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Abstract

To date, attribute discretization is typically performed by replacing the original set of continuous features with a
transposed set of discrete ones. This paper provides support for a new idea that discretized features should often be
used in addition to existing features and as such, datasets should be extended, and not replaced, by discretization. We
also claim that discretization algorithms should be developed with the explicit purpose of enriching a non-discretized
dataset with discretized values. We present such an algorithm, D-MIAT, a supervised algorithm that discretizes data
based on minority interesting attribute thresholds. D-MIAT only generates new features when strong indications exist
for one of the target values needing to be learned and thus is intended to be used in addition to the original data. We
present extensive empirical results demonstrating the success of using D-MIAT on 28 benchmark datasets. We also

supervised discretization algorithm and D-MIAT.

demonstrate that 10 other discretization algorithms can also be used to generate features that yield improved
performance when used in combination with the original non-discretized data. Our results show that the best
predictive performance is attained using a combination of the original dataset with added features from a “standard”

1 Introduction
Discretization is a data preprocessing technique
that transforms continuous attributes into dis-
crete ones. This is accomplished by dividing each
numeric attribute A into m discrete intervals where
D = {ldy,d1],(d1,d2),...,(dmn_1,d,]} where dj is the
minimal value, d,,, is the maximal value and d; < d;;
for i = 0,1, .., m—-1. The resulting values within D
constitute a discretization scheme for attribute A and
P ={dy,d>,...du—1} is A’s set of cut points. Traditionally,
discretization has been used in place of the original values
such that after preprocessing the data, D is used instead
of A [1].

Two basic types of discretization exist, supervised and
unsupervised. Unsupervised discretization divides each
A into a fixed number of intervals within D, typi-
cally through equal-width (EW) or equal—frequency (EF)
heuristics [2]. Supervised discretization further considers
the target class, C, in creating D. One popular supervised
discretization algorithm is based on information entropy
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maximization (IEM) whereby the set of cut points is cre-
ated to minimize the entropy within D [3]. An interesting
by-product of IEM, and other supervised discretization
methods, is that if no cut points are found according to
the selection criteria, then only one bin is created for that
variable, effectively eliminating A from the dataset as D
is the null set. In this way, supervised discretization can
also function as a type of feature selection [4]. A large
number of supervised discretization algorithms have been
developed in addition to IEM, including Ameva, CAIM,
CACC, Modified-Chi2, HDD, IDD, and ur-CAIM [5-11].
We refer the reader to a recent survey [1] for a detailed
comparison of these and other algorithms.

While discretization was originally performed as a nec-
essary preprocessing step for certain supervised machine-
learning algorithms which require discrete feature spaces
[3], several additional+ advantages have since been noted.
First, discretization can at times improve the performance
of some classification algorithms that do not require dis-
cretization. Consequently, multiple studies have used D
instead of A to achieve improved prediction performance
[3, 12-14]. Most recently, this phenomenon has par-
ticularly been noted within medical and bioinformatic
datasets [12—-15]. It has been hypothesized that the source
for this improvement is due to the attribute selection
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component evident within supervised discretization algo-
rithms [13]. A second advantage of discretization is that it
contributes to the interpretability of the machine-learning
results, as people can better understand the connection
between different ranges of values and their impact on the
learned target [3, 13].

This paper’s first claim is that discretization should not
necessarily be used to replace a dataset’s original values
but instead to generate new features that can augment
the existing dataset. As such, each discretized feature D
should be used in addition to the original feature A. Using
discretization in this fashion is to the best of our knowl-
edge a completely novel idea. We claim that using datasets
with both A and D can often improve the performance of
a classification algorithm for a given dataset.

This claim is somewhat surprising and may not seem
intuitive. It is widely established that reducing the num-
ber of features through feature selection, and by extension
using discretization for feature selection, helps to improve
prediction performance [16]. At the core of this claim
is that the curse of dimensionality can be overcome by
reducing the number of candidate predictive attributes.
Counter to this claim, we posit that it is not the num-
ber of attributes that is problematic, but the lack of added
value within those attributes. At times, the information
gained from the discretized attributes is significant, to the
point that its addition to the original attributes improves
prediction accuracy.

This paper also contains a second claim that discretiza-
tion algorithms should be explicitly developed for the
purpose of augmenting the original data. As support
for this point, we present D-MIAT, an algorithm that
discretizes numeric data based on minority interesting
attribute thresholds. We believe D-MIAT to be unique as
to the best of our knowledge, it is the first discretization
algorithm that explicitly extends a set of features through
discretization. D-MIAT generates features where only the
minority of an attribute’s values strongly point to one of
the target classes. We claim that at times it can be impor-
tant to create discretized features with such indications.
However, attribute selection approaches to date typically
treat all values within a given attribute equally, and thus
focus on the general importance of all values within a
given attribute, or combinations of the full set of different
attributes’ values [17, 18]. Hence, these approaches would
typically not focus on cut points based on strong indica-
tions within only a small subset of values. Once again, the
potential success of D-MIAT may see counterintuitive as
it generates features in addition to the original dataset,
something often believed to reduce performance [16].

To support these claims we studied the prediction accu-
racy within the 28 datasets of a previous discretization
study [11]. We considered the performance of seven dif-
ferent classification algorithms: Naive Bayes, SVM, K-nn,
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AdaBoost, C4.5, Random Forest, and Logistic regres-
sion, on five different types of datasets. First, we con-
sidered the accuracy of the original dataset (A4) with-
out any discretization. Second, we created a dataset
with the original data combined with the features gen-
erated by D-MIAT and studied where this combination
was more successful. Third, we compared the accuracy
of the baseline datasets (A) to the discretized datasets
(D) from the 10 algorithms previously considered [11],
using the training and testing data from that paper.
Somewhat surprisingly, we found that prediction accu-
racy on average decreased when only the discretized
data was considered. Based on the understanding that
discretized features can improve performance, we then
created a fourth dataset which appended the original
data to the features generated by each of the 10 canoni-
cal discretization algorithms, creating 10 new combined
datasets based on A and D. Again, we noted that the com-
bination of the discretized features with the original data
has improved predictive performance. Fifth, we studied
how combinations of features from different discretiza-
tion algorithms can be created. Specifically, we created a
dataset that combined the discretized values of D-MIAT
and the three discretization algorithms with the best
prediction performance. The combination of the three
types of features, the original data, those of the “stan-
dard” discretization algorithms and D-MIAT, performed
the best.

2 The D-MIAT Algorithm

Contrary to other discretization algorithms, the D-MIAT
was explicitly developed to augment the original data
with discretized features. It will only generate such fea-
tures when strong indications exist for one of the target
classes, even within a relatively small subsets of values
within A. Our working hypothesis is that these gener-
ated features improve prediction accuracy by encapsu-
lating features that classification algorithms could miss
in the original data or using “standard” discretization
methods.

This assumption is motivated by recent findings that
at times values of important subsets of attributes can
serve as either “triggers” or “indicators” for biological pro-
cesses. Recent genomic (DNA) and transciptomic (RNA)
research has shown that some people may have a natural
predisposition or immunity towards certain diseases [19].
Similarly, we posit that even small subsets of values point-
ing to one of the target classes can be significant, even
within non-medical datasets. The success of D-MIAT
is in finding these subsets and thus we shift our focus
from studying all attribute values, as has been done to
date by other discretization algorithms, to finding those
important subsets of values within the range of a given
attribute.
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To make this general idea clearer, consider the following
example. Assume that attribute A is a numeric value for
how many cigarettes a person smokes in a given day.
The dataset contains a total population of 1000 where
only 10% smoked more than three cigarettes a day. Most
of these heavier smokers develop cancer (say 95 of 100
people) while the cancer rates within the remaining 90%
(900 people) are not elevated. Traditional discretization
will analyze all values within the attribute equally and
may thus ignore this relatively small, but evidently impor-
tant, subset of this dataset. Methods such as IEM that
discretize based on the overall effectiveness of the dis-
cretization criteria; here, entropy reduction will not find
this attribute interesting as this subset is not neces-
sarily large enough for a significant entropy reduction
within the attribute. Accordingly, it will not discretize this
attribute, effectively removing it from the dataset. Simi-
larly, even discretization algorithms with selection mea-
sures not based on information gain will typically ignore
the significance of this subset of minority attribute val-
ues due to its size, something that D-MIAT was explicitly
designed to do.

Specifically, we define the D-MIAT algorithm as follows.
We assume that # numeric attributes exist in the dataset,
which are denoted A; ... A,. Each given attribute, A4, has
a continuous set of values, which can be sorted and then
denoted as val; ...val,. There are c target values (class
labels) within the target variable C with ¢ >= 2. A new
discretized cut will be created if a subset of a minimum
size supp exists with a strong indication, conf, for one of
the target values within C. As per D-MIAT’s assumption,
we only attempt to create up to two cuts within A; between
the minimum val;j to d; and between the maximum value
valyp and dy. In both cases, the size of each subset needs to
contain at least supp records.

We considered two types of “strong” indications as sup-
port, one type based on entropy and one based on lift.
Most similar to IEM, we considered confidence thresholds

C
based on entropy. Entropy can be defined as Y —p;logap;
where p; here is the relative size of C; wilthin C. This
value can be used a threshold to quantify the support
as the percentage of values within a given attribute that
points to a given target C;. For example, if the smallest
10% of values of A; point to the first target value Ci,
then the entropy within this subset is 0 and thus consti-
tutes a strong indication. A second type of confidence is
based on lift, which is typically defined as 2%< where
p(xlc) is the conditional probability for x given ¢ divided
by the general probability of x. We use lift in this con-
tent as a support measure for the relative strength of
subset for a target value given its general probability. For
example, let us again consider a subset with the lowest
10% of values within A; with respect to C;. The relative
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strength of a subset can here be defined as the probability
of P([valy ...d1])|C1/P([valy ...d1]). Assuming that the
general probability of C; is 0.05 as it occurs 50 times
out of 1000 records of which 40 of these occurrences are
within the 100 lowest values of A; and only 10 additional
times within the other 900 values, then its lift will be
(40/100)/(50/1000) or 8. Assuming D-MIAT’s value for
the conf parameter is less than 8, then this subset would
be considered significant and D-MIAT will create a dis-
cretized cut with that subset.

It is worth noting that the two parameters within D-
MIAT, supp and conf, are motivated from association rule
learning [20]. In both cases, we attempt to find even rela-
tively small subsets of values, however, above a minimum
amount of support supp. Similarly, in both cases, we refer
to a confidence threshold that can be defined as the abso-
lute and relative number of instances within a subset
corresponding to a target value. To the best of our knowl-
edge, D-MIAT is the first discretization algorithm using
support and confidence to find these significant subsets of
attribute values.

Algorithm 1: D-MIAT Algorithm to Generate Fea-
tures with Important Values

1: Procedure D-MIAT({4})

2: Initialize {D} to be empty

3. forj=A;to A, do

4 Sor t(Al)

5 fori=Cjto C,do
6 bound1 = BinarySearchLower(A;, C;, conf’)
7: if Size[A1, Apound1] >= support then
8 cutl = Discretize(A1, Apound1)
9: D =D + cutl
10: end if
11 bound2 = BinarySearchHigher(4;, C;, conf )
12: if Size[Apounda, Ap] >= support then
13: cut2= Discretize(Apound2, Ap)
14 D =D+ cut2
15: end if
16:  end for
17: end for

18: return ({A}+{D})

Based on these definitions, Algorithm 1 presents
D-MIAT. Line 1 begins with creating a null set of discretized
features D that will be extracted from the full set of
attributes, A. Lines 2—4 loop through all attributes within
the dataset (A), sort the continuous values within each
attribute A;, and consider each target variable C;. We then
consider two discretization ranges, one beginning with
the smallest value of A; and one ending with the largest
value in 4; (lines 6 and 11). The algorithm uses a binary
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search (BinarySearch) to find potential cut points based
on the selection criteria, conf. Trivially, this step could end
with bound1 being equal to the smallest value within A4;
and bound2 being A;’s largest value. Typically, the sub-
set will be beyond these two points. Regardless, lines 7
and 12 check if the number of records within this inter-
val is larger than the predefined support threshold, supp.
If so, a new discretized variable is created. In our imple-
mentation, the new discretized variable will have values of
1 for all original values within [A1, Apoyung1) and zero for
(Apound1,b] or a value of 1 for [Apyyuan, Ap] and zero for
[A1, Apoundz). In lines 9 and 14 we add these new cuts to
the generated features within D. Thus, this algorithm can
potentially create two cuts for every value of A;, but will
typically create much fewer as per the stringent require-
ments typically assigned to supp and conf by association
rule algorithms. Line 18 returns the new dataset combin-
ing the original attributes in A with the new discretized
features from D-MIAT.

The motivation for D-MIAT’s attempt to potentially cre-
ate two cuts at the extremes, and not to search for support
within any subset as per association rule theory, is based
on medical research. One motivation for D-MIAT comes
from the observation that the probability distribution of
features relating to any medical classification problem
need not be unimodal. In fact, as discussed in the previ-
ous smoker example, features are likely to be multi—-modal
with some modes having very low representation in the
sampled dataset, but within those modes prevalence of
one class may be significantly different from that for the
remainder of the samples. Furthermore, we expect to find
that the discretized cuts at the extreme values for A; would
have the highest amount of interpretability—one of the
main general motivations behind discretization [3, 13].

Table 1 presents a small portion of one of the 28
datasets, glass, used in our experiments. In this dataset,
the goal is to identify the type of glass with target val-
ues of 1-7. We present three attributes from within this

Table 1 A sample dataset with D-MIAT applied
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dataset: Ay = Ba,A; = Caand A3 = Fe and due to
limited space and the size of the dataset only a subset of
values for these three attributes is shown. D-MIAT was
run using a minimal support parameter of 10% (supp=0.1)
of the dataset and a lift value of 1.5 as minimal confi-
dence (conf >=Lift(1.5)). Note that the values of Ba are
sorted with the non-zero values being highlighted in the
first column of Table 1. The algorithm found that for the
33 records of the training set where A; >0.09, 23 records
belonged to class 7 (see column 4). Class 7 occurs with
approximately 0.1 probability within the training set and
with approximately 0.7 probability for the cut A; >0.09.
D-MIAT then computed that the Lift(P(7)|A; > 0.09) =
P(7|A; > 0.09)/P(7)) = 7 which is much greater than
1.5. Thus, D-MIAT created a cut for the higher values of
Ba based on line 11 of Algorithm 1, with the resulting cut,
D; being shown in column 4 of Table 1. Note that the
discretized cut is for all values within this range, includ-
ing those with other target values, such as class 1. No cut
was created based on the lower values of A; (line 6 of
Algorithm 1) as the size of the resulting cut (line 7) was not
greater than the required support. Conversely, for A, =
Ca, a cut was created based on the value of bound1 in line
6 of Algorithm 1. Here, D-MIAT found strong indications
for one of the target values—here target number 2—as
it found that of the 80 instances in the training set with
values less than 8.4, 43 corresponded to this target (see
column 5). This probability (0.53) is significantly higher
than the general probability of target 2 within the dataset
(0.35) and thus the lift is greater than 1.5 (1.51).

For comparison, we present in columns 6-8 the dis-
cretized cuts from the IEM algorithm for these three
attributes. The IEM algorithm is based on the use of
the entropy minimization heuristic for discretization of
a continuous value into 0, 2, or more intervals. For the
Ba attribute it minimized the overall entropy with one
cut at 0.4158, and thus created two intervals—either less
than or greater than this value. For the Ca attribute, four

Ba Ca Fe Lift=1.5 Ba >0.09: [23/33] from 7 | Lift=1.5 Ca <8.4: [43/80] from 2 IEM-Ba IEM-Ca IEM-Fe| Target
0 6.07628 0 0 1 (-inf-.4158] (-inf-7.0171] All 2
0 7.35604 | 0.0612 0 1 (-inf-.4158]| (7.0171-8.31906] All 2
0 7.59276 0 0 1 (-inf-.4158]| (7.0171-8.31906] All 6
0 7.77568 0 0 1 (-inf-.4158]| (7.0171-8.31906] All 1
0 7.82948 0 0 1 (-inf-.4158]| (7.0171-8.31906] All 1
0 7.82948 0 0 1 (-inf-.4158]| (7.0171-8.31906] All 2
0 7.86176 0 0 1 (-inf-.4158]| (7.0171-8.31906] All 2
0 7.88328 0 0 1 (-inf-.4158]| (7.0171-8.31906] All 2
0 7.89404 0 0 1 (-inf-.4158]| (7.0171-8.31906] All 2
0 7.9048 0 0 1 (-inf-.4158]| (7.0171-8.31906] All 2
0.1 8.67952 0 1 0 (-inf-.4158]| (8.31906-9.90078]| All 7
0.68985| 8.66876 0 1 0 (.4158-inf) | (8.31906-9.90078]| All 1
0.75915| 8.66876 0 1 0 (.4158-inf) | (8.31906-9.90078]| All 7
1.3797 | 10.66876| 0 1 0 (.4158-inf) | (9.90078-inf) Al 7
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intervals were created and for Fe no intervals were created
(represented by the uniform value of “All” in this imple-
mentation). This example highlights both the similarities
and differences between D-MIAT and other discretiza-
tion algorithms. First, D-MIAT is a binary discretization
method— each cut D-MIAT creates will only have two
intervals, one where supp and conf are met and one where
they are not met. In contrast, IEM, and other classic dis-
cretization algorithms maximize a score over all attribute
values (such as entropy reduction for IEM). Thus, these
algorithms often choose different numbers of cuts (such
as IEM creating for four different interval cuts for Ca) and
thresholds for these cuts (0.09 for D-MIAT within Ba and
0.4158 for IEM).

These different cut values impact the interpretability of
the results. As D-MIAT focuses on a subset, it will focus
one’s analysis on a range of values either below a given
threshold (if the subset range starts at the minimum value)
or above a given threshold (if the subset range ends at
the maximum value). In Table 1, we see both examples.
Please note that the first D-MIAT cut focuses one’s atten-
tion on the higher range of values (Ba > 0.09), where a
strong indication exists for the target value of 7. The sec-
ond cut focuses one’s attention on the smaller range of
values (Ca < 8.4), where a strong indication exists for the
target value of 2. Often these algorithms agree and will
both find nothing of interest. Note that Fe had no dis-
cretized cuts formed by either D-MIAT or IEM as both
algorithms’ conditions for creating cuts were not present
for this attribute. As we explain below, all experiments
were generated with the discretization cuts being gener-
ated only on the training data and then applied to the
testing data.

3 Experimental results

We used the same 28 datasets within a recent discretiza-
tion study [11]. These datasets were collected from the
the KEEL [21] and UCI [22] machine learning repositories
and represent a variety of complexity, number of classes,
number of attributes, number of instances, and imbalance
ratio (ratio of the size of the majority class to the minor-
ity class). Detailed information about the datasets can be
found online!. We downloaded the discretized versions
of these datasets for the discretization algorithms they
considered. This included the unsupervised algorithms of
equal-width (EW) and equal—frequency (EF) [2], and the
supervised algorithms of information entropy maximiza-
tion (IEM) [3], class-attribute interdependence maximiza-
tion (CAIM) [5], Ameva [6], Modified-Chi2 [7], Hyper-
cube Division-based Discretization (HDD) [8], Class-
Attribute Contingency Coefcient (CACC) [9], Interval
Distance-Based Method for Discretization (IDD) [10] and
ur-CAIM [11]. These datasets each contain 100 different
folds whereby the discretized intervals were determined

Page 5 of 11

by the training portion in the first 90% of the file and
these intervals were then applied to the remaining 10% of
the data used for testing. Thus, the 28 datasets contained
10 independently constructed training and testing com-
ponents to effectively create 10-fold cross validation for a
total of 280 training and testing pairs.

The general thesis of this work is that adding features
is not inherently detrimental, so long as these features
have some added value. Conversely, we claim that tradi-
tional use of discretization, where the continuous values
are replaced with discretized ones, can be detrimental
if important information is lost by removing the origi-
nal continuous values. We expected to find that datasets
enriched with D-MIAT provide more accurate results
than those without it, and more generally removing the
original features in favor of exclusively using the dis-
cretized ones would be less effective than using the combi-
nation of features in one extended set. We checked several
research questions to study these issues:

1. Do the features generated by D-MIAT improve
prediction performance when adding them to the
original data?

2. Does the classic use of discretization of removing the
continuous values help improve performance?

3. Isit advantageous to use the discretized features in
addition to the original ones?

4. Should the features generated by D-MIAT be used in
conjunction with other discretization algorithms?

In order to check these issues we then proceeded to cre-
ate five different sets of data. The first set of data was
composed of the 28 base datasets without any modifi-
cation to their training and testing components (A) and
used the data from a previous study [11]. The second
set of data was the original data in addition to the dis-
cretized cuts (D) from D-MIAT. The third set of data
consisted of the discretized versions of the 28 datasets
with the 10 abovementioned algorithms (D) and were also
generated based on a previous study [11]. The fourth set
of data appended the original datasets (A) with each of
the discretized datasets (D). Last, we created a fifth set
of data by appending the original data to the features
created by D-MIAT and several other best performing
discretization algorithms. To facilitate replicating these
experiments in the future, we have made a Matlab version
of D-MIAT available at: http://homedir.jct.ac.il/~rosenfa/
D-MIAT.zip?. We ran D-MIAT on a personal computer
with an Intel i7 processor and 32 GB of memory. Process-
ing the full set of 280 files with D-MIAT took a total of
approximately 15 min.

We then measured the predictive accuracy of 7 differ-
ent classification algorithms: Naive Bayes, SVM using the
RBF kernel, K-nn using the value of k = 3, AdaBoost,
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C4.5, Random Forest, and Logistic regression on each of
these datasets. The first 6 algorithms were implemented
in Weka [23] with the same parameters used in previous
work [11]. The last algorithm was added as it is a well-
accepted deterministic classification algorithm that was
not present in the previous study. The default parameters
were used within Weka’s Simple Logistic implementation
of this algorithm.

As shown below, we found that the classic use of dis-
cretization often did not improve the average perfor-
mance across these datasets. Instead, using discretization
in addition to the original features typically yielded better
performance, either through using D-MIAT in addition
to the original data or through using discretized fea-
tures from canonical algorithms in addition to the original
data. The best performance was typically reached by the
combined dataset of the original data enriched with D-
MIAT and other discretization algorithms as posited by
the research question #4. Thus, we present evidence that
the most effective pipeline is using D-MIAT along with
discretized features to extend a given set of features.

3.1 D-MIAT results

The goal of the D-MIAT algorithm is to supplement, not
supplant, the original data. The decision as to whether
additional features will be generated depends on the supp
and conf parameters in Algorithm 1 and it is applied to
every numeric attribute A; within the dataset. Thus, D-
MIAT could potentially generate two features for every
attribute based on lines 7 and 12 of the Algorithm 1. In our
experiments, we defined supp equal to 10% of the train-
ing data. Three confidence values, conf, were checked.
The first value was conf=Entropy(0), meaning the cut
yielded a completely decisive indication for one of the tar-
get classes and thus yielded zero entropy as per the first
type of confidence mentioned above. We also considered 2
types of lift confidence: conf= Lift(1.5) and conf=Lift(2.0).
As per these confidence levels, we checked if the cut
yielded a stronger indication for one of the target classes
as measured per their lift values. Potentially, both of these
lift thresholds could be satisfied. For example, assume
a cut yielded a lift of 3, then both confidence thresh-
olds would consider this cut significant and generate a
new feature accordingly. We also considered the possibil-
ity that the cuts could be added cumulatively and thus
overlapping cuts could be added based on combinations
of these 3 different thresholds. Conversely, if all thresh-
olds used were not met, no cuts were created for a given
attribute.

To illustrate this point, Table 2 presents the number
of continuous attributes in each of the 28 datasets and
the total number of attributes D-MIAT generated within
each of these datasets combined with the three thresh-
olds for conf we considered. As D-MIAT generated its
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cuts exclusively based on 10 different iterations within the
training set, it was possible that the number of features
that D-MIAT generated would vary across these iterations
within the 28 datasets. For example, note that the first two
datasets, abalone and arrhythmia, had no features gener-
ated by D-MIAT across any of the iterations and for any of
the values of conf and supp. This shows that the D-MIAT
can have a more stringent condition for generating cuts
than all of the 10 canonical discretization algorithms pre-
viously studied that did generate features in all of these
datasets. Also note that D-MIAT generated an average of
12.9 features within the glass dataset. Based on the train-
ing data, D-MIAT generated between 12 and 15 features,
leading to the average being a fraction. Most times, as is
the case here, the number of discretized features gener-
ated by D-MIAT is less than the number of the original
features. However, a notable example is found in the iris
dataset which contains only four continuous attributes,
but on average, D-MIAT generated 20 features. In this
case, many cuts were generated for each A; as per each one
of conf conditions in Algorithm 1.

We then checked if the features generated by D-MIAT
improved predictive performance. Table 3 displays the
average accuracy of the baseline data for each of the
15 files where D-MIAT generated cuts which are noted
in Table 2. Please note that each of the D-MIAT supp
thresholds—O0 entropy in line 2, Lift of 1.5 in line 3, and
lift of 2 in line 4—typically improved the prediction per-
formance across all the classification algorithms. This
demonstrates that the values chosen within this threshold
are not extremely sensitive as all values chosen typically
improve prediction accuracy. Note that all performance
increases are highlighted in the table. A notable exception
is the AdaBoost algorithm where no performance increase
was noted (nor any decrease). Also, we note that certain
algorithms, such as Naive Bayes, SVM, and logistic regres-
sions consistently benefited, while the other algorithms
did not. We also find that combination of the features cre-
ated by the cuts from all three D-MIAT thresholds, the
results of which are found in the fifth line of Table 3,
yielded the best performance. As each of the cuts gener-
ated by D-MIAT is significant, it is typically advantageous
to add all cuts in addition to the original data. For the
remainder of the paper, we will use the results of D-MIAT
using all cuts as we found this yielded the highest per-
formance. Thus, we overall found support for this paper’s
thesis that the addition of features is not necessarily prob-
lematic, unless there is a lack of added value within those
attributes, even if the thresholds within the discretized
cuts are not necessarily optimal.

3.2 Using discretization in addition to the original data
We then proceeded to check research questions 2 and 3.
We assumed that research question #2 would also be
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Table 2 The total number of new features generated by three D-MIAT thresholds in the each of the 28 datasets
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Dataset Attributes  Average features from D-MIAT ~ Range  Dataset Attributes  Average features from D-MIAT ~ Range
Abalone 8 0 Penbased 16 0 -
Arrhythmia 279 0 Pendigits 16 0 -
Glass 9 129 12-15  Pima 8 3.1 3-4
Heart 13 6.8 6-7 Satimage 36 128.2 127-130
lonosphere 33 26.1 22-31  Segment 19 97.6 96-10
Iris 4 20 19-21  Sonar 60 18.2 15-20
Jm1 21 0 - Spambase 57 329 31-35
Madelon 500 0 - Spectrometer 102 0 -

Mc1 38 12 12 Texture 40 0 -
Mfeat-factors 216 0 Thyroid 21 1 1
Mfeat-fourier 76 0 Vowel 13 0 -
Mfeat-karhunen 64 0 Waveform 40 395 37-42
Mfeat-zernike 47 0 - Winequality-red 11 39 3-4
Pc2 36 17.2 17-19  Winequality-white 4 2.7 2-4

found to be correct and that using the discretized features
alone would typically be useful, as has been previously
been found [3, 12-14]. To our surprise, we did not find
this to often be the case within the 28 datasets we con-
sidered. Table 4, displays the average accuracy results of
this experiment. The baseline here is again the average
performance without discretization (A) to which we com-
pared the 10 canonical discretization algorithm across the
same 7 classification algorithms. Once again, each colored
cell represents an improvement of a given discretization
algorithm versus the baseline and note the lack of color
within much of Table 2. While some algorithms, particu-
larly Naive Bayes and SVM, showed often large improve-
ments versus the non-discretized data, the majority of
classification algorithms (K-nn, AdaBoost, C4.5, Random
Forest and Logistic Regression) typically did not show any
improvement across the discretization algorithms in these
datasets. This point is illustrated in the last column of
this table, which shows that for most discretization algo-
rithms, a decrease in accuracy is on average found through
exclusively using discretized features. Thus, we did found
that for most classification algorithms in the datasets we
considered, using discretization alone was less effective
than using the original features.

We found significantly more empirical support for this
paper’s third research question, that using discretization
in combination with the original features is more effective
than using either the original set or those generated from
discretization alone. The results of this experiment are
found in Table 5 where we compare the results of the orig-
inal dataset and the combination of the original data with
the features from the discretization algorithms. We again
find that the Naive Bayes and SVM algorithms benefit
from this combined dataset the most. When considering
these two learning algorithms, improvements were now
noted through combining all discretization algorithms.
We note a strong improvement in the results in Table 5
versus those in Table 4 within the AdaBoost and Logis-
tical Regression algorithms. In contrast to the results in
Table 4, the average performance across all algorithms
(found in the last columns of the table) now shows an
improvement. Also note that almost without exception,
the combined features outperformed the corresponding
discretized set. For example, the average accuracy for
the Ameva algorithm with C4.5 is 70.46, but this jumps
to 78.39 for Ameva combined with the original data.
Even when improvements were not noted, we found that
performance was typically not negatively affected by the

Table 3 Comparing the accuracy of the datasets without D-MIAT and with 4 variations of D-MIAT with parameter values of zero
entropy (MIAT 0), Lift of 1.5 (MIAT 1.5), Lift of 2 (MIAT 2) and all three discretized values (MIAT 0 1.5 2)

Dataset Naive Bayes SVM KNN [AdaBoost| C4.5 RandomForest | Logistic Average
Baseline 77.23 74.91 83.33 71.96 83.09 86.17 83.31 80
Baseline + MIAT O 77.5 S 83.83 71.96 83.03 86.28 83.64 80.28
Baseline + MIAT 1.5 77.49 79.72 82.46 71.96 83.36 85.89 83.54 80.63
Baseline + MIAT 2 77.63 76.43 82.84 71.96 83.1 86.58 84.14 80.39
Baseline + MIAT 0 1.5 2 78.36 82.02 83.56 71.96 83.22 85.82 84.08 81.29
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Table 4 Comparing the accuracy results from seven different classification algorithms within the original, baseline data (A) and the
discretized data (D) formed from the Ameva, CACC, CAIM, Chi2, EF, EW, HDD, IDD, IEM, and ur-CAIM algorithms

Dataset Naive Bayes| SVM KNN AdaBoost C4.5 RandomForest| Logistic | Average
Baseline 74.06 71.43 80.45 52.57 79.16 81.95 80.57 74.31
Ameva 71.39 74.24 74.28 50.8 70.76 73.37 74.89 69.96
CACC 69.73 72.91 73.23 50.99 71.29 66.51 69.75 67.77
CAIM 76.68 79.13 78.8 52.26 75.4 78.42 80.23 74.42
CHI2 76.18 79.34 79.16 51.14 74.22 77.65 79.85 73.93
EF 73.56 76.55 74.39 48.27 69.39 72.43 76.51 70.16
EW 74.95 75.19 73.34 48.78 70.65 72.5 76.12 70.22
HDD 68.82 65.52 65.4 47.88 59.86 59.72 65.12 61.76
IDD 74.83 77.75 77.4 51.96 71.27 75.27 78.67 72.45
IEM 76.17 79.95 79.92 51.52 77.21 79.89 80.75 75.06
urCAIM 76.29 79517 79.63 52.62 78 76.69 80.16 74.65

addition of these features as one would assume due to the
curse of dimensionality.

Despite the general support being found for the research
question #3 in that using discretization to augment the
original data is better than using the discretized data
alone, we still note that some algorithms, particularly the
K-nn, C4.5 and Random Forest learning algorithms, often
did not benefit from any form of discretization. We fur-
ther explore these results differences, and generally the
impact of discretization on all algorithms, in Section 3.4.

3.3 Using D-MIAT and other discretization algorithms as
additional features

Given the finding that adding features from both D-MIAT
and canonical discretization algorithms helps improve
performance, we hypothesized that the combination of
these features would be effective to achieve the best
performance as per research question #4. To evaluate
this issue, we combined the D-MIAT features with those
of the best performing discretization algorithms in these

datasets— CAIM, IEM, and urCAIM. We then consid-
ered the performance of this combination within the 15
datasets where D-MIAT generated some features and on
average within all 28 datasets. The results of this experi-
ment are found in Table 6.

As can be seen from the results from the 15 datasets
(top portion of Table 6), the combination of discretiza-
tion algorithms almost always outperforms the original
data and improvements in predictive accuracy are noted
in all three combinations in the Naive Bayes, SVM, K-nn,
AdaBoost, C4.5, and logistic regression algorithms. The
one exception seems to be the Random Forest algorithm
where large performance improvements are not noted.
For comparison, we also present the improvements across
all 28 datasets in the bottom portion of Table 6, which
include 13 datasets where there are no features generated
by D-MIAT. As expected, the combination of D-MIAT
was somewhat less significant once again demonstrating
the benefit of adding the features from D-MIAT. Overall,
and on average across the algorithms we considered, we

Table 5 Comparing the accuracy results from seven different classification algorithms within the original (A) and discretized data

appended to the original data (A + D)

Dataset Naive Bayes| SVM KNN AdaBoost C4.5 RandomForest| Logistic | Average
Baseline 74.06 71.43 80.45 52.57 79.16 81.95 80.57 74.31
Appended Ameva 75.53 77.01 79.51 52.74 78.39 79.91 81.27 74.91
Appended CACC 74.95 75.96 79.71 52.54 78.5 75.55 80.55 73.97
Appended CAIM 76 79.64 79.2 52.66 78.53 79 81.72 75.25
Appended CHI2 76 80.25 80.41 52.73 76.98 78.67 81.59 75.23
Appended EF 74.78 77.95 77.16 52.59 76.77 74.09 81.14 73.5
Appended EW 75.07 77.14 75.94 52.75 77.53 74.4 81.44 73.47
Appended HDD 75.36 75.16 75.78 5257, 72.61 61.93 80.53 70.58
Appended IDD 75:5 78.33 78.82 52.71 77.79 76.6 81.26 74.43
Appended IEM 75.75 80.3 80.91 52.57 78.94 81.1 82.1 75.95
Appended urCAIM 75.63 79.72 80.07 52.79 78.62 80 81.58 75.49
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Table 6 Combining D-MIAT with discretization features yields the highest performance when considering the 15 datasets where

D-MIAT added features, and on average across all 28 datasets

15 Datasets with MIAT NaiveBayes SVM KNN |AdaBoost| C4.5 RandomForest | Logistic | Average
Baseline 77.23 74.91 83.33 71.96 83.09 86.17 83.31 80.66
Appended CAIM + MIAT 80.03 84.66 84.23 72.14 83.58 85.93 85.08 82.24
Appended IEM + MIAT 80.03 84.06 84.59 72.12 83.59 86.22 84.4 82.14
Appended urCAIM + MIAT 79.98 84.49 84.41 72.29 84.29 86.16 84.87 82.36
All 28 Datasets Naive Bayes SVM KNN |AdaBoost| C4.5 RandomForest | Logistic | Average
Baseline 74.06 71.43 80.45 52.57 79.16 81.95 80.57 74.31
Baseline + CAIM + MIAT 76.27 79.93 79.81 52.66 78.83 79.29 81.85 75.52
Baseline + [EM + MIAT 76.21 80.45 81.23 52.57 79.08 81.31 81.89 76.11
Baseline + urCAIM + MIAT 75:95 80.16 80.53 52.79 79:25 80.12 81.52 75.76

found that this combination was the most successful,
with prediction accuracies typically improving by over 1%.
Thus, we found the thesis #4 to typically be correct and
using D-MIAT in conjunction with existing discretization
algorithms is recommended to enrich the set of features
to be considered.

3.4 Discussion and future work

We were somewhat surprised that using discretization
alone was not as successful as it has been previously found
with such classification algorithms as Random Forests and
C4.5 [3, 12—14]. We believe that differences in the datasets
being analyzed is likely responsible for these gaps. As such,
we believe that an important open question is to predict
when discretization will be successful, given the machine
learning algorithm and the dataset used for input. In con-
trast, we found that D-MIAT yielded more stable results
as it typically only improved the performance, something
other discretization algorithms did not do, especially for
these two learning algorithms. We are now exploring how
to make other discretization algorithms similarly more
stable.

We note that the pipeline described in this paper of
using D-MIAT and discretized features in addition to the
original data was most effective with algorithms without
discretization, namely the Naive Bayes, SVM, and Logis-
tic Regression classification algorithms. Conversely, this
approach was less effective with methods having a dis-
cretization component, particularly with C4.5, Random
Forests, and AdaBoost algorithms. It has been previously
noted that C4.5 has a localized discretization component
(re—applied at each internal node of the decision tree) and
thus may gain less from adding globally discretized fea-
tures, which are split into the same intervals across all
decision tree nodes Dougherty et al. [3]. Similarly, the
decision stumps used as weak classifiers in AdaBoost per-
form essentially a global discretization and thus may have
made it less likely to benefit from the globally discretized
features added by D-MIAT, something that is evident from

Table 3. As can be noted from Table 6, the Random Forest
algorithm benefited the least from the pipeline described
in this paper— again possibly due to its discretization
component. We hope to further study when and why
algorithms with an inherent discretization component
still benefit from additional discretization. Additionally, it
seems that the K-nn algorithm, despite not having a dis-
cretization component, benefits less from the proposed
pipeline than other algorithms. It seems plausible this is
because this algorithm is known to be particularly sen-
sitive to the curse of dimensionality [24, 25] and thus
this specific algorithm does not benefit from the pro-
posed approach while other classification algorithms are
less sensitive to it. We plan to study this complex issue in
our future research.

We believe that several additional directions should also
be pursued for future work. First, this study did not con-
sider learning from neural networks and deep learning,
as these algorithms were not previously considered [11].
This is due to the relatively small size of several of the
datasets within this study, which made it infeasible to
obtain accurate deep learning models using this approach.
We are currently considering additional datasets, par-
ticularly those with larger amounts of training data to
allow us to better understand how deep learning can be
augmented by discretized features. In a similar vein, we
believe that interconnections likely exist between some
of the generated discretized features. Multivariate fea-
ture selection and/or deep learning could potentially be
used to help stress these interconnections and remove
features which are redundant. Second, we propose using
metacognition, or the process of learning about learn-
ing [26] to allow us to learn which discretized features
should be added to a given dataset. We are also study-
ing how one could find an optimal value, or set of values,
for the conf and supp thresholds within D-MIAT. While
this paper demonstrates that multiple D-MIAT thresh-
olds can be used in combination, and each threshold does
typically improve performance, we do not claim that the
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thresholds used in this study represent an optimal value,
or set of values, for all datasets. One potential solution to
this would be to develop a metacognition mechanism for
learning these thresholds for a given dataset. Similarly, it
is possible that a form of metacognition could be added
to machine learning algorithms as has been generally sug-
gested within neural networks [27] to help achieve this
goal.

4 Conclusions

In this paper, we present a paradigm shift in how dis-
cretization can be used. To date, discretization has typi-
cally been used as a pre-processing step which removes
the original attribute values, replacing them with dis-
cretized intervals. Instead, we suggest using the features
that are generated by discretization to extend the dataset
by using both the discretized and non-discretized versions
of the data. We have demonstrated that discretization can
often be used to generate new features which should be
used in addition to the dataset’s non-discretized features.
The D-MIAT algorithm we present in this paper is based
on this assumption. This is because D-MIAT will only dis-
cretize values with particularly strong indications based
on high confidence, yet relatively low support for the tar-
get class, as it assumes that classification algorithms will
also be using the original data. We also show that other
canonical discretization algorithms can be used in a simi-
lar fashion, and in fact a combination of the original data
with D-MIAT and discretized features from other algo-
rithms yields the best performance. We are hopeful that
the ideas presented in this paper will advance the use
of discretization and its application to new datasets and
algorithms.

Endnotes
Lhttp://www.uco.es/grupos/kdis/wiki/ur-CAIM/
2The file “run_all.m” found in this zip was used to run
D-MIAT in batch across all files in a specified directory.
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