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Abstract

In this paper, we consider the 2-D direction-of-arrival (DOA) tracking problem. The signals are captured by a
uniform spherical array and therefore can be analyzed in the spherical harmonics domain. Exploiting the sparsity
of source DOAs in the whole angular region, we propose a novel DOA tracking method to estimate the source
locations and trace their trajectories by using the variational sparse Bayesian learning (VSBL) embedded with
Kalman filter (KF). First, a transition probabilities (TP) model is used to build the state transition process, which
assumes that each source moves to its adjacent grids with equal probability. Second, the states are estimated by
KF in the variational E-step of the VSBL and the variances of the state noise and measurement noise are learned
in the variational M-step of the VSBL. Finally, the proposed method is extended to deal with the off-grid tracking
problem. Simulations show that the proposed method has higher accuracy than VSBL and KF methods.

Keywords: 2-D direction-of-arrival (DOA) tracking, Spherical array, Transition probabilities (TP) model, Variational
sparse Bayesian learning (VSBL), Kalman filter (KF)

1 Introduction
Direction-of-arrival (DOA) estimation is an active re-
search field of array signal processing and has been used
in various applications, such as radar, channel modeling,
tracking, and surveillance [1–3]. Among the estimation al-
gorithms, multiple signal classification (MUSIC) and esti-
mation of signal parameters via rotational invariance
techniques (ESPRIT) are the most representative methods,
which employ the signal and noise subspaces. Compared
with the conventional beamforming algorithms, these
methods enhance the estimation precision. However, the
number of impinging signals must be the prior knowledge
and the computational complexity of decomposing the
covariance matrix increases when the number of array
elements rises. Recently, sparse reconstruction methods
have attracted substantial attention because the signals
impinging on an array are intrinsically sparse in the spatial
domain [4, 5]. In these methods, the whole angular
domain is divided into some predefined grids and a meas-
urement matrix is constructed by sampling these grids.

Based on the singular value decomposition (SVD), an ap-
proach named as l1-SVD was proposed to reduce the
computational complexity and enforce sparsity using l1-
norm [6]. Compared with the l1-SVD method, sparse
Bayesian learning (SBL) can model the sparse signals more
flexibly and give more accurate recovery results [7–9].
When SBL was used to estimate DOA, the sparse prior
for the interested signals is Gaussian [10] or Laplacian
distribution [11]. The SBL method can achieve good esti-
mation results for static DOA estimation.
In the case of tracking moving targets, most methods as-

sume that each source angle is constant during a time
interval. However, it may differ from one interval to an-
other because of the moving sources [12]. There are some
different approaches to track the DOAs of moving sources,
such as classical subspace optimization approach, sparsity
recovery theory, and adaptive filter method. The subspace
optimization approaches only optimize the signal or noise
subspace without using the eigenvalue decomposition
(EVD) so that they can reduce the computational complex-
ity and storage requirements. Yang presented a new ap-
proach to track the signal subspace using an unconstrained
minimization method [13]. The subspace method, which
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can be used to dynamic DOAs, was extended in L-shaped
array [14] and two parallel linear arrays [15], respectively.
The performance of the subspace method relies on the
number of snapshots. This kind of method is inapplicable
for the moving targets when the number of snapshots in
each time interval is relatively small.
Vaswani et al. reviewed many algorithms on the analysis

of dynamic sparse signal recovery. If the support change is
highly correlated and the correlation model is known, we
can get an accurate support estimation by using the previ-
ous estimation information [16–18]. In [19, 20], these
methods combined the slow signal value change and slow
support change to enhance the precision. Most of these
methods are the deformation of basis pursuit denoising. A
sequential Bayesian algorithm was introduced to estimate
the moving DOAs in the time-varying circumstance [21].
It assumed that the sources move at a constant velocity
and used this hypothesis to construct the signal-moving
model. The locally competitive algorithm (LCA) was pro-
posed to construct a dynamic system and track DOAs
[22]. This method mainly introduced a thresholding func-
tion to enforce sparsity. A model was proposed to describe
a time-varying array response in the frequency domain for
each source [23]. The key of this paper is that it utilizes a
hidden Markov model to describe the moving signal and
uses the posterior inference to estimate the signal posi-
tions. It traps into the local optimum when the signals
alias at high frequency.
The Kalman filter (KF) method is the most repre-

sentative method for tracking sources in the adaptive
filter theory, which means the value of the predicted
state should equal to the value of the actual state by
minimizing the Bayesian mean square error of the
state vector. However, the variance of the noise and
state can be seen as prior in the KF method. In [24],
the time difference of arrival (TDOA) information
was calculated by a pair of microphones and a dis-
tributed unscented KF method was used to track
speakers in a nonlinear measurement model. The
method combining KF with compression sensing was
also used for dynamic DOA estimation [25, 26]. The
state transition function was built under the assump-
tion that the bearing change rate had been known
[25]. This assumption is hard to be satisfied in real
applications. A Bayesian compressive sensing Kalman
filter (BCSKF) method [26] was proposed to track dy-
namic moving sources. This method used the con-
stant DOA changes in the KF prediction, which
meant that the source moved to the designated direc-
tion with a fixed step. The particle filter was utilized
to track the trajectory of target. It adopted a series of
particles to represent the posterior distribution of sig-
nal stochastic process. For example, an algorithm
combining compressive sense and particle filter was

introduced in [27]. However, it only used the com-
pressive sense to estimate the original position and
utilized particle filter to track the trajectory.
In this paper, a spherical array is used to track the

moving sources in 3-D space because the array is 3D
symmetric structure and can capture high-order
sound field information [28–30]. Besides, comparing
with linear array, spherical array can capture the two-
dimension information of signal rather than single-
angle information. In addition, due to the special con-
struction of spherical array, the receiving signal can
be unfolded in special harmonic domain, which can
separate the signal position coordinates and sensor
position coordinates conveniently.
A new method is proposed based on the spherical

array to track the 2-D dynamic DOAs. It combines
the variational Bayesian inference and KF to improve
the tracking performance. First, a transition probabil-
ities (TP) model is built to describe the state transi-
tion process of a signal. In this model, the source
moves to an uncertain situation with an equal prob-
ability rather than a determining expected DOA
change in [26]. In addition, TP model is convenient
to build with a tracking framework and adopts sparse
methods to estimate signal position. Based on this
model, an alternating iterative method is developed to
track DOAs. In the first step, we use the KF method
to estimate the signal values. In the second step, we
use variational sparse Bayesian learning (VSBL) to
learn the variances of the measurement noise and
state noise, which are useful to update the signal state
in the KF method. This is an interdependent process.
There are three differences between the proposed ap-

proach and the method appeared in paper [26]. On the
one hand, the proposed method constructs a real-
valued steering matrix in signal model rather than split-
ting the complex value into several real-valued ones,
which can reduce a half of the computational quantity
approximately. On the other hand, the KF estimation
values is used instead of the Bayesian estimation values.
The main contribution of paper [26] is putting the esti-
mation parameters of KF to optimize the low bound of
relate vector machine. However, the KF estimation will
be embedded in VSBL to improve the precision further
in this paper. Finally, we introduce the off-grid model
to overcome the mismatch problems.
The rest of the paper is organized as follows. The

real-valued array signal model is given in Section 2.
The variational Bayesian inference is briefly reviewed,
and the proposed tracking method is introduced in
Sections 3 and 4. Numerical examples and simulation
results are given in Section 5. Section 6 concludes
the paper.
The notations description as:
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(a, b, A, B,⋯), scalar variable arg(⋅), phase operator

(A, B,⋯), the matrix variable |⋅|, the absolute value

(a, b,⋯), column vector (⋅)+, the Moore-Penrose
pseudo inverse

(⋅)T, transpose operator (⋅)', the derivation operator

(⋅)∗, complex conjugation operator ‖⋅‖, l2 norm

(⋅)H, conjugate transpose operator ‖⋅‖F, Frobenius norm

diag(⋅), diagonal matrix 〈⋅〉, expectation operator

blkdiag(⋅), block diagonal matrix A(n, :), the nth row of matrix A

Re(⋅), the real parts of a complex value A(:, n), the nth column of
matrix A

exp(⋅), the exponent signal Im(⋅), the imaginary parts of a
complex value

k, the wavenumber D, the number of signals

(ϑl, φl), the elevation and azimuth
of the sensor

ðθ^d;t ;ϕ
^

d;tÞ, the elevation and
azimuth of the dth signal at
the tth time interval

L, the number of sensors t, time interval

B, snapshots R, the radius of sphere array

G1, G2, the azimuth and elevation range i, the imaginary unit
ffiffiffiffiffiffi
−1

p

ðX^;X;XÞ, the space domain,
spherical domain and
real-valued receiving signal

ðA^; Â;A;AÞ, the true steering,
dictionary, the spherical and
real-valued matrix

ðS^; S; SÞ, the space amplify, the
sparse amplify signal and the
real-valued amplify signal

ðV^;V;VÞ, the space domain,
the spherical and the
real-valued noise

hn, spherical Hankel function
of order n

Ymn ð�Þ, the spherical harmonic
of order n and degree m

In, an n × n identity matrix jn, the n-order spherical Bessel
function

Jn, the exchange matrix with
ones on its antidiagonal and
zeros elsewhere

(⋅)', the derivation operators

Γ(⋅), a Gamma function 0n, a column vector containing
n zeros

(A\b), take the variables A except
variable b

2 Real-valued array signal model
Assuming D dynamic narrowband far-field signals with the

wavenumber k impinge on a spherical array from Φ
^

d;t ¼ ð
θ
^

d;t ; ϕ
^

d;tÞ . It is assumed that there are B snapshots avail-
able to process the received data and estimate DOA in each
time interval. We use t to represent the range [(t − 1)B + 1,
⋯, tB] for simplicity. The signal angular change is slow so
that it can be considered as fixed in the time interval t. The
spherical array is made of L identical isotropic elements
with radius R in Fig. 1. The position of the lth sensor can
be described as Rl = R[cosφl sin ϑl, sinφl sin ϑl, cosϑl]

T. The
steering vector of the array is defined as

a^ θ
^

d;t; ϕ
^

d;t

� �
¼

exp ikR sinθ
^

d;t sinϑ1 cos ϕ
^

d;t−φ1

� �
þ cosϕ

^

d;t cosφ1

� �� �
⋮

exp ikR sinθ
^

d;t sinϑL cos ϕ
^

d;t−φL

� �
þ cosϕ

^

d;t cosφL

� �� �
2
664

3
775:

ð1Þ
where i ¼ ffiffiffiffiffiffi

−1
p

. The output of the array is given by

X
^

t ¼ A
^

tS
^

t þ V
^

t ; ð2Þ

where Xt ¼ ½x^1;t;⋯; x^L;t�T , xl;t ¼ ½xlððt−1ÞBþ 1Þ;⋯; xlðtBÞ�T
is a column vector, which denotes the lth sensor receiving

signal, S
^

t ¼ ½ s^1;t ;⋯; s
^
D;t �T is the amplitude of source

signal, s
^

d;t ¼ ½sdððt−1ÞBþ 1Þ;⋯; sdðtBÞ�: A
^

t ¼ ½a^ ðθ^1;t ;

ϕ
^

1;tÞ;⋯; a^ ðθ^D;t ; ϕ
^

D;tÞ� is the steering matrix, and V
^

t

¼ ½v^1;t ;⋯; v^L;t �T is the measurement noise, and v^l;t

¼ ½vlððt−1ÞBþ 1Þ;⋯; vlðtBÞ�T .
In order to construct a sparse signal model, we divide

the azimuth and elevation range into G1 > >D and
G2 > >D grids, respectively. That is to say, the whole 2-
D angular space is divided into G =G1G2 grids noted as
Φ = {Φ1,⋯,ΦG}, where Φg ¼ ðθg1 ;ϕg2

Þ , g1 = 1, ⋯, G1,

g2 = 1, ⋯, G2. The output of the sensors at the time
interval t can be reformulated as

X
^

t ¼ ÂSt þ V
^

t ; ð3Þ

where Â ¼ ½a^ ðΦ1Þ;⋯; a^ ðΦGÞ� is the redundant

dictionary matrix containing the interested angles Φ
^

d;t ,

d = 1, ⋯, D, and St ¼ ½s1;t;⋯; sG;t �T is a sparse matrix
with only D nonzero rows corresponding to the
positions of the sources. a

^
lðΦgÞ denotes the lth element

Fig. 1 Spherical array geometry
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of the dictionary vector a^ ðΦgÞ , and it can be
represented using spherical harmonics [31] as

a^l Φg
� � ¼XN

n¼0

Xn
m¼−n

bn kRð Þ Ym
n Φg
� �� ��

Ym
n Ωlð Þ; ð4Þ

where Ωl = (ϑl, φl), N is the maximum spherical
harmonics order, bn(kR) is the far-field mode strength,
which depends on the array properties. The simplest
spherical array configuration is the open sphere
composed of sensors suspended in free space. It is
assumed that the other accessories, such as cables and
mounting brackets, have no effect for sensors capturing.
However, this configuration might make the open sphere
suffer from poor robustness at some certain frequency
points. Another common configuration is the rigid
sphere. In this configuration, sensors are mosaicked on a
rigid spherical baffle, which means the sound waves will
be scattered by the sphere. So, the mode strength of
these two configurations is different. The magnitude of
bn(kR)for different sphere is shown in Fig. 2.
The specific form can be expressed as

bnðkRÞ ¼ f 4πin jnðkRÞ open sphere

4πin
 
jnðkRÞ−

j′nðkRÞ
h′nðkRÞ

hnðkRÞ
!

rigid sphere;

ð5Þ

Ym
n ðθ;ϕÞ defined as:

Ym
n θ;ϕð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1
4π

n−mð Þ!
nþmð Þ!

s
Pm
n cosθð Þeimϕ ; ð6Þ

where 0 ≤ n ≤N, − n ≤m ≤ n, and Pm
n ð cosθÞ are the

associated Legendre polynomials [32].

According to (4), the dictionary matrix Â can be
written as

Â ¼ Y Ωð ÞB kð ÞYH Φð Þ; ð7Þ

where Y(Ω) is an L × J spherical harmonic matrix
whose lth row is given as:

y Ωlð Þ ¼
	
Y 0

0 Ωlð Þ|fflfflffl{zfflfflffl}
n¼0

;Y −1
1 Ωlð Þ;Y 0

1 Ωlð Þ;Y 1
1 Ωlð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

n¼1
;⋯;Y −N

N Ωlð Þ;⋯;YN
N Ωlð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

n¼N

�
;

ð8Þ

where J = (N + 1)2, Y(Φ) is a G × J spherical harmonic
matrix defined similarly to Y(Ω), and B(k) is a J × J far-
field mode strength matrix:

B kð Þ ¼ diag

�
b0 kRð Þ|fflfflffl{zfflfflffl}

n¼0

; b1 kRð Þ; b1 kRð Þ; b1 kRð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
n¼1

;⋯; bN kRð Þ;⋯; bN kRð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
n¼N



:

ð9Þ

From (7), the dictionary matrix consists of three
terms. The first and the second terms are only
correlated with the sensor positions and the
wavenumber, respectively. Furthermore, considering
Y(Ω)B(k) is an L × J matrix (L ≥ J) that has a left pseudo
inverse, (3) can be rewritten as:

Xt ¼ ASt þ Vt ; ð10Þ

where Xt ¼ B−1ðkÞYþðΩÞX^t , A ¼ YHðΦÞ , and Vt

¼ B−1ðkÞYþðΩÞV^t . Owing to the special property of
spherical harmonic function, the complex-valued
model can be transformed into a real-valued one to
reduce the computational complexity.
Because of the characterization of ½Ym

n ðΦÞ�� ¼ ð−1Þm
Y −m

n ðΦÞ for each element in A , we can transform A
into a matrix with column conjugation property [33]
for each order by Q1:

Fig. 2 The magnitude of bn for different sphere
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Q1Xt ¼ Q1ASt þQ1Vt ; ð11Þ
Q1 ¼ blkdiag Q1;0;⋯;Q1;N

� �
; ð12Þ

Q1;n ¼ diag −1ð Þn; −1ð Þn−1⋯; −1ð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
n

; 1; 1; 1;⋯1|fflfflfflffl{zfflfflfflffl}
n

0
@

1
A:

ð13Þ
Q1 is a unitary matrix. The new matrix Q1A is:

Q1A ¼ y00 Φð Þ;⋯; yNN Φð Þ;⋯; y0N Φð Þ;⋯; yNN Φð Þ� ��|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
2Nþ1

2
64

3
75
T

;

ð14Þ
where ymn ðΦÞ ¼ ½Ym

n ðΦ1Þ;⋯;Ym
n ðΦGÞ�T . From (14),

we can find that each order has the column
conjugation property, which means we can transform
the complex-valued matrix into a real-valued one by
linear combinations. So, the transform matrix is built
as:

Q2 ¼ blkdiag Q2;0;⋯;Q2;N

� �
; ð15Þ

Q2;n ¼
1ffiffiffi
2

p
In 0n Jn
0Tn

ffiffiffi
2

p
0Tn

−iJn 0n iIn

2
4

3
5; ð16Þ

where n ≥ 1, and Q2, 0 = 1. From (15), Q2 is a block
diagonal unitary matrix due to Q−1

2 ¼ QH
2 . Utilizing the

unitary transform matrix Q2, (11) can be changed into

Q2Q1Xt ¼ Q2Q1ASt þQ2Q1Vt: ð17Þ
We use ~Xt ¼ ASt þ ~Vt to stand for (17) for simplicity.

The new signal and noise matrices after the unitary
transformation can be described as ~Xt ¼ QXt and ~Vt

¼ QVt , where Q =Q2Q1. The real-valued dictionary
matrix can be inferred as follows:

A ¼ QA ¼ QYH Φð Þ ¼ Ŷ
H

Φð Þ

¼ ŷ00 Φð Þ;⋯; ŷ−NN Φð Þ;⋯; ŷ0N Φð Þ;⋯; ŷNN Φð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
2Nþ1

2
64

3
75
T

;

ð18Þ
where ŷmn ðΦÞ ¼ ½Ŷ m

n ðΦ1Þ;⋯; Ŷ
m
n ðΦGÞ�T and Ŷ

m
n ðΦgÞ is

Ym
n Φg
� � ¼

ffiffiffi
2

p
Re Ym

n Φg
� �� �

m < 0
Ym

n Φg
� �

m ¼ 0

−1ð Þm−1 ffiffiffi
2

p
Im Ym

n Φg
� �� �

m > 0

8<
:

ð19Þ
Afterwards, ~Xt , St , and ~Vt can be partitioned into real

and imaginary parts which are combined as Xt ¼ ½ Reð

~XtÞ; Imð~XtÞ� , St ¼ ½ ReðStÞ; ImðStÞ� , and Vt ¼ ½ Reð
~VtÞ; Imð~VtÞ� . Therefore, the complex model (11) can
be transformed into a real-valued one as:

Xt ¼ ASt þ Vt : ð20Þ

Now, the real-valued signal model (20) is obtained in
the spherical harmonics domain.

3 Variational sparse Bayesian learning embedded
with Kalman filter (VSBLKF) for 2-D DOA tracking
When signal sources move in the whole angular
space, it is necessary to model the evolution of St in
time. Most of existing tracking state models [19, 20,
34] reveal the velocity information of the target
movement. However, a TP model [35] is adopted to
describe the movement of sources in a more
practical way in this paper. It assumes that each
source can transfer to its adjacent grids or stay at
the current grid with an equal probability. So, the
grid set D = {1,⋯, G} distributes in a plane with G1

rows and G2 columns and is divided into three
types, the corner area (D1, D3, D7, and D9), the
marginal area (D2, D4, D6, and D8), and the center
area (D5). The corresponding relation between the
three areas and the angular grids (Φg) is shown in
Fig. 3. St = 1(gl, :) denotes the vector at the glth grid
during the time interval t − 1. The probability of the
vector moving to the gcth position during the time
interval t is fij as follows

Fig. 3 The schematic diagram of transition
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f glgc ¼

1=4 gl ¼ 1; gc−gl ¼ 0; 1;G2;G2 þ 1f g
1=6 gl∈D2; gc−gl ¼ 0;�1;G2;G2 � 1f g
1=4 gl ¼ G2; gc−gl ¼ 0;−1;G2;G2−1f g
1=6 gl∈D4; gc−gl ¼ 0; 1;�G2; 1�G2f g
1=9 gl∈D5; gc−gl ¼ 0;�1;� G2−1ð Þ;� G2 þ 1ð Þ;�G2f g
1=6 gl∈D6; gc−gl ¼ 0;−1;�G2;−1� G2f g
1=4 gl ¼ G1−1ð ÞG2 þ 1; gc−gl ¼ 0; 1;−G2; 1−G2f g
1=6 gl∈D8; gc−gl ¼ 0;�1;−G2;−G2 � 1f g
1=4 gl ¼ G; gc−gl ¼ 0;−1;−G2;−G2−1f g
0 otherwise

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð21Þ

Therefore, the vector in the gcth position at the time

interval t can be expressed as Stðgc; :Þ ¼
PG

gl¼1 f glgcSt¼1ð
gl; :Þ. Considering the state noise exists in the process of
transition, the state transition model can be described as

St ¼ FSt−1 þ Et ; ð22Þ
where Et is the state noise.
In tracking dynamic targets, the most popular

method is KF technique. It is based on Gaussian
assumption. In the standard KF method, the
covariance matrix of the state noise and the variance
of the measurement noise are assumed to be known.
However, in real applications, it is difficult to know
these parameters. Because of the advantage of VSBL,
which can model the sparse signal well, we want to
introduce VSBL into the KF method to estimate the
covariance matrix of the state noise and the
measurement noise variances. Nevertheless, based on
the model we construct, it might be infeasible to
calculate the posterior distribution. Because the
dimensionality of the latent parameters is too high to
calculate directly. Therefore, we attempt to turn to
approximation schemes for help. The marginal
probability of the observed data X is gotten by
integrating over the remaining unobserved variables
θ(including the latent variables S and some hyper-
parameters) [36].

P Xð Þ ¼
Z

P X; θð Þdθ: ð23Þ

However, it is knotty to solve this integration. The
variational approaches can be used to solve this problem
by pulling in a distribution Q(θ) which allows the
marginal log likelihood to be decomposed into two terms

lnP Xð Þ ¼ L Qð Þ þ KL Q‖Pð Þ; ð24Þ

L Qð Þ ¼
Z

Q θð Þ ln
P X; θð Þ
Q θð Þ dθ; ð25Þ

where KL(Q‖P) is the Kull-Leibler divergence between
Q(θ) and the posterior distribution P(θ|X) and it is
given by

KL Q‖Pð Þ ¼ −
Z

Q θð Þ ln
P θjXð Þ
Q θð Þ dθ; ð26Þ

L(Q) is a functional about Q(θ). Since KL(Q‖P) ≥ 0, it
follows that L(Q) is strictly lower bound on lnP(X).
Furthermore, because the left side of (24) is independent
of Q(θ), maximizing L(Q) is tantamount to minimizing
KL(Q‖P). Therefore Q(θ) represents an approximation to
the posterior distribution P(θ|X). The goal in a
variational approach is to choose a suitable form for
Q(θ) which is adequately simple and flexible. Besides, it
should make the lower bound L(Q) to be readily
evaluated and tight. In fact, some family of Q(θ)
distributions can be chosen and the best approximation
within this family is found by maximizing the lower
bound with respect to Q(θ). One approach is to assume
some tractable forms for Q(θ) and then to optimize L(Q)
about the parameters of the distribution [36, 37]. We
adopt an alternative step and consider a factorized form
over the component variables {θζ} in θ as follows

Q θð Þ ¼
Y
ζ

Qζ θζð Þ: ð27Þ

This scheme is called a mean field theory [38].
Because of the true posterior distribution might not be
calculated, an approximate distribution is introduced to
estimate the distribution. In this paper, the mean field
theory is adopted as the tool to solve above problem. In
this method, we only limit the type range of probability
distribution rather than the form of probability
distribution, which can make the approximate
distribution become more flexible and extensive. In the
scenario considered, the signal is sparse in the whole
space at each time interval, the potential position and
noise variance can be seen as the unobserved variables,
and the array receiving the signal can be seen as the
observation variables. Therefore, the final model can be
solved with the VSBL [39]. In the mean field theory of
the posterior, the algorithm can optimize one parameter
at a time while fixing all other parameters. The optimal
distribution for each of the parameters can be expressed
as:

lnQðμÞ∝
*
lnp

 
X; θ

!+
θ∖μ

; ð28Þ

where μ indicates one of the parameter and
〈lnp(X, θ)〉θ\μ is the expectation of the joint
probability of the data and latent variables which take
over all variables except μ.
According to the Eq. (22), the state noise is

assumed as the Gaussian distribution. The prior
distribution of Etis
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p Etð Þ ¼ ℳN G;2B 0;Σtjt ; IG
� �

¼ 2πð Þ−G Δtj j−B exp −
1
2
tr ΣT

tjtΔ
−1
t Σtjt

� �� �
:

ð29Þ

Since the measurement noise satisfies Gaussian
distribution, we can get

p Vtð Þ ¼ ℳN J ;2B 0;Δt ; I2Bð Þ
¼ 2πð Þ− J Δtj j−B exp −

1
2
tr VT

t Δ
−1
t Vt

� �� �
; ð30Þ

where Δt = diag(Δ1, t,⋯,ΔJ, t). The likelihood of
measurement signal can be expressed as

p Xt jSt ;Δtð Þ ¼ ℳN J ;2B ASt;Δt ; I2Bð Þ
¼ 2πð Þ− J Δtj j−B exp −

1
2
tr Xt−AStð ÞTΔ−1

t Xt−AStð Þ
h i� �

:

ð31Þ
Equivalently, we introduce a conjugate prior over

the inverse noise variance Δt given by Gamma
distribution:

p Δ−1
t

� � ¼YJ
j¼1

Gam Δ−1
j;t jb Δð Þ

j;t ; c j;t
� �

: ð32Þ

The Eq. (31) will be the exponential form of quadric
function about variable St, when the variable Δt is seen
as a constant. Therefore, the conjugate prior of St will
obey the Gaussian distribution [36]. So, the prior
distribution of St is

p StjFSt−1;Λtð Þ ¼ ℳN G;2B FSt−1;Λt; IGð Þ

¼ 2πð Þ−G Λtj j−B exp −
1
2
tr St−FSt−1ð ÞTΛ−1

t St−FSt−1ð Þ
h i� �

:

ð33Þ
The signal satisfies Gaussian distribution with zero

mean. The variance of St is Λt ¼ diagðα−1
t Þ , where

hyperparameter αt = [α1, t,⋯, αG, t]. At the same time,
the conjugate prior of αg, t satisfies Gamma distribution

p αg;t
� � ¼ Gam αg;tjag;t; bg;t

� � ¼ b
ag;t
g;t α

ag;t−1
g;t e−bg;tαg;t=Γ ag;t

� �
;

ð34Þ
where Γ(⋅) is a Gamma function [40]. The

expectation of αg, t in (34) is 〈αg, t〉 = ag, t/bg, t. Note
that the marginal distribution of St can be obtained
by integrating over αt. Note that if the prior
distribution and likelihood function conjugate each
other, it will make the posterior distribution to have
the same form with prior distribution [36].
Using the chain rule of probability [39], the posterior

probabilistic distribution can be expressed as:

p αt; St ;Δt jXtð Þ∝p Xt jSt ;Δtð Þp Stjαtð Þp αtð Þp Δtð Þ:
ð35Þ

The variational framework introduces a factorial
representation (27) approximating to the posterior
distribution p(αt, St, Δt|Xt) by Q(αt, St, Δt) =Q(St)Q(αt)
Q(Δt). We propose the VSBLKF algorithm using the
expectation maximization (EM) updates. In order to
compute the E-step, it needs to know the posterior
distribution of the unknown sparse state signal, which
is Gaussian with mean Ut ∣ t and covariance Σt ∣ t.
These parameters can be computed by using KF pre-
diction and updating equations as follows:
Predict steps:

Utjt−1 ¼ FUt−1jt−1; ð36Þ

Σtjt−1 ¼ FΣt−1jt−1FT þ Λth iq: ð37Þ

Update steps:

Kt ¼ Σtjt−1AT AΣtjt−1AT þ Δh iq
� �−1

; ð38Þ

Utjt ¼ Utjt−1 þ Kt Xt−AUtjt−1
� �

; ð39Þ
Σtjt ¼ Σtjt−1−KtAΣtjt−1: ð40Þ

Here, the initial value U0|0 can be assumed to be
known. In the M-step, we use VSBL to calculate the
state variance and measurement variance of the current
time. According to the Eq. (28)

lnQðαtÞ∝
D
lnpðSt jFSt−1;ΛtÞpðαtÞ

E
θ∖αt

¼
D
lnpðStjFSt−1;ΛtÞ

E
þ lnpðαtÞ

¼ −Bln j Λt j − 12 tr
nD

ðSt−FSt−1ÞTΛ−1
t ðSt−FSt−1Þ

Eo
þ
XG
g¼1

n
ðag;t−1Þlnαg;t−bg;tαg;t

o
þ C

¼
XG
g¼1

n
ðag;t−1þ BÞlnαg;t−

�
bg;t þ 1

2

D
ðSt−FSt−1ÞðSt−FSt−1ÞT

E�
αg;t
o
þ C

ð41Þ

C is a constant number. Therefore, the posterior is
given as:

Q αtð Þ ¼
YG
g¼1

Gam αg;t jag;t ; bg;t
� �

; ð42Þ

ag;t ¼ ag;t þ B; ð43Þ

bg;t ¼ bg;t þ 0:5 St−FSt−1ð Þ St−FSt−1ð ÞT
D E

; ð44Þ
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Λg;t
� � ¼ ag;t=bg;t; ð45Þ

The posterior distribution of the noise inverse variance
can be similarly calculated as

Q Δtð Þ ¼
YJ
j¼1

Gam Δ j;t jb Δð Þ
j;t ; c j;t

� �
: ð46Þ

c Δð Þ
j;t ¼ c Δð Þ

j;t þ 0:5 Xt−AStð Þ Xt−AStð ÞT
D E

; ð47Þ

b
Δð Þ
j;t ¼ b Δð Þ

j;t þ J ; ð48Þ

Δ j;t
� � ¼ b

Δð Þ
j;t =c j;t ; ð49Þ

where the hyperpriors ag;t ; bg;t ; b
ðΔÞ
j;t ; c j;t are set as

10‐3. From (38), we can see that using these
recursions cannot guarantee the prediction sparse.
Running (38) up to a large enough t, the signal
strength of this target will spill over to all entries of
Ut ∣ t. So, we propose a state corrector method to
determine the true moving direction of next time
and guarantee the prediction sparse. For each signal,
there are different possible positions at next time.
These possible positions correspond to nonzero
values in Ut ∣ t noted as Utjtðp1; :Þ;⋯;UtjtðpPD

d¼1
wd
; :Þ ,

where wd ∈ {4, 6, 9}. The value in the set correspond
to different signal positions—corner area, marginal
area, and central area successively. We find D
maximum values in Ut ∣ t corresponding to the

maximum of ‖[A(:, pκ)]
TXt‖2, where κ ¼ 1;⋯;

PD
d¼1

wd; and consider these positions as true directions.
At the same time, the rest of the rows in Ut ∣ t are
set to zeros. The steps of the proposed algorithm are
summarized in the following. After that, we discuss
the computational complexity of two models using
VSBLKF to track DOA trajectory. The two models
are the traditional complex-valued model and the
proposed real-valued model, respectively. Different
models lead to different measurement matrix dimen-
sions, which may affect the parameter updates in
VSBL. Table 1 shows the amount of computations
using the two models. At, c, Xt, c, St, c and At, r, Xt,

r, and St, r represent the measurement matrices,

receiving data and sparse signals in the complex-
valued model and real-valued model. Real multiplica-
tion and real addition are used to evaluate the com-
putational cost. Our proposed real model transforms
the complex-valued measurement matrix into a real-
valued one through a unitary transformation without
changing the dimension. After the real-valued trans-
form, the computation complexity for each iteration
will reduce much when the steering matrix is used
to calculate. Therefore, using the real-valued trans-
form can improve the rate of the proposed algo-
rithm. A unitary transformation needs 4J2T real
multiplications and (4J − 2)JT real additions, and it
does not join the iteration of SBL. The
computational load of the real-valued model is much
lower than that of the complex-valued model, so the
computation complexity can be reduced greatly.

4 Extension to off-grid problem
The assumption that the estimated signal directions
lie on specified grids is unrealistic. To reduce the

Table 1 Comparison of computational load in one iteration

Real multiplication Real addition

Complex-valued model AH
t;cΣtjt−1 4JG2 (4J − 2)G2

AH
t;cSt;c 4JG (4G − 2)J

Real-valued model AH
t;rΣtjt−1 2JG2 2(J − 1)G2

AH
t;rSt;r 2JG 2(G − 1)J
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errors which are caused by mismatch of the real lo-
cations and partition locations, the denser grids can
be applied when dividing the measurement matrix of
signal. Nevertheless, each column of the measure-
ment matrix needs to satisfy the cross-unrelated
property for sparse recovery. The denser grids might
lead to a higher complexity and make the dictionary
become coherent that violates the necessary condi-
tions for compressive sensing. Hence, to make the
proposed algorithm more practical, the off-grid
model is considered. As mentioned earlier, the direc-

tional matrix Ŷ
HðΦÞ in the VSBLKF algorithm is

constructed on the uniform sampled angle grids Φ
= {Φ1,⋯,ΦG} with Φg = (θg, ϕg), g = 1, ⋯, G. The tar-

get signal angles are Φ
^¼ fΦ^1;⋯;Φ

^

Dg with Φ
^

d ¼ ðθ^d;

ϕ
^

dÞ , d = 1, ⋯, D, D<<G, and ~Φd which is not equal
to Φg. In addition, we define the nearest grid of tar-

get signal angles as Φ̂gd ¼ ðθ̂gd ; ϕ̂gd
Þ . The true

steering vector að~ΦdÞ can be approximated by its
Taylor extension as [41].

a ~Φd
� �

≈ a Φ̂gd

� �þ b θ̂gd

� �
θ
^

d−θ̂gd
� �

þ c ϕ̂gd

� �
ϕ
^

d−ϕ̂gd

� �
;

ð50Þ
where aðΦ̂gd Þ represents the original steering vector, b

ðθ̂gd Þ and cðϕ̂gd
Þ are the partial derivative of θ

^

d and ϕ
^

d

with respect to Φ̂gd . Let

B ¼ b θ1ð Þ;⋯;b θGð Þ½ Þ�; ð51Þ
C ¼ c ϕ1ð Þ;⋯; c ϕGð Þ½ �; ð52Þ
βT ¼ β1; β2;⋯; βG

� �
; ð53Þ

γT ¼ γ1; γ2;⋯; γG
� �

; ð54Þ

βg ¼
(

θ
^

d−θ̂gd ; g ¼ gd
0; otherwise

; ð55Þ

γg ¼
(

ϕ
^

d−ϕ̂gd
; g ¼ gd

0; otherwise
: ð56Þ

So, the new steering matrix A + B diag(β) + C
diag(γ) can replace the original steering matrix A to
estimate both signal coarse girds and their bias with
elevation and azimuth, simultaneously. According to
[41], the author solved this problem from the Bayes-
ian perspective. In this section, we use the least
squares estimation to calculate the biases of eleva-
tion and azimuth, respectively. In the first step, we
use VSBL to get the coarse estimation of true loca-
tion. Next, using the expectation Ut ∣ t to minimize
the following equation as

min
βξ ;γξ

βξ
�� ��2 þ γξ

�� ��2 þ Xt− Aþ B diag βξ� �þ C diag γξ
� �� �

Utjt
�� ��2

F ;

ð57Þ
where βξ stands for the kth iteration update of β and
γξ represents the ξth iteration update of γ. When
updating difference biases, we keep another one fixed.
It is tantamount to the least squares problem when
we want to solve

Xt− Aþ Ct diag γξ
� �� �

Uξ
tjt ¼ BΞξ

Stjtβ
ξ ; ð58Þ

Xt− Aþ Bt diag βξ
� �� �

Uξ
tjt ¼ CΞξ

Stjtγ
ξ ; ð59Þ

where Ξξ
Stjt ¼ diagðSξ1;tjt ;⋯; SξG;tjtÞ. So, at the kth iter-

ation update of β is:

βξ ¼ BΞξ
Stjt

� �þ
Xt− Aþ C diag γξ

� �� �
Uξ

tjt
� �

: ð60Þ

In a similar manner, the iterative form of γ can be
obtained as:
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γξ ¼ CΞξ
Stjt

� �þ
Xt− Aþ B diag βξ

� �� �
Uξ

tjt
� �

: ð61Þ

The initial value of β and γ are set as 0G (a col-
umn vector containing G zeros). The number of
source signals is known a priori. Each signal current
coarse location can be approximated by VSBLKF and
the biases between the reference and estimation are
gauged using (59) and (60), respectively. The con-
crete steps are summarized in Algorithm 2.

5 Results and discussion
In this section, we want to verify the robustness and
performance of the proposed algorithm compared
with the standard KF, SBL, and VSBL methods. We
use a rigid spherical array, which has 32 sensors dis-
tributed in a uniform way and radius R = 0.1 m. The
maximum order of the spherical harmonics is N = 4.
In our experiments, the ranges of elevation and azi-
muth are defined from 0° to 180° and from 0° to
360°. We divide them into 31 and 62 grids with sta-
tionary angular interval respectively. Therefore, there
are 1922 grids which are the possible angles for
source signals. Note that we only choose the range
of azimuth from 0° to 180° in our simulations to re-
duce the calculate complexity. In the moving
process, assuming each source is likely to move to
its adjacent grids or stay at current grid, which
means a source can move to the different directions
with 6° or be static with equal probability. The pro-
posed method can track other trajectories as long as
the trajectory can be described by the grids and obey
the TP model. The trajectory used in this paper is
randomly generated under the frame of TP model.
In order to show a series of performance quantita-
tively, such as on-grid, off-grid, and RMSE vs SNR,
we used one trajectory to explain these results. One
random realization of this movement model is con-
sidered for T = 50 time interval. The number of

Monte Carlo trials is 500. The hyperpriors ag;t ; bg;t ;

bðΔÞj;t ; c j;t are set as 10‐3.

5.1 Example 1: the performance of the proposed method
with an on-grid model
In the first simulation, we show the tracking per-
formance of one signal at each time interval. The sig-
nal to noise ratio (SNR) is set as 12 dB while the
strength of the signal is 10. The moving trace ob-
tained by the four methods are shown in Fig. 4.
Figures 5 and 6 give the tracking performance at dif-
ferent time intervals. The performance of SBL is
poor, because the likelihood function of the measure-
ments involved in SBL cannot match the true one.

We can see that the VSBLKF method achieves the
best tracking performance because it combines the
advantages of KF with VSBL method. Figures 7 and 8
denote the signal angle errors (the differences be-
tween the estimated angle and reference angle) vary-
ing with time intervals. From these curves, the
proposed method is better than the other approaches.

5.2 Example 2: the RMSE versus SNR with an on-grid
model
In Fig. 9, we compare the performance of the pro-
posed algorithm under different SNRs with other

Fig. 4 Traces of four methods based in the on-grid model

Fig. 5 Estimated azimuth as a function of time
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approaches. The SNR is set as [7, 10, 13, 16, 20]. Root
mean square error (RMSE) is adopted to measure
the estimation performance under different SNRs.
The RMSE is given by:

RMSE ¼ 1
NUM

XNUM
n¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXD
d¼1

XT
t¼1

θ
^

d;t−θ̂d;t
� �2

þ ϕ
^

d;t−ϕ̂d;t

� �2
=2DT

vuut ;

ð62Þ

where ðθ^d;t ; ϕ
^

d;tÞ denotes the actual DOA, ðθ̂d;t ; ϕ̂d;tÞ
denotes the estimated DOA, NUM is the number of
Monte Carlo trials, T is the time interval number, and

D is the signal numbers. We see that the VSBL
method outperforms the KF method because the lat-
ter one does not consider the changes of the state
noise variance. The prior knowledge of the variances
of the state noise and the measured noise must be
known for the KF approach. The proposed VSBLKF
approach shows better performance than VSBL in
tracking DOAs because the former one exploits the
correlation of different time intervals. Just like the ex-
periment display in Fig. 3, there are always some
points deviating the ideal locations randomly.

5.3 Example 3: the performance of the proposed method
with an off-grid model
In this part, we assume that the moving signal angu-
lar trajectory deviates the sampling grids. The deviat-
ing errors are set to be a standard normal
distribution. The orbits of VSBLKF and OGVSBLKF
are shown in Fig. 10, where the SNR is 12 dB and
the time interval number is 50. Figure 10 shows that
VSBLKF still cannot track the true locus reliably, but
the proposed method can estimate the angular locus
more accurately. Note that the OGVSBL method is
not considered here because the OGVSBL method is
an improving algorithm under the condition of locat-
ing in coarse grids correctly. As we can see in Fig. 4,
the VSBL method cannot satisfy the demand yet. In
Figs. 11 and 12, we can observe the specific errors
between the estimated values and references clearly in
the azimuth and elevation, respectively. We used the
least-square estimation to calculate the deviation.
However, we can find that it still has some deviation.

Fig. 6 Estimated elevation as a function of time

Fig. 7 Azimuth error as a function of time

Fig. 8 Estimated elevation error as a function of time
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It might be because the least square estimation we
used still cannot handle the deviation problem well.

5.4 Example 4: the RMSE versus SNR with an off-grid
model
In Fig. 13, we compare the performance of
OGVSBLKF and VSBLKF under different SNRs vary-
ing from 7 to 20 dB with 3 dB interval approximately.
In this simulation, we set the time interval number as
50 and Monte Carlo trials as 300. The angular deviat-
ing errors are set to be a normal distribution with a

variance of 1.5. The OGVSBLKF shows better perfor-
mances than the VSBLKF method.

5.5 Example 5: the RMSE versus different grids
In Fig. 14, the influence of the proposed method with
different grid intervals is depicted. From the figure, the
estimation error will increase with the larger grid inter-
val. Therefore, it is importance to select the suitable grid
interval to estimate the signal direction trajectory when
adopting the proposed method. However, this suitable
grid interval might require several repeated tests. If we
want to get a trade-off between performance and model
complexity, we can use a coarse grid to search firstly, a

Fig. 10 Traces of two proposed methods in the off-grid model

Fig. 11 Estimated elevation as a function of time

Fig. 12 Estimated azimuth as a function of time

Fig. 9 RMSE as a function of SNR in the on-grid model
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fine grid then used to improve the precision of
estimation.

5.6 Example 6: the performance of the proposed method
for multiple signals
In this example, we compare our proposed algorithm
with other methods in the condition of multiple mov-
ing signals impinging on the spherical array. It aims
at illustrating that our proposed algorithm can be ap-
plicable to tracking multiple signals. Figure 15 is used
to demonstrate the tracking performance when the

SNR is 12 dB and the number of time intervals is 17
from the perspectives of elevation and azimuth. As
we can see, SBL cannot track the signal trajectory
reasonably and our proposed algorithm shows advan-
tages in tracing multiple signals.

5.7 Example 7: the cost time versus different methods
In addition, the computational time of different DOA
tracking methods is also analyzed. We conduct an
evaluation of the computational complexity using TIC
and TOC instruction in MATLAB. All the simulation
results are obtained using the same PC with an Intel
i7-6700 and 8 GB RAM, running MATLAB 2015b on
64-bit Windows 10. The average computational time
is given in Table 2, which is obtained from 300
Monte Carlo trials and 50 time intervals. It can be
seen that the time cost of the proposed method is
more than that of VSBL, but the precision of the pro-
posed method is higher. Comparing VSBLKF with
OGVSBLKF, we observe that the method based on
the off-grid model only needs 7 s more than that
based on the on-grid model, so the performance of
OGVSBLKF is better. Note that the theoretic com-
plexity is O(Tυ) approximately, υ is the iteration
numbers. The reason of long cost time of the propose
method is that using the Kalman filter embedded into
the VSBL might increase the iteration numbers to
avoid the local values.

Fig. 13 RMSE as a function of SNR in the off-grid model

Fig. 14 RMSE as a function of SNR in the off-grid model with different
grid interval

Fig. 15 Traces of three methods for two signals

Table 2 Comparison of time cost for different methods

VSBL VSBLKF
(real)

OGVSBLKF
(real)

VSBLKF
(complex)

OGVSBLKF
(complex)

Time(s) 4.51 21.23 28.51 44.31 55.36
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6 Conclusions
In order to track the 2-D DOAs, we construct the state
transition function according to the TP model based on
a spherical array. The angular space is divided into grids
to model a sparse signal. Through combining VSBL and
KF methods, we propose an effective method called
VSBLKF to track dynamic DOAs, where the KF estima-
tion is embedded into the VSBL to estimate the signals.
Besides, we extend our algorithm to the off-grid model.
Simulations show that the proposed method achieves
better tracking and anti-noise performance than VSBL
and KF. In the future, we will extend the algorithm to
wideband signals.
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