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Abstract

Detecting abnormal events in crowded scenes is an important but challenging task in computer vision. Contextual
information is useful for discovering salient events in scenes; however, it cannot be characterized well by commonly
used pixel-based descriptors, such as the HOG descriptor. In this paper, we propose contextual gradients between two
local regions and then construct a histogram of oriented contextual gradient (HOCG) descriptor for abnormal event
detection based on the contextual gradients. The HOCG descriptor is a distribution of contextual gradients of
sub-regions in different directions, which can effectively characterize the compositional context of events. We
conduct extensive experiments on several public datasets and compare the experimental results using state-of-the-art
approaches. Qualitative and quantitative analysis of experimental results demonstrate the effectiveness of the proposed
HOCG descriptor.
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1 Introduction
As one of the key technologies in intelligent video se-
quence, abnormal event detection (AED) has been actively
researched in computer vision due to the increasing con-
cern regarding public security and safety [1]. A large num-
ber of cameras have been deployed in many public
locations, such as campuses, shopping malls, airports,
railway stations, subway stations, and plazas. Traditional
video surveillance systems rely on a human operator to
monitor scenes and find unusual or irregular events by
observing monitor screens. However, watching surveil-
lance video is a labor-intensive task. Therefore, significant
efforts have been devoted to AED in video surveillance,
and great progress has been made in recent years, which
can free operators from exhausting and tedious tasks and
thereby significantly save on labor costs.
AED in crowded scenes is fairly challenging due to

many factors, such as frequent occlusion, heavy noise,
clutter and dynamic scenes, complexity and diversity of
events, unpredictability, and contextual dependency. The

aim of AED is to find unusual or prohibitive events in a
scene and essentially identify the patterns that signifi-
cantly deviate from a predefined normal pattern of
models via pattern recognition [2]. The definition of an
abnormal event is heavily dependent on how a normal
event is modeled and which event description is applied.
Therefore, the key component of a successful AED is
event description, which is the organization of raw input
data into various constructs that represent abstract
properties of video data [3].
Traditional pixel-wise descriptors, such as the HOG de-

scriptor, are normally employed to capture the appearance
and/or motion of an event. However, these descriptors are
unable to capture contextual information that is useful for
discovering saliency events in scenes. In contrast to the
pixels statistics, contextual information is macro-structure
information, which reflects the composition relationship
among regions. Boiman et al. [4] first exploited the distribu-
tions of cuboids inside a larger ensemble. The authors pro-
posed an inference by composition (IBC) algorithm to
compute the joint probability between a database and query
ensemble. Although the algorithm was accurate, the com-
putational burden was heavy. Roshtkhari et al. [5] modeled
the spatio-temporal composition of small cuboids in a large
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volume using a probabilistic model and detected abnormal
events with irregular compositions in real-time. Li et al. [6]
exploited the compositional context under a dictionary
learning and sparse coding framework. Gupta et al. [7] pro-
posed a probabilistic model that exploits contextual
information for visual action analysis to improve object rec-
ognition as well as activity recognition. However, these
approaches use a learning framework with complicated in-
ference processes rather than an efficient handcrafted de-
scriptor to capture the contextual information.
In this paper, we extend the traditional gradient from

pixel- to context-wise and thus propose a novel HOCG
descriptor to capture contextual information for event de-
scription. Compared with the traditional HOG descriptor,
the HOCG descriptor is the distribution of contextual gra-
dients in different directions, which can reflect the
compositional relationship among sub-regions within an
event. The proposed HOCG descriptor is compact, flex-
ible, and discriminative. We employ an online sparse re-
construction framework to identify abnormal events with
high reconstruction costs. We conduct extensive experi-
ments on different public datasets and make extensive
comparisons with the HOG as well as other state-of-the-
art descriptors to demonstrate the advantages of the pro-
posed HOCG descriptor.
The main contributions of our work are as follows:
1) We extend the gradient computation from pixel- to

context-wise. The contextual gradient is more descriptive
and flexible than the pixel-wise gradient and is useful in
finding salient events in scenes;
2) We construct a HOCG descriptor for event description

in AED using the contextual gradients of sub-regions within
an event. The HOCG descriptor can efficiently capture con-
textual information;
3) We conduct extensive experiments on different data-

sets to validate the effectiveness of the HOCG descriptor
for AED.
The remainder of this paper is organized as follows.

Section 2 gives a brief overview of related works regard-
ing event descriptors in AED. Section 3 presents a de-
tailed description of our proposed approach, including
the principle of the context-wise gradient, construction
of the HOCG descriptor, and AED using the HOCG de-
scriptor. Experiments and results analysis are presented
in Section 4, and Section 5 concludes the paper.

2 Related works
Event description is one of the main topics of AED research
and has a great impact on detection performance. Nor-
mally, we must transform raw video into a specific feature
space in which abnormal events can become more salient
[8]. Using an effective descriptor can capture important in-
formation and decrease intra-class variations, which are
helpful for achieving a perfect performance. In previous

works, the commonly used event descriptors can be ap-
proximately classified as follows:

1) Trajectory-wise descriptor

A trajectory-wise descriptor is high-level and robust and
can accurately describe the spatial movement of objects.
The trajectory of moving objects can be obtained by apply-
ing tracking methods, such as a Kalman filter, particle filter,
among others. Then, normal trajectories are utilized to
build the normal event model. Finally, the abnormal event
is identified by measuring the deviation or probability of
the testing trajectory with respect to the normal event
models. Li et al. [9] learned a dictionary using normal tra-
jectories and then detected abnormal events according to
the reconstruction error of their trajectory under the
learned dictionary. Aköz et al. [10] proposed a traffic event
classification system that learned normal and common traf-
fic flows by clustering vehicle trajectories. Laxhammar et al.
[11] proposed a method for online learning and sequential
anomaly detection using trajectories. Bera et al. [12] pro-
posed a real-time anomaly detection method in low- to
medium-density crowd videos using trajectory-wise behav-
ior learning.
However, trajectory-wise descriptors tend to fail in

crowded and complex scenes since object detection and
tracking are difficult to implement in crowded scenes. In
addition, trajectory-wise descriptors mainly detect ob-
jects with unusual routes, while the body action of ob-
jects, such as jumping or falling down, cannot be
detected. Coşar et al. [13] considered the pros and cons
of trajectory-wise descriptors and proposed a unified
AED framework by incorporating both trajectory- and
pixel-wise analysis.

2) Pixel-wise descriptor

Pixel-wise descriptors can be directly extracted from
scenes without requiring object detection and tracking
and thus are frequently adopted for analyzing crowd
events. HOG and histogram of optical flow (HOF) are
two commonly used pixel-wise descriptors used in previ-
ous works. Wang et al. [3] applied HOF for AED. Zhao
et al. [14] utilized both HOF and HOG to describe the
motion and appearance inside a volume. Bertini et al.
[15] employed a spatio-temporal HOG to describe both
the motion and appearance of a volume. Zhang et al.
[16] combined the features of both HOF and gradients
for AED. Cong et al. [17] proposed a multiscale histo-
gram of optical flow (MHOF) to describe the motion in
a volume at different scales.
In addition to HOG and HOF, there are other types of

pixel-wise descriptors that can be used to solve specific
problems. Kaltsa et al. [18] proposed a histogram of oriented
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swarms (HOS) descriptor based on swarm theory to-
gether with the HOG to capture both the motion and
appearance in a volume. Colque et al. [19] developed
a 3D descriptor for AED called histogram of optical
flow orientation and magnitude and entropy
(HOFME), which can effectively capture motion (vel-
ocity and orientation), appearance, and entropy informa-
tion. Li et al. [20] modeled the pixels of a volume as a
mixture dynamic textures (MDT) to jointly model both
the motion and appearance within the volume. Wang et al.
[21] proposed a spatio-temporal texture (STT) descriptor
for real-time AED, which was constructed by transforming
the XY, XT, and YT slices of a volume from a
spatio-temporal domain into wavelet space. In [22, 23],
spatio-temporal oriented energy (SOE) was exploited, in
which a set of energy filters was used to capture a wide
range of image dynamics and filter the irrelevant variation.
Ribeiro et al. [24] proposed a Rotation-Invariant feature
modeling MOtion Coherence (RIMOC) descriptor for vio-
lence detection in unstructured scenes, which was able to
capture the structure and discriminate motion in a
spatio-temporal volume. However, pixel-wise descriptors
are unable to capture the contextual information in scenes,
which is necessary for AED in some cases, e.g., irregular
co-occurrence events.

3) Context-wise descriptor

A context-wise descriptor is another type of descriptor
that is used to capture contextual information and plays
a key role in the process of discovering salient events.
Contextual information can be classified into a motion
context and appearance context according to the de-
scriptor generated based on the motion/appearance fea-
ture words. Yang et al. [25] proposed a semantic context
descriptor both locally and globally to find rare classes
in a scene. Yuan et al. [26] exploited contextual evidence
using a structural context descriptor (SCD) to describe
the relationship of individuals. Hu et al. [27] proposed a
compact and efficient local nearest neighbors distance
(LNND) descriptor to incorporate the spatial and tem-
poral contextual information around a video event for
AED. In fact, contextual information is an important cue
for AED since it reflects the co-occurrence relationships
or macro-structural information among semantic de-
scriptors. Meanwhile, the context-wise descriptor is
more efficient and flexible than the pixel-wise descriptor
for AED since it is computed based on different types of
regional features. However, the context-wise descriptor
has not attracted as much attention as trajectory- and
pixel-wise descriptors.
In our work, the proposed HOCG descriptor is a

context-wise descriptor because it reflects the compositional
relationship of sub-regions rather than micro-information of

pixels within an event. Although previous works [4–7] also
exploited the contextual information for event description,
all of these works designed a learning framework to learn
the contextual descriptor rather than designing an effective
handcrafted contextual descriptor.

4) Deep-learned descriptor

In the last decade, much effort has been devoted to
learning an effective descriptor via deep learning. Differ-
ent types of deep neural networks have been designed to
learn rich discriminative features, and a strong perform-
ance has been achieved in AED. Hasan et al. [28] pro-
posed a convolutional autoencoder framework for
reconstructing a scene, and the reconstruction costs were
computed for identifying abnormalities in the scene.
Sabokrou et al. [29] proposed a deep network cascade for
AED. In the first stage, most normal patches were
rejected by a small stack of an auto-encode, and a deep
convolutional neural network (CNN) was applied to ex-
tract the discriminative features for the final decision. Hu
et al. [30] proposed a deep incremental slow features ana-
lysis (D-IncSFA) network to learn the slow features in a
scene. Feng et al. [31] proposed a deep Gaussian mixture
model (D-GMM) network to model normal events. Zhou
et al. [32] proposed a spatio-temporal CNN to learn the
jointed features of both appearance and motion. Al-
though a deep neural network can automatically learn
useful descriptors, handcrafted features could still play a
dominant role and be widely used in both image and
video domains because they can benefit from human in-
genuity and prior knowledge as well as enjoy flexibility
and computational efficiency without relying on large sets
of samples for training.

3 Approaches
In this section, we first introduce the principle of context-
ual gradient, then present the construction process of the
HOCG descriptor for an event, and finally, present the de-
tails of AED using the HOCG descriptor under the online
sparse reconstruction framework.

3.1 Contextual gradients
Different from traditional gradients that are computed
pixel-wise, contextual gradients are computed regional-
wise. We define the contextual gradients of the given re-
gion Rij in the vertical and horizontal as

Gi i; jð Þ ¼ sign Riþ1; j;Ri−1; j
� � � dist Riþ1; j;Ri−1; j

� � ð1Þ

Gj i; jð Þ ¼ sign Ri; jþ1;Ri; j−1
� � � dist Ri; jþ1;Ri; j−1

� � ð2Þ

respectively. If the 3D contextual gradient is used, the
temporal contextual gradient is also computed:
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Gτ i; j; τð Þ ¼ sign Ri; j;τþ1;Ri; j;τ−1
� � � dist Ri; j;τþ1;Ri; j;τ−1

� �
ð3Þ

where dist(, ∙ , ) is the distance measure between a pair
of regions and sing(, ∙ , ) returns the sign of the context-
ual gradient. Figure 1 shows visualizations of gradient
maps horizontally, vertically, and temporally as well as a
gradient magnitude map of scenes for pixel- and
context-wise gradients.
Unlike the sign of a pixel gradient, which can be dir-

ectly determined by a value comparison, we could not
directly judge the sign of the gradient between two re-
gions. To solve this problem, we utilized the saliency
value of the region to determine the sign of the gradient.
Specifically, we first computed the saliency value for
each region in the scene and then determined the sign
of the contextual gradients by comparing their saliency
values given by.

sign Ri;Rj
� � ¼ 1 if SRi > SR j

−1 otherwise

�
ð4Þ

where SR j refers to the local saliency value of Rj. Saliency
is one of the most popular concepts for computational
visual attention modeling and can be quantitatively mea-
sured by the center-surround difference, information
maximization, incremental coding length and site en-
tropy rate, among others. For each region Ri, we used
the context-aware method [33] to compute its saliency
value. The saliency value of a given region as the
center-surround difference measured by the distance be-
tween the features of the center and its K nearest neigh-
bors in the surrounding regions is given by

SRi ¼
XK
k¼1

distfea Ri;Rkð Þ ð5Þ

where fi refers to the regional features extracted from
region Ri and distfea(∙, ∙) refers to the distance measure in

Fig. 1 Visualization of maps of a horizontal gradient, vertical gradient, and temporal gradient as well as the gradient magnitude for pixel-wise,
appearance context-wise, and motion-wise gradients
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the feature space. On the one hand, to reduce computa-
tional complexity, we only use the immediate eight sur-
rounding neighbors of the center region. On the other
hand, to reduce the influence of noise, we select the four
nearest neighbors in the feature space from the eight
neighbors. The contextual gradient can be computed
based on different types of features, such as the gray
values of raw pixels, HOG, HOF, and gradient central
moments (GCM) [34]. We adopted the commonly
used Euclidean distance as the distance measure be-
tween two features, defined as

distfea Ri;Rkð Þ ¼ f i− f k
�� ��

2 ð6Þ

Other robust distance measurements, such as earth
movers’ distance (EMD) [35], can also be adopted to im-
prove the robustness.

3.2 Histogram of oriented contextual gradient descriptor
construction
In our work, a video event is a spatio-temporal volume and
contextual gradients are computed for each small
sub-region within the event. Based on the proposed con-
textual gradient, we construct a histogram for each event
by quantizing each regional descriptor into a specific direc-
tion bin with respect to its contextual gradients. Given that
a volume Vmntwith size of w × h × l consists a set of
non-overlapping sub-regions {Rijτ}, with each having a size
of p × q × r, three contextual gradients (i.e., horizontal, verti-
cal, and temporal contextual gradients) are computed for
each sub-region, where w, h, and l are divisible by p, q, and
r, respectively. Figure 2 illustrates the process of the HOCG
descriptor construction. The contextual gradient magni-
tude φijτ is computed as

φijτ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

i þ G2
j

q
ð7Þ

and the spatial directional anglesθijτ is computed as

θijτ ¼ tan−1Gi=Gj; θijτ∈ −π;π½ � ð8Þ

If the 3D HOCG descriptor is used, the magnitude ψijτ

should be computed using three spatial and temporal
gradients that are given by

φijτ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

i þ G2
j þ G2

τ

q
ð9Þ

and the temporal directional angles ϕijτ also should be
computed

ϕijτ ¼ tan−1
Gτffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

G2
i þ G2

j

q ;ϕijτ∈ −
π
2
;
π
2

h i
ð10Þ

Using the computed magnitude and directional angle
of all of the sub-regions in the volume, we construct a
histogram with Bs bins, which means that 360° of the
spatial direction range is quantized into Bs directions;
the angle range of each direction is 360°/Bs. If the 3D
HOCG descriptor is used, we need to further quantize
180° of the temporal direction into Bt directions with
the angle range of each direction at 180°/Bt and con-
struct a histogram with BsBt bins. Given a sub-region
Rijτ, we quantize the region into the bth bin. For 2D
HOCG,

b ¼ Bsθijτ=2π
� �

: ð11Þ

For 3D HOCG,

b ¼ Bs Btϕijτ=π
j k

þ Bsθijτ=2π
� � ð12Þ

where ⌊∙⌋ and ⌈∙⌉ are the operations of rounding down
and rounding up, respectively. Then, we assign the cu-
boid Rijτ with a B-dimensional vector uijτ = 0, uijτ ∈ ℝ

B, in
which all elements are zeros except for u(b) = 1 weighted
by its magnitude φijτ. Finally, we obtain the HOGR de-
scriptor of the volume by accumulating all of the vectors
of cuboids in the volume.

a b c d
Fig. 2 Illustration of the processes for constructing a HOCG descriptor for an event. a A video clip (an event), (b) directions of contextual
gradients of sub-regions, (c) quantizing descriptors of sub-regions, and (d) HOCG descriptor

Hu et al. EURASIP Journal on Advances in Signal Processing  (2018) 2018:54 Page 5 of 15



wmnt ¼
X

Rijτ∈Vmnt
uijτ ð13Þ

Algorithm 1 shows the algorithms of the HOCG de-
scriptor construction.

3.3 Abnormal event detection
AED can be classified as global AED (GAED) and
local AED (LAED) [17]. GAED aims to detect an ab-
normal event caused by the group that occurs in the
whole scene, such as a suddenly scattered crowd.
Additionally, AED aims to detect an abnormal event
caused by individuals and that occurs in a local

region of the scene. For GAED, the video sequence is
first divided into a set of temporal clips and each clip
is considered as a global event. For local AED, each
clip is further divided into a set of local volume and
each volume is considered as a local event. Figure 3
illustrates the process of dividing the video sequence
for global AED and local AED.
Due to the unpredictability of abnormal events,

most previous approaches only learn normal event
models in an unsupervised or semi-supervised man-
ner, and abnormal events are considered to be pat-
terns that significantly deviate from the created
normal event models. In this work, we employ the

a b
Fig. 3 Illustration of the division of a video sequence. The sequence is divided into (a) a set of temporal clips for global AED and (b) a set of
spatio-temporal cuboids for local AED
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online dictionary learning and sparse reconstruction
framework for AED in which the abnormal event is
identified as its sparse reconstruction cost (SRC)
higher than a specific threshold.
Given an event with HOCG descriptors wmnt, its SRC

can be computed as

Cmnt ¼ 1
2

Dmn;t−1αmnt−wmnt

�� ��2
2 þ λ wmntk k1 ð14Þ

where Dmn, t − 1 ∈ ℝ
B × S is the online dictionary updated

at t − 1, Dmn, t − 1is continuously updated to Dmnt at each
time t using wmnt, λ is the regularization parameter, and
αmnt ∈ ℝ

S is the sparse coefficient obtained by sparse
coding under Dmn, t − 1.
Dictionary learning is a representation learning

method that aims at finding a sparse representation of

the input data in the form of a linear combination of

atoms in the dictionary. The dictionary can be learned in

either an offline or online manner. Offline learning must

process all training samples at one time, while online

learning only draws one input or a small batch of inputs

at any time t. Consequently, both the computational

complexities and memory requirements of the online

method are significantly lower than those of the offline

method. Meanwhile, the online learning method has bet-

ter adaptability than the offline method in practice.

Thus, our work adopts the online dictionary learning

method for AED, which is followed by two steps: sparse

coding and dictionary updating.

3.4 Sparse coding
Given a fixed dictionary Dmn, t − 1and a HOCG descriptor
wmnt, the sparse coefficient αmnt ∈ ℝ

S can be obtained by
optimizing

αmnt¼ arg min
αmnt

1
2

Dmn;t−1αmnt−wmnt

�� ��2
2
þ λ wmntk k1

ð15Þ
This sparse approximation problem can be efficiently

solved using orthogonal matching pursuit (OMP), which
is a greedy forward selection algorithm.

3.5 Dictionary update
At each time t, the optimal dictionary can be obtained
by optimization

Dmnt ¼ arg min
Dmnt

1
t

Xt

i¼1

1
2
wmnt−Dmntαmnt

2
2

	 

ð16Þ

For more details regarding online dictionary learning
and sparse coding, we refer to [36]. Finally, we labeled
the event as normal or abnormal based on a threshold δ

Label Vmntð Þ ¼ Normal Cmnt ≤δ
Abnormal otherwise

�
ð17Þ

where the threshold δ can be chosen experimentally
when the approach achieves the best performance. The
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Fig. 4 Examples of abnormal event detection in the Ped1 dataset

a b
Fig. 5 Quantitative comparison of the detection results in the Ped1 dataset using ROC curves for the (a) frame-level criterion and (b)
pixel-level criterion
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steps of AED with online dictionary learning and sparse
coding are shown in Algorithm 2.

4 Results and discussion
We conduct experiments on different public datasets
to evaluate the performances of AED approaches
using the HOCG descriptor. The public datasets are
UCSD [37], UMN [38], PETS2009 [39], and Avenue
datasets [40]. All of the experiments are performed
on a PC with a dual-core 2.5 GHz Intel CPU and
4 GB of RAM using MATLAB R2016a implementa-
tion. We use the UMN and PETS 2009 datasets for
global AED, where abnormal events occur in most of
the parts of scenes. We use the UCSD and Avenue
datasets for local AED, where abnormal events occur
in a relatively small local region.

4.1 UCSD dataset
4.1.1 Results
The UCSD dataset consists of the Ped1 and Ped2 sub-
sets, which are taken from the UCSD campus by

stationary monocular cameras. The density of the
crowd varies from sparse to very crowded. The only
normality in the scene is pedestrians walking on the
walkway. The abnormalities include bikers, skaters, and
vehicles crossing the walkway. We adopt the Ped1 sub-
set for experiments since it provides complete ground
truth for evaluating performance. The Ped1 dataset
contains 34 training and 36 testing clips, in which each
clip contains 200 frames with a resolution of 158 × 238
pixels. We resize the resolution to 160 × 240. The train-
ing set contains 34 clips of normal event, and the test-
ing set contains 36 testing clips. The sequence is first
divided into a set of volumes with a size of 16 × 16 × 5,
in which each volume is considered as an event. Then,
the volume is further divided into a set of cuboids with
a size of 4 × 4 × 5. We extract the slow features pro-
posed in our previous works [34] from each cuboid as
the regional feature, which is robust and discriminative.
We construct a 2D HOCG descriptor for each event,
i.e., the spatial direction range is quantized into 8 direc-
tions with each direction being 45°. The dimensionality of
the HOCG descriptor is 8. In contrast to the

Table 1 Summary of the quantitative performance and
comparison with state-of-the-art descriptors in the Ped1 dataset

Approaches EER (%) DR (%)

SRC [41] 19 46

MDT [41] 25.4 45

SF-MPPCA [34] 31 21

Bertini et al. [15] 33 29

HOFME [19] 33.1 –

HOOF [19] 36.4 –

Adam et al. [42] 38 25

MBH [19] 43.4 –

HOG3D [19] 50 –

HOCG 30.6 57

a b
Fig. 6 Performance comparisons between the HOCG descriptor and its based features via (a) ROC curves and (b) bar diagrams

Table 2 Performance comparisons between the HOCG descriptors
and its based regional features

Approaches AUC(%) Improvement(%) Dimension

Gray 63.20 71.94 8.74 64

HOCG 8

SF [42] 71.48 75.74 4.26 30

HOCG 8

GCM [34] 75.32 76.44 1.12 48

HOCG 8

3D gradient 62.62 74.04 11.42 64

HOCG 8
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20-dimensional regional features, the dimensionality is re-
duced significantly. The number of atoms for the diction-
ary is set to 20, and λ = 0.5.
Figure 4 shows examples of detection results; it is

seen that different types of abnormalities, such as bi-
cycles, skaters, and vehicles, can be detected and lo-
calized more accurately. To carry out a quantitative
evaluation, we compare the performances of the
HORG descriptor with several state-of-the-art descrip-
tors, such as MDT [20], MOHF [17], and HOMFE
[19] among others. Figure 5 shows the ROC (receiver
operating characteristic) curves of the detection re-
sults from our approach as well as from other com-
parison approaches. The performances are evaluated
by the equal error rate (EER) and detection rate (DR),
which are reported for frame- and pixel-level evalua-
tions, respectively. The lower the EER value, the bet-
ter the performance that can be achieved, while the

DR value is the opposite. The EER value is the ratio
of misclassified frames at which FPR = TPR. The DR
is at the pixel level, in which a frame is considered to
be a detection if and only if 40% of truly abnormal
pixels are identified; otherwise, it is considered to be
a false positive. Compared to the frame-level criterion,
the pixel-level criterion is more rigorous. Table 1 lists
both the EER and DR values of our approaches and
comparison approaches. Table 1 shows that our per-
formances are better than the approaches of
SF-MPPCA [41] by Bertini et al. [15] and Adam et al.
[42] as well as HOFME [19], HOG3D [19], MBH
[19], and HOOF [19]. Figure 6 shows a performance
comparison between the HORG descriptor and the
direct use of regional feature descriptors. Table 2 lists
the AUC values of both the HORG descriptors and
their based regional features.

4.1.2 Discussion
Although our performances are lower than those of the
approaches of MDT [41] and SRC for the frame level
evaluation, our performances outperform all of the com-
parison approaches for the pixel level evaluation, which
is stricter than the frame level evaluation. As various
types of regional features can be embedded in the
HORG descriptor, we also demonstrate the performance
improvement of using HORG descriptor as well as the
reduction of dimensionality. We utilize four types of

Table 3 Comparisons of the computational efficiency of HOCG
descriptors with different parameters

Size of frame Size of volume Sizes of regions Speeds (FPS)

160 × 240 16 × 16 × 5 2 × 2 × 5 30.6

4 × 4 × 5 73.9

240 × 320 2 × 2 × 5 20.8

4 × 4 × 5 44.9

Fig. 7 Examples of detection results for global abnormal event detection from the UNM dataset

Hu et al. EURASIP Journal on Advances in Signal Processing  (2018) 2018:54 Page 10 of 15



regional features, i.e., the gray value, 3D gradient, GCM
[34], and slow features (SF) [43] descriptors. The com-
parisons demonstrate that after constructing the HORG
descriptors, not only the performance of AED is im-
proved but also the dimensionality is also reduced.
To demonstrate the computational efficiency of the

HORG descriptor, we recorded the speed (frames per
second, FPS) of the construction of the HORG descrip-
tor with different sizes of regions, different dimensional-
ities of regional features as well as different resolution of
image. Table 3 lists the speed of the HORG descriptor
with different parameters. It is interesting to note that
the HORG descriptor can be constructed in real time.

4.2 UMN dataset
The UMN dataset contains three crowd escaping scenes
in both indoor and outdoor environments. The normal
events depict people wandering in groups, while the ab-
normal events depict a crowd escaping quickly. The
dataset contains 11 sequences that are captured in three
different scenes (lawn, indoor, and plaza) with a reso-
lution of 240 × 320. The total frame number in the
UMN dataset is 7740. The color frames are converted to
gray scale; then, the size of each frame is resized to a
resolution of 160 × 240. The video sequence is divided
into a set of clips with a size of 160 × 240 × 5, where
each clip is considered as a global event. Each clip is fur-
ther divided into a set of cuboids with sizes of 5 × 5 × 5.
We extract the GCM descriptor from the cuboids as re-
gional features and then construct a HORG descriptor

for each clip. The remaining parameters are the same as
the setting in the experiment of the UCSD Ped1 dataset.
Figure 7 shows some examples of the detection results
of global abnormal events. Quantitative evaluation and a
comparison with the state-of-the-art approaches [17,
43–46] are shown by ROC curves in Fig. 8 and the
area under the curve (AUC) in Table 4. The perform-
ance of our approaches comparable to that of the
state-of-the-art approaches is shown.

4.3 PETS2009
We continue to evaluate our approaches for global AED
by conducting experiments on the sequences of S3\High
Level\Time 14–33 from the PETS 2009 dataset. The four
sequences depict an event with running, gathering, and
dispersing of the same crowd from different views. The
normal event is the crowd walking or merging at

Fig. 8 Quantitative comparison of the detection results from the UMN dataset using ROC curves

Table 4 Summary of the quantitative performance and a
comparison with state-of-the-art approaches on the UMN dataset

Approaches AUC

Optical flow [43] 0.84

Social force [43] 0.96

MHOF [17] 0.978

Chaotic [44] 0.99

Interaction potential [45] 0.992

PSO-SF [46] 0.996

HOCG 0.993
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normal speed, and the crowd running or dispersing
suddenly is abnormal. The frame resolution is resized
to 160 × 240, and the other parameters are the same
as in the experiment on the UMN dataset. Some ex-
amples as well as ROC curves of the detection results
for AED are shown in Fig. 9 and Fig. 10, respectively.
These figures show that our approaches can well detect

the global abnormal event of people quickly dispersing
and achieve high performance. To evaluate the perfor-
mances of our approaches, we compared our approaches
with the approaches of PSO-SF [46], LBP-TOP [47], op-
tical flow [47], and DBM [48] in Table 5. The comparison
demonstrates that our performances were better than or
comparable to those of the state-of-the-art approaches.

Fig. 9 Examples of detection results for global abnormality detection from the PETS2009 dataset

Fig. 10 Quantitative comparison of the detection results from the PETS 2009 dataset using ROC curves
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4.4 Avenue dataset
The Avenue dataset was recently captured by re-
searchers to evaluate the performance of the AED ap-
proach; this dataset contains 16 training videos with
15,328 frames and 21 testing videos with 15,297 frames.
It is worth noting that the Avenue dataset is captured by
a camera with a horizontal view, unlike the vertical view
in UCSD, UMN, and PETS 2009 datasets. Therefore, we
not only have to detect abnormal motion events but also
must detect abnormal body actions, such as dancing,

and throwing. The only normal event in the dataset is
people working in front of the camera; the abnormal
events are various and include unusual actions (running,
throwing, dancing), waling in the wrong direction, and
unusual objects. We resize the size of all frames to
160 × 240 and then divide the sequence into a set of vol-
umes with a size of 16 × 16 × 16, with 50% overlapping
the spatial neighboring volumes. Each volume is further
divided into a set of cuboids with a size of 2 × 2 × 16.
The GCM descriptor is extracted from each cuboid as the
regional feature. The remaining parameters are identical
to the setting in the experiments on the UCSD dataset.
Figure 11 shows some examples of detection results; it is
seen that different types of abnormalities, such as running,
throwing, and loitering, can be accurately detected and lo-
calized. To quantitatively evaluate the performance of the
HORG descriptor, Fig. 12 plots ROC curves of the detec-
tion results and Table 6 lists the AUC values of both the
HORG descriptor and state-of-the-art comparison ap-
proaches [28, 31, 32, 49–52]. The comparisons demon-
strate that the performance of the HORG descriptor
outperforms the comparison approaches.

Table 5 Summary of the quantitative performance and a
comparison with the state-of-the-art approaches from the
PETS2009 dataset

Approaches View1 View2 View3 View4

PSO-SF [46] 94.14 – – –

TOP-LBP [47] 97.72 92.46 95.26 81.86

Optical flow [47] 98.01 – – –

DBM [48] 99.39 87.84 97.79 –

HOCG 98.93 99.57 98.72 98.08

Fig. 11 Examples of detection results on the Avenue dataset
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5 Conclusions
In this paper, we extended the gradient from pixel- to
context-wise and then constructed a HOCG descriptor
using contextual gradients for AED. The HOCG de-
scriptor is simple, compact, flexible, discriminative, and
can efficiently capture the contextual information of an
event. We conducted extensive experiments on differ-
ent challenging public datasets to demonstrate the ef-
fectiveness of context-wise gradients. Quantitative and

qualitative analyses of the experimental results showed
that the HOCG descriptor outperformed the traditional
pixel-wise HOG descriptor in AED and was comparable
to the state-of-the-art approaches without using com-
plicated modeling approaches. In future works, on the
one hand, we will explore other applications of the
HOCG descriptor, such as human action recognition
and crowd activity recognition. On the other hand, we
will investigate how well the compositional context of
events under the deep learning framework is captured.
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