1 = [b1, b2, . . . , bn]T was trans-
mitted given the complete received sequence yrN1 and the
code thus far, C(n), is expressed as

P
(
bn1|yrN1 ,C(n)

)
=
∫

h
P
(
bn1,h|yrN1 ,C(n)

)
dh

= P
(
bn1
)

P
(
yrN1 |C(n)

)
∫

h
P
(
yrN1 |bn1,h,C(n)

)
P(h)dh.

(6)

We can eliminate the term P
(
yrN1 |C(n)

)
since it is equal

for all paths, and the path metric can be written as

m
(
bn1
) = P

(
bn1
) ∫

h
P
(
yrN1 |bn1,h,C(n)

)
P(h) dh. (7)
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We take the sparsity of the channel into consideration
and find a closed-form expression for the integral in (7)
using the channel model given in (4). Applying the tech-
niques used to derive the pathmetric for general unknown
ISI channels in [10], we assume that yrn1 is independent of
yrNrn+1 and that yrNrn+1 is independent of bn1 to obtain the
following expression for the path metric:

m
(
bn1
)= 1

2Lh

(
1

2
√
2πσ 2

)rn( 1√
2π(σ 2+1)

)r(N−n)

×
rN∏

i=rn+1
exp
(
− y2i

2(σ 2+1)

) ∫
h

rn∏
i=1

exp
(
−
(
yi−hTxii−L+1

)2

2σ 2

)
P(h) dh

= A(yi)
∫
hexp

(
− 1

2σ 2

(
R(rn)
yy [0]−2hT r(rn)

yx +hTR(rn)
xx h

))
P(h) dh,

(8)

where

A(yi) = 1
2Lh

(
1

2
√
2πσ 2

)rn ( 1
√
2π(σ 2 + 1)

)r(N−n)

(9)

×
rN∏

i=rn+1
exp
(

− y2i
2(σ 2 + 1)

)
,

R(rn)
yy [ 0]=

rn∑

i=1
y2i , (10)

r(rn)
yx =

rn∑

i=1
yixii−Lh+1, (11)

and

R(rn)
xx =

rn∑

i=1

(
xii−Lh+1

) (
xii−Lh+1

)T
. (12)

Substituting (4) into (8) and integrating the quadratic
exponential form yields:

m
(
bn1
) =B(yi)

∑
d

(
1√

2πσ 2
1

)||d||0 (
1√

2πσ 2
0

)Lh−||d||0

×
∣∣∣R(rn)

xx +�d

∣∣∣
− 1

2 exp
(

1
2σ 2

(
r(rn)
yx
)T(

R(rn)
xx + �d

)−1
r(rn)
yx

)
,

(13)

where

B(yi) = σ rnA(yi)exp
(

− 1
2σ 2R

(rn)
yy [0]

)
. (14)

Note that the term
(
r(rn)
yx
)T (

R(rn)
xx + �d

)−1
r(rn)
yx takes a

form similar to the least-squares estimate of the channel,
demonstrating the implicit learning of the channel vector
that is integrated in the metric of the tree-search-based
detection approach.

Using the sparse channel model described in Section 2,
we are able to incorporate prior information about chan-
nel sparsity into the path metric of the SA. However, the
computation of m

(
bn1
)
in (13) considers all possible real-

izations of the vector d. Without simplification, we would
need to evaluate and sum 2Lh exponential terms, which is
computationally impractical for channels with long delay
spread. For a given sparse channel, the sparsity vector
d is just one of the 2Lh possible binary vectors. There-
fore, if the channel sparsity can be determined, the path
metric can be computed for a unique vector d. In order
to achieve this, we propose a computationally efficient
sparsity estimation technique, described in the following
section.

4 Computationally efficient blind sequential
detection

4.1 Channel sparsity detection using the M-algorithm
The proposed method combines the M-algorithm (MA)
and the stack algorithm (SA) to perform blind sequential
detection; we refer to the overall algorithm as the MA-SA
for simplicity. The MA is used to find the active channel
tap indices and estimate the unique binary vector d corre-
sponding to the sparse channel. The path metric of the SA
is then computed using the channel sparsity estimated by
the MA.
Both theMA [22] and the SA are built upon a tree struc-

ture representation of the space spanned by a sequence
of transmitted bits. In contrast to the SA, however, the
MA employs a breadth-first strategy for searching the
tree. At a given depth of the tree, it extends all pos-
sible paths and retains the M paths with the highest
likelihood (or largest path metrics). In the tree struc-
ture of the SA, each path represents a possible real-
ization of the transmitted sequence; the MA can be
used to estimate the channel sparsity along each path.
The SA path metrics can be computed using the esti-
mated channel sparsity in combination with the obser-
vations and the symbol sequence associated with each
path. The metrics are used to guide the tree search to
find the most likely transmitted sequence. Such a mecha-
nism establishes a foundation for combining the MA and
the SA. A flow chart of the MA-SA algorithm is shown
in Fig. 2.
To better illustrate the proposed algorithm, we pro-

vide a step-by-step procedure under the assumption
thatM = 1.

Step 0. (Initialization) Consider a partial path through
the tree that represents a length-n sequence bn1 .
The MA-SA algorithm is initialized with the
assumption that all channel taps are inactive, i.e.,
d(0) = [0, 0, . . . , 0]. The corresponding path
metric can be computed as
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Fig. 2 A flow chart representation of the MA-SA algorithm

m
(
bn1
)
d(0) = B(yi)

∣∣∣R(rn)
xx +�d(0)

∣∣∣
− 1
2

(√
2πσ 2

0

)Lh

×exp
((

r(rn)
yx
)T(

R(rn)
xx +�d(0)

)−1
r(rn)
yx

2σ 2

)

= B(yi)
(

1√
2πσ 2

0

)Lh ∣∣R
(
d(0))∣∣− 1

2

× exp
((

r(rn)
yx
)T

R−1(d(0))r(rn)
yx

2σ 2

)
,

(15)

where

R
(
d(0)
)

= R(rn)
xx + �d(0) , (16)

and

�d(0) = Diag{γ0}. (17)

The vector d(0) is assigned to d(0)∗ , where the
vector d(p)

∗ is used to store the best (highest
metric) vector obtained at the p-th iteration. A
set S is defined to store the associated indices of

the active channel taps at each iteration. Initialize
iteration counter to p = 0 and index vector to
S = {}.

Step 1. Change a single 0 element of the binary vector
d(p)

∗ to 1 to generate a set of Lh − p possible
binary vectors, d(p+1)

j , where j �∈ S ∈ {1, . . . , Lh}
denotes that d(p+1)

j is identical to d(p)
∗ with the

exception of the j -th element.
Step 2. Compute the path metricm

(
bn1
)
d(p+1)
j

for each of
the possible weight-(p + 1) vectors, and assign
the vector that corresponds to the largest metric
to the vector d(p+1)

∗ , i.e., d(p+1)
∗ = d(p+1)

j∗ , where

j∗ = argmax
j

m
(
bn1
)
d(p+1)
j

, j �∈ S ∈ {1, . . . , Lh}.

(18)

Step 3. Update the index vector S by including j∗, and
increment p by 1:

S = S ∪ j∗, p = p + 1. (19)

Step 4. If all active channel tap indices are located or a
stopping criterion (described in Section 4.3) is
satisfied, terminate the algorithm; otherwise,
return to step 1.

The final vector d(L̂a)∗ provides the estimate of chan-
nel sparsity, where L̂a denotes the estimate of the active
channel length. L̂a = La if La is known at the receiver.
The corresponding metric m

(
bn1
)
d(L̂a)∗

will be used by the
SA to perform the tree search. For a given La, the total
number of the metric computations is given by 1 + (La +
1)
(
Lh − La

2

)
. We will show in the next section that the

number of metric computations can be further reduced.
The proposed MA-based sparsity estimation is summa-
rized in a flow chart in Fig. 3.
An example of the sparsity estimation procedure is

shown in Fig. 4. The example considers a length-4 chan-
nel with two active taps, h = [h0, 0, h1, 0], and the figure
shows the k-th branch of the SA tree. The red boxes
show the best sparsity vectors obtained at each iteration.
We initialize the vector d(0) = [0, 0, 0, 0] and compute
the path metric m

(
bn1
)
d(0) using (15). At step 1, there are

four possibilities for the sparsity vector: d(1)
1 , . . . ,d(1)

4 , and
the corresponding path metric can be obtained similar to
using (15) for each vector. We assume thatm

(
bn1
)
d(1)
1

is the

largest path metric at this step, and thus d(1)∗ = d(1)
1 , indi-

cating that the first channel tap is active. From d(1)∗ , three
possibilities for the sparsity vector, d(2)

2 ,d(2)
3 , and d(2)

4 , can
be generated. The corresponding pathmetric for each vec-
tor is computed, and m

(
bn1
)
d(2)
3

is assumed to be largest.



Zhou and Nelson EURASIP Journal on Advances in Signal Processing  (2018) 2018:6 Page 6 of 12

Fig. 3 A flow chart representation of the MA-based technique for updating the path metric

Fig. 4 An example of channel sparsity estimation using the MA. A length-4 channel with two active taps: h = [h0, 0, h1, 0] is used. The red boxes
show the sparsity vectors identified as best at each iteration of the algorithm
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Therefore, d(2)∗ = d(2)
3 , indicating that the third chan-

nel tap is also active. Now that the two active taps have
been located (and assuming the number of active taps is
known), the sparsity estimation algorithm can be termi-
nated. The quantity m

(
bn1
)
d(2)
3

serves as the path metric
for the SA at this branch.

4.2 Efficient metric computation
As described in the proposed MA-based sparsity estima-
tion, a new path metric is computed at each iteration,
involving both inversion of a matrix and computing its
determinant. The total 1 + (La + 1)

(
Lh − La

2

)
metric

computations are still a heavy burden for the detector.
By exploiting the properties of matrices, we can further
reduce the computational complexity and accelerate the
metric update.
In order to develop a general expression for efficient

metric computation, consider the binary sparsity vector
obtained at the (p − 1)-th iteration: d(p−1)

∗ . The matrix
R
(
d(p−1)

∗
)
in the path metric is computed as

R
(
d(p−1)

∗
)

= R(rn)
xx + �d(p−1)

∗
. (20)

At the p-th iteration, a set of Lh − p vectors d(p)
i is gen-

erated by turning just one 0 element of the vector d(p−1)
∗

to 1. The matrix R
(
d(p)
i

)
is given by

R
(
d(p)
i

)
= R(rn)

xx + �d(p)
i
. (21)

It is clear that R
(
d(p)
i

)
differs from R

(
d(p−1)

∗
)

in
only one position: (i, i). Thus, by using the properties of
matrix inversion, the inverse and determinant of R

(
d(p)
i

)

can be easily obtained from the inverse and determi-
nant of R

(
d(p−1)

∗
)
. We assume that we already have the

inverse and determinant of R
(
d(p−1)

∗
)
, denoted by V =

R−1
(
d(p−1)

∗
)
andU =

∣∣∣R
(
d(p−1)

∗
)∣∣∣, respectively.R

(
d(p)
i

)

can then be expressed as

R
(
d(p)
i

)
= R

(
d(p−1)

∗
)

+ βuuT , (22)

where β = γ1 − γ0 and u = [0, . . . , 1, . . . , 0]T . The single
non-zero element in the vector u is at index i. Applying the
Sherman-Morrison formula [23], the inverse of R

(
d(p)
i

)

can be expressed as

R−1
(
d(p)
i

)
=
(
R
(
d(p−1)

∗
)

+ βuuT
)−1

= R−1
(
d(p−1)

∗
)

− βR−1(d(p−1))uuTR−1
(
d(p−1)

∗
)

1+βuTR−1
(
d(p−1)∗

)
u

= V − βVuuTV
1+βuTVu

= V − β
1+βV (i,i)V (:, i)V (i, :),

(23)

where V (:, i) is the ith column of the matrix V.
The determinant of R

(
d(p)
i

)
can be computed as

∣∣∣R
(
d(p)
i

)∣∣∣ =
∣∣∣R
(
d(p−1)

∗
)

+ βuuT
∣∣∣

=
(
1 + βuTR−1

(
d(p−1)

∗
)
u
) ∣∣∣R

(
d(p−1)

∗
)∣∣∣ (24)

= (1 + βV (i, i))U .

Combining Eqs. (23) and (24), the path metric asso-
ciated with the sparsity vector d(p)

i can be computed as

m
(
bn1
)
d(p)
i

= B(yi)√
(1+βV (i,i))U

(
1√

2πσ 2
1

)||d(p)
i ||0 (

1√
2πσ 2

0

)Lh−||d(p)
i ||0

× exp
((

r(rn)
yx
)T

2σ 2

(
V − β

1+βV (i,i)V (:, i)V (i, :)
)
r(rn)
yx

)

= m
(
bn1
)
d(p−1)

∗
σ0

σ1
√

θ
exp
(
− β

2θσ 2

(
r(rn)
yx
)T

V (:, i)V (i, :)r(rn)
yx

)
,

(25)

where θ = 1 + βV (i, i).
From (25), we can see that the path metric associated

with the vector d(p)
i can be computed via a simple update

from the metric for d(p−1)
∗ . The computation for the met-

ric update is dominated by the vector multiplications,(
r(rn)
yx
)T

V (:, i)V (i, :)r(rn)
yx . The inverse and determinant

computations are no longer needed at every iteration;
they are performed only once to obtain R−1 (d(0)) and∣∣R
(
d(0))∣∣ when the initial metricm

(
bn1
)
d(0) is computed.

4.3 Stopping criterion
TheMA-based sparsity detection described in Section 4.1
relies on searching for active channel indices and termi-
nates when all the active indices have been identified. In
practical communication systems, the number of active
taps, La, is usually an unknown parameter. A stopping
criterion must be implemented to terminate the iterative
sparsity detection process without knowledge of La. To
address this, we compare the path metrics we obtain at
the La-th and (La + 1)-th iterations and use the difference
between them to identify a stopping criterion.
At the La-th iteration, the best estimated sparse vector

with La non-zero elements is d(La)∗ , and the corresponding
path metric can be written as
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m
(
bn1
)
d(La)∗

= A(yi)σ rn
(

1√
2πσ2

1

)La(
1√

2πσ2
0

)Lh−La ∣∣∣∣R
(rn)
xx +�

d(La)∗

∣∣∣∣
− 1

2

×exp
(
− 1

2σ2

(
R(rn)
yy [0]−

(
r(rn)
yx
)T(

R(rn)
xx +�

d(La)∗

)−1
r(rn)
yx

))
.

(26)

In the metric, the term
(
R(rn)
xx + �d(La)∗

)−1
r(rn)
yx in the

exponential function takes a form that is very sim-
ilar to the LS estimation of the channel, ĥ. Thus,
R(rn)
yy [ 0]−

(
r(rn)
yx
)T (

R(rn)
xx + �d(La)∗

)−1
r(rn)
yx measures the

error e between the received signal yrn1 and the noise-free
output predicted by the channel estimate ĥ and assumed
bit sequence xrn1 . At the (La + 1)-th iteration, the met-
ricm

(
bn1
)
d(La+1)∗

associated with the best estimated sparse
vector d(La+1)∗ is updated from the metric m

(
bn1
)
d(La)∗

according to

m
(
bn1
)
d(La+1)∗

=m
(
bn1
)
d(La)∗

σ0

σ1
√

θ

× exp
(
− β

2θσ 2

(
r(rn)
yx

)T
V (:, j∗)V (j∗, :)r(rn)

yx

)

=m
(
bn1
)
d(La)∗

σ0

σ1
√

θ
exp
(

β

2θσ 2	La+1

)
,

(27)

where 	La+1 =
(
r(rn)
yx
)T

V (:, j∗)V (j∗, :)r(rn)
yx denotes the

contribution of the (La + 1)-th estimated active tap to the
error e, and j∗ denotes the index of the La-th estimated
active channel tap.
Assuming that the La active channel taps are correctly

located at the La-th iteration, no more active taps are con-
tributing to the computation of the metric m

(
bn1
)
d(La+1)∗

.
Therefore, the corresponding 	La+1 will depend only on
additive noise. Given this, we can establish a stopping cri-
terion as follows: For a sufficiently small ε, at the p-th
iteration, |	p| ≤ ε, the algorithm is terminated. The num-
ber of active channel taps can be estimated as L̂a = p − 1.
The estimated sparse vector is d(p−1)

∗ .
Assuming the algorithm estimates La correctly, one

additional round of iterations for p = La + 1 is imple-
mented (relative to the number of iterations implement
when La is known). This involves Lh − La metric updates,
which is only a small increase in computational com-
plexity. When the noise level is high, the algorithm is
more likely to estimate La incorrectly. However, since the
channel sparsity is estimated using path metrics that take
noise into consideration, we are still able to achieve bet-
ter channel sparsity estimation than is achieved using
conventional methods, as we show in Section 5.

5 Simulation results and discussion
5.1 Performance comparison
In this section, we compare the proposed method to sev-
eral conventional blind sequential detection methods, all
of which are based on joint sparse channel estimation
and data detection. The method introduced in [24], for
example, finds an ML solution for a joint single-input
multiple-output channel and sequence estimation prob-
lem using a two-step procedure: (1) channel estimates
are obtained for every possible data sequence, and (2)
the ML data sequence and corresponding channel esti-
mate are selected. A least-squares (LS) approach is used
to implement step 1, and the VA is used to implement
step 2. The LS channel estimation algorithm performs a
pseudo-inverse of the channel matrix. When the channel
is long but sparse, LS does not provide reliable channel
estimation since each tap estimate will have a non-zero
value [25]. Additionally, for such channels, the VA is
prohibitively complex due to the long-channel memory.
Therefore, we use sparse channel estimation techniques
such as matching pursuit (MP), orthogonal matching pur-
suit (OMP), and basis pursuit (BP) to replace the LS
approach in the first step. In the second step, we use the
SA, which is considerably more efficient than the VA for
channels with long delay spread and suffers only minimal
performance degradation [26]. The combined methods
we consider are denoted by MP-SA, OMP-SA, and BP-
SA. In addition to these three methods, we also consider
a recently proposed joint sparse channel and sequence
detection method using the expectation-maximization
(EM) algorithm, SC-EM [27].
MP and OMP, two greedy algorithms originally pro-

posed for sparse recovery problems, sequentially estimate
the sparse channel by using a training sequence [14, 28].
MP applies sequential forward selection to determine a
sparse representation of the channel h by using a training
sequence and its corresponding received signal. The main
difference between OMP and MP is that OMP avoids the
re-selection problem that occurs in each iteration of MP,
thereby accelerating convergence of the algorithm and
enhancing the accuracy of sparse channel estimation, but
requiring extra computational effort. BP, also referred to
as a form of compressed sensing (CS), obtains the sparse
channel estimate by solving an l1 − l2 optimization prob-
lem defined in [29]. Numerical results in [30] show that
BP delivers a better channel estimate than MP and OMP
but requires increased complexity. In order to use MP,
OMP, and BP for blind detection, MP-SA, OMP-SA, and
BP-SA employ the two-step procedure, described in detail
in Section 4, to compute the metric at each path of the
tree. On each branch of the tree, MP, OMP, and BP are
first used to estimate the sparse channel using the realiza-
tion of the coded sequence associated with a path. Each
pathmetric is then computed using the estimated channel.
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The path metric governs the search through the tree to
find the most likely transmitted sequence. The tree search
continues until a leaf of the tree is reached [31].
The SC-EM algorithm uses a different two-step proce-

dure than the three methods described above [27]. The
expectation (E) step performs sequential detection using
forward-backward recursions (BCJR). ML sparse chan-
nel estimation is performed in the maximization (M)
step using the estimated sequence of symbols. Iteration
between these two steps increases the joint likelihood
until convergence is reached.
Simulations have been conducted for a length Lh = 10

sparse channel with La = 3 active taps. Information bits
are encoded using a rate R = 1

2 convolutional code with
generator polynomials g0 = [1, 1, 1] and g1 = [1, 1, 0].
The initial state of the register is set to [0, 0]. Ten thou-
sand blocks of 100 data bits each are transmitted over
the sparse channel. For each data block, the active chan-
nel taps are drawn from a Gaussian distribution with zero
mean and variance σ 2

1 = 1, and the inactive taps are drawn
from a Gaussian distribution with zero mean and variance
σ 2
0 = 0.01. The channel energy is normalized to 1. The

locations of active and inactive channel taps are randomly
generated from a discrete uniform distribution for each
block. For the three methods, the stack size of the SA is
set to 105 to make erasures rare. We assume that both the
channel response and the number of active channel taps
La are unknown to the receiver.M is set to 1 when we use
MA to estimate the channel sparsity in MA-SA.
A performance comparison of the five methods

described above is shown in Fig. 5. The proposed MA-SA

Fig. 5 Performance comparison between MP-SA, OMP-SA, BP-SA,
SC-EM, and MA-SA. The performance for each method is computed
using 104 length-100 sequences transmitted over a 10-tap channel
with three active taps

technique outperforms the competing methods, most
substantially when SNR is low. This performance gap can
be attributed to the fact that MA-SA’s approach of esti-
mating the channel sparsity based on the path metric is
more robust to noise than are the competing approaches.
As expected, OMP-SA yields better performance than
MP-SA due to the introduction of the orthogonalization
process. MP/OMP do not take the channel noise into
consideration and therefore are more likely to incorrectly
estimate the sparse channel. Thus, MP-SA and OMP-SA
are outperformed by the other three methods. The BP-
SA and SC-EM methods have very similar performance
due to the similar procedures they adopt to solve l1 − l2
optimization problems.
In order to further investigate the performance of the

proposed method, we consider a scenario in which a
short training sequence is transmitted. In this case, we
compare the MA-SA with methods that combine greedy
algorithms with the VA, which attains the ML solution in
the presence of AWGN. We can use MP, OMP, and BP to
estimate the sparse channel using the training sequence.
When training is available, each channel tap value can be
estimated (rather than estimating only channel sparsity).
Thus, sequential detection methods such as the VA can
be applied using the estimated channel. Here, we com-
pare the performance of the proposed MA-SA to that of
BP-VA, MP-SA, and OMP-SA. (The BP-VA approach is
selected for performance comparison because the individ-
ual algorithms show strong performance. SC-EM is not
included in this simulation, since it uses iterative EMother
than the combination of greedy algorithms and sequential
detectionmethods using graph structure.) Simulations are
constructed under the same conditions described above.
A known length-10 training sequence is appended to each
length-100 block of data. Performance results for the four
methods are shown in Fig. 6. We observe that the pro-
posed MA-SA method still achieves the best performance
among the four methods due to its iterative update of the
channel within the tree-search process. BP-VA outper-
forms the MP/OMP-SA; by solving l1 − l2 optimization
problems, BP can provide a better channel estimate than
the MP/OMP, and the VA is able to achieve the ML
estimation of the transmitted sequence.

5.2 Efficiency comparison
To illustrate the computational efficiency of the MA-
SA method, we compare its computational requirements
to those of the MP-SA approach. (We consider only
MP-SA for complexity comparison because it is more
computationally efficient than the OMP-SA, BP-SA, and
SC-EM approaches.) Since both methods operate on pos-
sible sequences represented by paths through the tree,
we adopt the complexity of computing the metric for a
length-n path as the comparison criterion. In order to
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Fig. 6 Performance comparison between MP-SA, OMP-SA, BP-VA, and
MA-SA. The performance for each method is computed using a
length-10 training sequence for a 10-tap channel with three active
taps

compute the metric for a given path, the MP-SA method
detects the channel sparsity first and computes the met-
ric using the estimated channel sparsity, while the MA-SA
method computes the initial metric for d(0) = [0, . . . , 0]
and updates the metric with the sparsity detection. The
metric computation for MP-SA using the estimated chan-
nel sparsity and the initial metric computation for MA-SA
have the same complexity. Therefore, to compare the com-
plexity ofMP-SA andMA-SA, we need only compare their
computational complexity in channel sparsity detection.
This complexity depends on the estimate of the active
channel length, L̂a, which is affected by the channel itself
and by the noise level.
For a path with length n, MP-SA constructs an n×Lh sig-

nal matrix X(n). At the p-th iteration, a length-n residual
vector bp is projected onto the direction of each column
of X(n), ai, i = 1, . . . , Lh. For each iteration, Lh inner prod-
uct computations are performed. Furthermore, Lh norm
computations (inner products) of ai must be performed
to scale the projection as shown in [12]. Therefore, after
the estimated active channel length L̂(MP-SA)

a is obtained,
L̂(MP-SA)
a iterations must be performed to estimate the

sparsity. Hence, MP-SA must perform L̂(MP-SA)
a Lh + Lh =(

L̂(MP-SA)
a + 1

)
Lh inner product computations between

two length-n vectors.
For a length-n path, at each iteration, the MA-SA

computes the metric update σ0
σ1

√
θ

exp
(

− β

2θσ 2

(
r(n)
yx
)T

V (:, j)V (j, :)r(n)
yx
)
. We do not consider the multi-

Table 1 Computational complexity of the MP-SA and MA-SA
methods

Complexity for channel sparsity detection at each path

Inner product computations

MP-SA
(
L̂(MP-SA)
a + 1

)
Lh

MA-SA
(
L̂(MA-SA)
a + 1

) (
Lh − 1

2 L̂
(MA-SA)
a

)

The computational complexity for each method is measured in terms of the
number of inner product computations required for channel sparsity detection
along each path of the tree

plications of the constants σ0
σ1

√
θ

and β

2θσ 2 , since
they are just a one-time operation. Thus, the com-
plexity for each metric update is the inner product
of two length-n vectors, V (j, :) and r(n)

yx . To obtain
the final metric, the metric update is computed(
L̂(MA-SA)
a + 1

) (
Lh − 1

2 L̂
(MA-SA)
a

)
times, so MA-SA must

perform
(
L̂(MA-SA)
a + 1

) (
Lh − 1

2 L̂
(MA-SA)
a

)
inner prod-

uct computations between two length-n vectors. The
complexity comparison between the MP-SA and MA-SA
methods is summarized in Table 1.
When La is known at the receiver, both methods will

terminate after the La-th loop, L̂(MP-SA) = L̂(MA-SA) = La.
Comparing the complexity expressions we derived above,
MA-SA performs La(La+1)

2 fewer inner product computa-
tions than MP-SA at each path of the tree. While La(La+1)

2
may not be a large number, the computational savings
occur along each path. In the application of the SA, a
large number of paths will be extended, particularly when
SNR is low, making the complexity reduction achieved by
MA-SA significant.
When La is unknown, we use numerical results to make

complexity comparisons. We evaluate the complexity of
the MP-SA and MA-SA methods empirically by com-
paring the average number of paths extended and the
total number of inner product computations for each data
block. As in the earlier simulations, we consider a length
Lh = 10 channel with La = 3 active taps. Results from 103
simulations are averaged, and the complexity comparison
for various SNR values is shown in Table 2.
The results show that MA-SA extends fewer paths than

MP-SA, particularly when SNR is low, due to the robust-
ness of the MA-SA method to noise in channel sparsity
detection. As we can see from Table 2, for an SNR of
6 dB, MA-SA performs about 3 × 105 fewer inner prod-
uct computations than MP-SA, resulting in a roughly 75%
reduction in complexity.

6 Conclusions
We have developed and evaluated a tree-based sequential
detection method for detecting data transmitted over a
sparse ISI channel.We have focused on scenarios in which
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Table 2 Computational complexity comparison between MP-SA and MA-SA

Complexity comparison

MP-SA MA-SA

Paths extended Inner product computations Paths extended Inner product computations

6 dB 17,184 945,120 8279 255,997

8 dB 9695 484,752 5183 202,137

10 dB 4748 237,904 3090 128,150

12 dB 3606 151,452 1343 45,976

The comparison is made for length Lh = 10 sparse channels with La = 3 active taps

no training sequence is used in the system and proposed
a computationally efficient blind sequential detection
method using the MA and SA, both tree-search-based
algorithms. A Gaussian mixture model is used to describe
the sparse ISI channel, and the MA is applied to blindly
estimate the channel sparsity. The estimated channel spar-
sity is then used to compute the path metrics within the
SA, which guides the search in a tree. The MA and SA are
combined to achieve blind sequential detection.
For performance comparison, we combined conven-

tional sparse channel estimation techniques such as MP,
OMP, and BP with the SA to jointly estimate the sparse
channel and transmitted sequence; we considered both
blind and semi-blind (when a short training sequence is
available) cases. Simulation results show that the pro-
posed MA-SA method is more likely to correctly estimate
the channel sparsity along each extended path of the tree
than are the comparison methods. Conventional methods
are more likely to generate inaccurate channel estimates
when SNR is low, which not only limits the performance
of the detector but also increases the computational bur-
den. Additionally, we have shown the computational effi-
ciency of the MA-SA approach when the number active
taps, La is known or unknown. Numerical results for
unknown La show that proposedMA-SAmethod achieves
both significant computational savings and performance
improvement when compared to conventional methods.
Future work will consider alternate channel models and

simplifications to accommodate longer channels. We will
also investigate the design of a modified SA-MA approach
that exploits a multiple tree structure [32] to further
improve the efficiency of blind sequential detection.
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