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Abstract

Optimal transport as a loss for machine learning optimization problems has recently gained a lot of attention.
Building upon recent advances in computational optimal transport, we develop an optimal transport non-negative
matrix factorization (NMF) algorithm for supervised speech blind source separation (BSS). Optimal transport allows us
to design and leverage a cost between short-time Fourier transform (STFT) spectrogram frequencies, which takes into
account how humans perceive sound. We give empirical evidence that using our proposed optimal transport, NMF
leads to perceptually better results than NMF with other losses, for both isolated voice reconstruction and speech
denoising using BSS. Finally, we demonstrate how to use optimal transport for cross-domain sound processing tasks,
where frequencies represented in the input spectrograms may be different from one spectrogram to another.
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1 Introduction
Source separation is the task of separating a mixed signal
into different components, usually referred to as sources.
In the context of sound processing, it can be used to
separate speakers whose voices have been recorded simul-
taneously. Blind source separation (BSS) aims at doing so
with only sound data, that is without information such
as the time when each source is active or the location
of the sources with respect to the recording devices. A
common way to address this task is to decompose the
signal spectrogram by non-negative matrix factorization
([15], NMF), as proposed for example by [25] as well as
[29]. Denoting x̃j,i, the (complex) short-time Fourier trans-
form (STFT) coefficient of the input signal at frequency
bin j and time frame i, and X its magnitude spectrogram
defined as xj,i = |x̃j,i|, the BSS problem can be tackled by
solving the NMF problem

min
D(1)...D(N),W (1)...W (N)

t∑

i=1
�

(
xi,

N∑

k=1
D(k)w(k)

i

)
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where N is the number of sources, t is the number of
time windows, xi is the ith column of X, and � is a loss
function. Each dictionary matrix D(k) and weight matrix
W (k) are related to a single source. In a supervised set-
ting, each source has training data and all the D(k)s are
learned in advance during a training phase. At test time,
given a new signal, separated spectrograms are recov-
ered from the D(k)s and W (k)s and corresponding signals
can be reconstructed with suitable post-processing. Sev-
eral loss functions � have been considered in the litera-
ture, such as the squared Euclidean distance [15, 25], the
Kullback-Leibler divergence [15, 28], or the Itakura-Saito
divergence [9, 24].
In the present article, we propose to use optimal trans-

port as a loss between spectrograms to perform super-
vised speech BSS with NMF. Optimal transport is defined
as the minimum cost of moving the mass from one his-
togram to another. By taking into account a transportation
cost between frequencies, this provides a powerful metric
to compare STFT spectrograms. One of the main advan-
tages of using optimal transport as a loss is that it can
quantify the amplitude of a frequency shift noise, com-
ing for example from quantization or the tuning of a
musical instrument. Other metrics such as the Euclidean
distance or Kullback-Leibler divergence, which compare
spectrogram element-wise, are almost blind to this type
of noise (see Fig. 1). Another advantage over element-wise
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Fig. 1 Comparison of Euclidean distance and (regularized) optimal transport losses. Synthetic musical notes are generated by putting weight on a
fundamental, and exponentially decreasing weights on its harmonics and sub-harmonics, and finally convoluting with a Gaussian. Left: examples of
the spectrograms of two such notes. Right: (regularized) optimal transport loss and Euclidean distance from the note of fundamental 0.95 kHz (red
line on the left plot) to the note of fundamental 0.95 kHz + σ , as functions of σ . The Euclidean distance varies sharply whereas the optimal
transport loss captures more smoothly the change in the fundamental. The variations of the optimal transport loss and its regularized version are
similar, although the regularized one can become negative

metrics is that optimal transport enables the use of differ-
ent quantizations, i.e., frequency supports, at training and
test times. Indeed, the frequencies represented on a spec-
trogram depend on the sampling rate of the signal and
the time windows used for its computation, both of which
can change between training and test times. With optimal
transport, we do not need to re-quantize the training and
testing data so as they share the same frequency support:
optimal transport is well defined between spectrograms
with distinct supports as long as we can define a trans-
portation cost between frequencies. Finally, the optimal
transport framework enables us to generalize the Wiener
filter, a common post-processing for source separation, by
using optimal transport plans, so that it can be applied to
data quantized on different frequencies.
NMF with an optimal transport loss was first proposed

by [23]. They solved this problem by using a bi-convex for-
mulation and relied on an approximation of optimal trans-
port based on wavelets [27]. Recently, [22] proposed fast
algorithms to compute NMF with an entropy-regularized
optimal transport loss, which are more flexible in the
sense that they do not require any assumption on the fre-
quency quantization or on the cost function used. How-
ever, their approach requires all columns xi of the input
matrix to be normalized so that they sum to 1. Normal-
izing all time frames is not desirable in sound processing
tasks because time frames with low energy usually corre-
spond to noise, and it would amplify their contribution to
the objective.
Similarly, optimal transport was proposed as a loss for

performing principal component analysis (PCA) [3, 5],
a task which is closely related to dictionary learning
and NMF. However, rather than learning a dictionary on
data histograms directly, they proposed to learn a dictio-
nary on optimal mappings between a reference histogram
and these histograms. Their approach was motivated by

the Riemannian geometry of the space of histograms
equipped with the optimal transport distance w.r.t., the
square Euclidean cost. Since their framework is limited
to the square Euclidean cost, their approach is unsuitable
for spectrogram data where a specifically designed cost
should be considered as we advocate in this article.
Using optimal transport as a loss between spectrograms

was also proposed by [10] under the name “optimal spec-
tral transportation.” They developed a novel method for
unsupervised music transcription which achieves state-
of-the-art performance. Their method relies on a cost
matrix designed specifically for musical instruments,
allowing them to use Diracs as dictionary columns. That
is, they fix each dictionary column to a vector with a single
non-zero entry and learn only the corresponding coeffi-
cients. This trivial structure of the dictionary results in
efficient coefficient computation. However, this approach
cannot be applied as is to speech separation since it relies
on the assumption that a musical note can be represented
as its fundamental. It also requires designing the cost of
moving the fundamental to its harmonics and neighbor-
ing frequencies. Because human voices are intrinsically
more complex, it is therefore necessary to learn both
the dictionary and the coefficients, i.e., solve full NMF
problems.

1.1 Our contributions
In this paper, we extend the optimal transport NMF of
[22] to the case where the columns of the input matrix
X are not normalized in order to propose an algorithm
which is suitable for spectrogram data. We define a cost
between frequencies so that the optimal transport objec-
tive between spectrograms provides a relevant metric
between them. We apply our NMF framework to iso-
lated voice reconstruction and show that an optimal
transport loss yields better results than other classical
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losses. We show that optimal transport yields compara-
ble results to other losses for BSS, where the sources
to separate are voices. Moreover, we show that optimal
transport achieves better results than other losses for
learning a “universal” voice model, i.e., a model that can
be applied to any voice, regardless of the speaker. We
use this universal voice model to perform speech denois-
ing, which is BSS where one of the source is a voice
and the other is noise. Finally, we show how to use our
framework for cross-domain BSS, where frequencies rep-
resented in the test spectrograms may be different from
the ones in the dictionary. This may happen for exam-
ple when train and test data are recorded with different
equipment, or when the STFT is computed with different
parameters.

1.2 Notations
We denote matrices in uppercase, vectors in bold lower-
case, and scalars in lowercase. If M is a matrix, M� is its
transpose, mi is its ith column, mj its jth row and Im M
its image. 1n denotes the all-ones vector in R

n; when the
dimension can be deduced from context, we simply write 1.
For two matrices A and B of the same size, we denote
their inner product 〈A,B〉 := tr(A�B). We denote �n the
(n − 1)-dimensional simplex: �n := {

x ∈ R
n+ : ‖x‖1 = 1

}
.

2 Background
We start by introducing optimal transport, its entropy reg-
ularization, which we will use as the loss �, and previous
works on optimal transport NMF. For a more comprehen-
sive overview of optimal transport from a computational
perspective, see [20].

2.1 Optimal transport
Exact optimal transport. Let a ∈ �m, b ∈ �n. The
polytope of transportation matrices between a and b is
defined as

U(a, b) :=
{
T ∈ R

m×n+

∣∣∣∣∣
T1 = a

T�1 = b

}
.

Given a cost matrix C ∈ R
m×n, the minimum trans-

portation cost between a and b is defined as

OT(a, b) = min
T∈U(a,b)

〈T ,C〉.

When n = m and the cost matrix is the pth power
(p � 1) of a distance matrix, i.e., ci,j = d(yi, yj)p for
some (yi) in a metric space (�, d), then OT(·, ·)1/p is
a distance on the set of vectors in R

n+ with the same
�- 1 norm ([31], Theorem 7.3). We can see the vectors
yi as features and a and b as the quantization weights of
the data onto these features. In sound processing appli-
cations, the vectors yi are real numbers corresponding to
the frequencies of the spectrogram and a and b are their

corresponding magnitude. By computing the minimal
transportation cost between frequencies of two spectro-
grams, optimal transport exhibits variations in accordance
with the frequency noise involved in the signal genera-
tive process, which results for instance from the tuning of
musical instruments or the subject’s condition in speech
processing.

Unnormalized optimal transport. In this work, we wish
to define optimal transport when a and b are non-negative
but not necessarily normalized. Note that the transporta-
tion polytope is not empty as long as a and b sum to the
same value:U(a, b) = ∅ iif ‖a‖1 �= ‖b‖1. Hence, we define
optimal transport between possibly unnormalized vectors
a and b as,

OT(a, b) :=

⎧
⎪⎪⎨

⎪⎪⎩

min
T∈U(a,b)

〈T ,C〉 if ‖a‖1 = ‖b‖1,
a ≥ 0 and b ≥ 0;

∞ otherwise.
(1)

Computing the optimal transport cost (1) amounts to
solve a linear program (LP) which can be done with spe-
cialized versions of the simplex algorithm with worst-case
complexity in O

(
n3 log n

)
when n = m [19]. When con-

sidering OT as a loss between histograms supported on
more than a few hundred bins, such computation becomes
quickly intractable. Moreover, using OT as a loss involves
differentiating OT, which is not differentiable everywhere.
Hence, one would have to resort to subgradient meth-
ods. This would be prohibitively slow since each iteration
would require to obtain a subgradient at the current iter-
ate, which requires to solve the LP (1).

Entropy-regularized optimal transport. To remedy
these limitations, [7] proposed to add an entropy regu-
larization term to the optimal transport objective, thus
making the OT loss differentiable everywhere and strictly
convex. This entropy-regularized optimal transport has
since been used in numerous works as a loss for diverse
tasks ([11, 12, 22], see for example).
Let γ > 0, we define the (unnormalized) entropy-

regularized OT between a ∈ R
m+ , b ∈ R

n+ as

OTγ (a, b) :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

min
T∈U(a,b)

〈T ,C〉 − γE(T) if

‖a‖1 = ‖b‖1,
a ≥ 0andb ≥ 0;

∞ otherwise.

where E(T) := ∑
ij Tij logTij is the entropy of the trans-

port plan T. Let us denote OT�
γ the convex conjugate of

OTγ with respect to its second variable
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OT�
γ (x, y) = max

z≥0
‖z‖1=‖x‖1

〈y, z〉 − OTγ (x, z).

Cuturi and Peyré [8] showed that its value and gradient
can be computed in closed form:

OT�
γ (x, y) = γ

(
E(x) + 〈x, logKα〉) ,

∇yOT�
γ (x, y) = α �

(
K� x

Kα

)
,

where K := e−C/γ and α := ey/γ .

2.2 Optimal transport NMF
NMF can be cast as an optimization problem of the form

min
D∈Rn×k+ ,W∈Rk×t+

t∑

i=1
�(xi,Dwi) + R(W ,D), (2)

where both D and W are optimized at train time, and
D is fixed at test time. When � is OT, problem (2) is
convex in W and D separately, but not jointly. It can be
solved by alternating full optimization with respect to W
and D. Each resulting sub-problem is a very high dimen-
sional linear program with many constraints [23], which is
intractable with standard LP solvers even for short sound
signals. In addition, convergence proofs of such alternate
minimization methods for NMF typically assume strictly
convex sub-problems (see e.g., [2, 30] Prop. 2.7.1), which
is not the case when using non-regularized OT as a loss.
To address this issue, [22] proposed to use OTγ instead

and showed how to solve each sub-problem in the dual
using fast gradient computations. Formally, they tackle
problems of the form:

min
D∈�k

n
W∈�t

k

t∑

i=1

(
OTγ (xi,Dwi) + R1(Wi)

) +
k∑

i=1
R2(Di) (3)

where R1 and R2 are convex regularizers that enforce non-
negativity constraints, and �n is the (n − 1)-dimensional
simplex.
It was shown that each sub-problem of (3) with either

D or W fixed has a smooth Fenchel-Rockafellar dual,
which can be solved efficiently, leading to a fast overall
algorithm. However, their definition of optimal trans-
port requires inputs and reconstructions to have a �- 1
norm equal to 1. This is achieved by normalizing the
input beforehand, restricting the columns of D and W to
the simplex, and using as regularizers negative entropies
defined on the simplex:

R1(W ) := R(ρ1,W ) and R2(W ) := R(ρ2,W )

where

R(ρ,W ) :=
{ −ρE(W ) if ‖Wi‖1 = 1, ∀i

∞ otherwise. .

They showed that the coefficients and dictionary can be
updated according to the following duality results.

Coefficient update. For D fixed, the optimizer of

min
W∈�t

k

t∑
i=1

OTγ (xi,Dwi) + R1(wi) is

W ∗ =
(

e−D�g∗
i /ρ1

〈e−D�g∗
i /ρ1 , 1〉

)m

i=1
(4)

with

g∗
i ∈ argmin

g∈Rs
OT�

γ (xi, g) + R�
1

(
−D�g

)
. (5)

We can solve problem (5) with accelerated gradient
descent [18] and recover the optimal weight matrix with
the primal-dual relationship (4). The value and gradient
of the convex conjugate of R with respect to its second
variable are:

R�(ρ, x) = ρ log
〈
ex/ρ , 1

〉

∇xR�(ρ, x) = ex/ρ

〈ex/ρ , 1〉 .

Dictionary update. For W fixed, the optimizer of

min
D∈�k

m

t∑
i=1

OTγ (xi,Dwi) +
k∑

i=1
R2(Di) is

D∗ =
(

e−G∗w�
i: /ρ2

〈
e−G∗w�

i: /ρ2 , 1
〉

)k

i=1

(6)

with

G∗ ∈ argmin
G∈Rn×t

t∑

i=1
OT�

γ (xi, gi) +
k∑

i=1
R�
2

(
−Gw�

i:

)
. (7)

Likewise, we can solve problem (7) with accelerated gra-
dient descent and recover the optimal dictionary matrix
with the primal-dual relationship (6).
These duality results allow us to go from a constrained

primal problem for which each evaluation of the objec-
tive and its gradient requires solving an optimal transport
problem, to a non-constrained dual problem whose objec-
tive and gradient can be evaluated in closed form. The
primal constraints ‖xi‖1 = ‖DWi‖1 and DWi ≥ 0 ∀i are
enforced by the primal-dual relationship. Moreover, the
use of an entropy regularization, with γ > 0, makes OTγ

smooth with respect to its second variable.

3 Method
We now present our approach for optimal transport BSS.
First, we introduce the changes to [22] that are necessary
for computing optimal transport NMF on STFT spectro-
grams of sound data. We then define a transportation cost
between frequencies. Finally, we show how to reconstruct
sound signals from the separated spectrograms.
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3.1 Signal separation with NMF
We use a supervised BSS setting similar to the one
described in [25]. For each source k, we have access to
training data X(k), on which we learn a dictionary D(k)

with NMF

min
W ,D(k)

t∑

i=1
�
(
xi,D(k)wi

)
+ R1(W ) + R2

(
D(k)

)
.

Then, given the STFT spectrum of a mixture of
sources X, we reconstruct separated spectrograms X(k) =
D(k)W (k) for k = 1, . . .N whereW (k)s are the solutions of

min
W (1),...,W (N)

t∑

i=1
�

(
xi,

N∑

k=1
D(k)w(k)

i

)
+

N∑

k=1
R1

(
W (k)

)
.

The separated spectrograms X̂(k) are then reconstructed
from each X(k) with the process described in Section 3.4.
In practice at test time, the dictionaries are concate-

nated in a single matrix D = (
D(k))N

k=1, and a single
matrix of coefficients W is learned, which we decompose
as W = (

W (k))N
k=1. This allows us to focus on problems

of the form

min
W ,D

t∑

i=1
�(xi,Dwi) + R1(W ) + R2(D).

Voice-voice separation. Weuse themethod described to
separate the voices of two speakers on the same sound-
track. In this case, we have access to training data on each
speaker.

Denoising with universal models. We can also use BSS
to denoise speech data. In this case, we do not have access
to training data for speakers in the test set. We only have
access to data of other speakers, which we use to learn
a “universal” voice model, as in [29]. We also have two
sources, the first one being a speaker and the second
one a noise source. Here, we are only interested in the
reconstruction of the voice, that is X̂(1).

3.2 Non-normalized optimal transport NMF
Normalizing the columns of the input X, as in [22], is
not a good option in the context of signal processing
since frames with low amplitudes are typically noise and
it would amplify them. Although this is not a problem
for learning the coefficient matrix W, which is a column-
independant process, it would increase the contribution
of noise when learning the dictionary matrix D.
With our definition of optimal transport however,

inputs are not required to be in the simplex, but only to
have the same �- 1 norm. With this definition, the con-
vex conjugate OT� of OT and its gradient still have the
same value as in [8], and we can simply relax the con-
straint on W to be W ≥ 0 in problem (3). We keep a

simplex constraint on the columns of the dictionary D so
that each update is guaranteed to stay in a compact set.We
use R1 = −ρ1E, a negative entropy defined on the non-
negative orthant as the coefficient matrix regularizer, and
for R2, we keep the non-negative entropy defined on the
simplex. The problem then becomes

min
D∈�k

n
W∈Rk×t+

t∑

i=1

(
OTγ (xi,Dwi) + R1(Wi)

) +
k∑

i=1
R2(Di)

This change of constraints yields the same dictionary
update as in Section 2.2, Eq. 6. However, the coefficient
updates need to be modified as follows.

Theorem 1 (coefficient update) For D fixed, the opti-
mizer of

min
W∈Rk×t+∀i, ‖Dwi‖1=‖xi‖1

t∑

i=1
OTγ (xi,Dwi) + R1(wi)

is W ∗ =
(
e−D�g∗

i /ρ1−1
)m
i=1

, with

g∗
i ∈ argmin

g∈Rs
OT�

γ (xi, g) + R�
1

(
−D�g

)
.

Proof The terms in the sum are independent on the
columns of X and W. Let us thus solve it separately for
each column. Let 0 ≤ i ≤ t, the problem is

min
w∈Rk+

OTγ (xi,Dw) + R1(w).

Its Fenchel dual is

max
g∈Rs

−OT�
γ (xi, g) − R�

1

(
−D�g

)
.

OTγ (xi, ·) and R1 are proper convex and continu-
ous. Moreover, dom OT�

γ (xi, ·) = domR�
1 = R

k so
D�dom OT�

γ (xi, ·) = ImD� and

0 ∈ int
(
D�dom OT�

γ (xi, ·) + domR�
1

)
= R

k .

These conditions are sufficient for strong duality to
hold, with the primal-dual relation w∗ ∈ ∇R�

1
(−D�g

)

([21], Example 11.41) .

The concave conjugate of R1 and its gradient can be
evaluated with:

R�
1(x) = ρ1

〈
ex/ρ1−1, 1

〉

∇R�
1(x) = ex/ρ1−1.
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3.3 Cost matrix design
In order to compute optimal transport on spectrogams
and perform NMF, we need a cost matrix C, which rep-
resents the cost of moving weight from frequencies in the
original spectrogram to frequencies in the reconstructed
spectrogram. Schmidt and Olsson [25] use the mel scale
to quantize spectrograms, relying on the fact that the per-
ceptual difference between frequencies is smaller for the
high frequency than for the low frequency domain. Fol-
lowing the same intuition, we propose to map frequencies
to a log-domain and apply a cost function in that domain.
Let fj be the frequency of the jth bin in an input data spec-
trogram, where 1 ≤ j ≤ m. Let f̂ĵ be the frequency of the
ĵth bin in a reconstruction spectrogram, where 1 ≤ ĵ ≤ n.
We define the cost matrix C ∈ R

m×n as

cjĵ =
∣∣∣log

(
λ + fj

) − log
(
λ + f̂ĵ

)∣∣∣
p

with parameters λ ≥ 0 and p > 0. Since the mel scale is a
log scale, it is included in this definition for some param-
eter λ. Some illustrations of our cost matrix for different
values of λ are shown in Fig. 2, with p = 0.5. It shows that

with our definition, moving weights locally is less costly
for high frequencies than low ones and that this effect can
be tuned by selecting λ.
Figure 3 shows the effect of p on the learned dictionar-

ies. Using p = 0.5 yields a cost that is more spiked, leading
to dictionary elements that can have several spikes in the
same frequency bands, whereas p ≥ 1 tends to produce
smoother dictionary elements.
Note that with this definition and p ≥ 1 , C is a dis-

tance matrix to the power p when the source and target
frequencies are the same. If p = 0.5, C is the point-wise
square-root of a distance matrix and as such is a distance
matrix itself, OT(., .)1/p.
Parameters p = 0.5 and λ = 100 yielded better results

for blind source separation on the validation set and were
accordingly used in all our experiments.

3.4 Post-processing
Wiener filter. In the case where the reconstruction is
in the same frequency domain as the original signal, the
classical way to recover each voice in the time domain
is to apply a Wiener filter. Let X be the original Fourier

Fig. 2 Influence of parameter λ of the cost matrix. Left, cost matrix; center, sample lines of the cost matrix; right, dictionary learned on the validation
data. Top, λ = 1; center,λ = 100; bottom, λ = 1000
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Fig. 3 Influence of the power p of the cost matrix. Left, cost matrix; center, sample lines of the cost matrix; right, dictionary learned on the validation
data. Top ,p = 0.5; center, p = 1; bottom, p = 2

spectrum, X(1) and X(2) the separated spectra such that
X ≈ X(1) + X(2). The Wiener filter builds X̂(1) = X �

X(1)

X(1)+X(2) and X̂(2) = X � X(2)

X(1)+X(2) , before applying the
original spectra’s phase and performing the inverse STFT.

Generalized filter. We propose to extend this filtering to
the case whereX(1) andX(2) are not in the same domain as
X. This may happen for example if the test data is recorded
using a different sample frequency, or if the STFT is per-
formed with a different time-window than the train data.
In such a case, D(1) and D(2) are in the domain of the
train data and are X(1) and X(2), but X is in a different
domain, and its coefficients correspond to different sound
frequencies. As such, we cannot use Wiener filtering.
Instead, we propose to use the optimal transportation

matrices to produce separated signals X̂(1) and X̂(2) in the
same domain as X. Let T(i) ∈ argmin

�∈U
(
xi,x(1)

i +x(2)
i

)〈C,�〉. With

Wiener filtering, xi is decomposed into its components
generated by x(1)

i and x(2)
i . We use the same idea and

separate the transport matrix T(i) into:

T (1)
(i) = T(i)diag

(
x(1)
i

x(1)
i + x(2)

i

)

T (2)
(i) = T(i)diag

(
x(2)
i

x(1)
i + x(2)

i

)

T (1)
(i)

(
resp.T (1)

(i)

)
is a transport matrix between x(1)

i
x(1)
i +x(2)

i(
resp. x(2)

i
x(1)
i +x(2)

i

)
and x̂i(1)

(
resp.x̂i(2)

)
, where

x̂i(1) = T (i) x(1)
i

x(1)
i + x(2)

i

x̂i(2) = T (i) x(2)
i

x(1)
i + x(2)

i

Similar to the classical Wiener filter, we have
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x̂i(1) + x̂i(2) = T (i) x(1)
i

x(1)
i + x(2)

i
+ T (i) x(2)

i

x(1)
i + x(2)

i

= T (i)1
= xi

Because of this property, the couple
(
x̂i(1), x̂i(2)

)
is a fix

point of the Wiener Filter.

Separated signal reconstruction. Separated sounds are
reconstructed by inverse STFT after applying either the
Wiener filter or the generalized filter to X(1) and X(2).

4 Results
In this section, we present the main empirical findings
of this paper. We start by describing the dataset that we
used and the pre-processing we applied to it. We then
show that the optimal transport loss allows us to have per-
ceptually good reconstructions of single voices, even with
few dictionary elements. We show that the optimal trans-
port loss yields comparable results to other classical losses
for voice-voice BSS with an NMF model. We also show
that our generalized filter yields very similar results to the
Wiener filter in the single-domain setting and can improve
upon it in the cross-domain setting. Finally, we show that
the optimal transport improves upon these other losses
when using a universal voice model for voice denoising.

4.1 Dataset and pre-processing
Voice data. We evaluate our method on the English part
of the Multi-Lingual Speech Database for Telephonome-
try 1994 dataset1. The data consists of recordings of the
voice of four males and four females pronouncing each 24
different English sentences. We split each person’s audio
file time-wise into 25– 75% train-test data.

Noise data. For the speech denoising experiment, we
consider 4 types of noises: cicadas, drums, subway, and
sea. For each, we gathered one file for training and one file
for testing from non-copyrighted sources on the internet2.
We trimmed the training files so that they are approxi-
mately 20 s long and made sure that test files were longer
than the voice test sounds. Note that for each noise type,
the training and testing files were gathered using the same
keywords, but can still have quite a bit of variability.

Pre-processing. All sound files are re-sampled to 16 kHz
and treated as mono signal. The signals are analyzed by
STFT with a Hann window, and a window size of 1024,
leading to 513 frequency bins ranging from 0–8 kHz. The
constant coefficient is removed from the NMF analysis
and added for reconstruction in post-processing.

Parameter selection. Hyper-parameters are selected on
validation data consisting if the first male and female

voice, which are excluded from the evaluation set. We
choose the parameters which yield the best SDR score in
the voice-voice BSS experiment for these voices. We also
use these voices as the training data for the universal voice
model.

Initialization Initialization is performed by setting each
value of the dictionary matrix as a random number picked
uniformly in [ 0, 1]. It would be possible to set each dic-
tionary column to the optimal transport barycenter (com-
puted for example with [1]) of all the time frames of the
training data, and adding Gaussian noise (separately for
each column). However, we did not notice a significant
improvement with this initialization, and we only report
here the scores with completely random initialization so
that the results are comparable to the other methods.
When training a model for any loss, we perform the NMF
four times and keep the model with minimum training
loss to reduce the impact of random initialization.

4.2 NMF audio quality
We first show that using an optimal transport loss for
NMF leads to better perceptual reconstruction of voice
data. To that end, we evaluated the PEMO-Q score [13] of
isolated test voices.

Personal voice model. Figure 4 shows the mean and
standard deviation of the scores for k ∈ {5, 10, 15,
20} with optimal transport (OT), Kullback-Leibler (KL),
Itakura-Saito (IS), or Euclidean (E) NMF. In this setting,
the dictionaries are learned separately on the training
data for each voice. These dictionaries are the same as in
the following single-domain voice-voice separation exper-
iment. The PEMO-Q score of optimal transport NMF
is higher for any value of k, although KL and IS results
are still competitive. We found empirically that other
scores such as SDR or SNR tend to be better for the
Euclidean NMF, even though the reconstructed voices
are clearly worse when listening to them (see Additional
files 1 and 2). Optimal transport can reconstruct clear
and intelligible voices with as few as five dictionary
elements.

Universal voice model. Figure 5 shows the mean and
standard deviation of the scores for k ∈ {5, 10, 15, 20}
with optimal transport, Kullback-Leibler, Itakura-Saito, or
EuclideanNMF, in the universal voicemodel setting. Here,
only one dictionary is learned for all voices, with the
training data of our validation voices. We kept this dictio-
nary for the speech denoising experiment. The PEMO-Q
score of optimal transport NMF is significantly higher for
any value of k. We believe that because optimal trans-
port compares spectrogram by looking at the optimal flow
between their frequencies, the variation of pitch between
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Fig. 4 Perceptive quality score (personal voice model). Average and standard deviation of PEMO scores of reconstructed isolated voices, where the
model is learned using separate training data for each voice with optimal transport (dark blue), Kullback-Leibler (light blue), Itakura-Saito (green), or
Euclidean (yellow) NMF

two speakers become less important that the overall pat-
terns of human voices. Indeed, the scores with optimal
transport are very similar whether we use a universal or a
personal voice model, whereas they drop significantly for
the other losses when using a universal model.

4.3 Voice-voice blind source separation
We evaluate our blind source separation using the
classical signal-to-distortion ratio (SDR) scores evaluated

on reconstructed audio files using the MatLab toolbox
BSS eval v2.1 [32].

Single-domain blind source separation. We first use
NMF to perform BSS in the case of mixtures of two voices,
where we have training data for each voice. Here, the
spectrograms of the training and test data represent the
same frequencies: both the training and test data are pro-
cessed in exactly the same way, so that at train and test

Fig. 5 Perceptive quality score (universal voice model). Average and standard deviation of PEMO scores of reconstructed isolated voices, where the
model is learned using the same training data for all voices with optimal transport (dark blue), Kullback-Leibler (light blue), Itakura-Saito (green), or
Euclidean (yellow) NMF
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time (fi)i =
(
f̂i
)

i
. We compare using the optimal trans-

port loss for NMF to the Kullback-Leibler divergence,
the Itakura-Saito divergence, or the Euclidean distance.
For baseline methods, we reconstruct the signal using a
Wiener filter before applying inverse STFT. For optimal
transport-based source separation, we evaluate separa-
tion using either the Wiener filter or our generalized
filter.
Figure 6 shows mean and standard deviation of the

SDR, SIR, and SAR scores for each method. We can see
that although KL NMF achieves a better SDR score, the
variability is actually high and the results are comparable
for all method.

Cross-domain blind source separation. In this experi-
ment, we artificially generate spectrograms which repre-
sent different frequencies for the training and test data by
simply changing the STFT window size. For the training
data, we use a window of size 512 and a window of size
800 for the test data.
Although (fi)i �=

(
f̂i
)

i
, we can still compute optimal

transport between the spectrograms, thanks to our cost
matrix, and thus, we can use the trained dictionary as is to
compute the weight matrix at test time.
In order to compute the weight matrix for the other

losses however, we first need to re-quantize the dictionary
matrix so that it represents the same frequencies as the

Fig. 6 Voice-voice separation score (single-domain). Average and standard deviation of SDR, SIR, and SAR scores for voice BSS, in the single-domain
setting where training and testing spectrograms represent the same frequencies. The scores are for NMF with optimal transport (dark blue), optimal
transport with our generalized filter (light blue), Kullback-Leibler (green), Itakura-Saito (brown), or Euclidean (yellow) NMF
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test data. We do it by assigning each frequency in the
smaller spectrogram to its closest frequency in the larger
one. This can be done with the simple linear operation
D ← AD with

ai,j =
⎧
⎨

⎩
1 if j = min argmin

k
|fi − f̂k|

0 otherwise.

Figure 7 shows mean and standard deviation of the
SDR, SIR, and SAR scores for each method. In the case
of the optimal transport loss, we report both the result
with the generalized filter, and the Wiener filter applied

to AX(k). We can see that the SDR scores have dropped
a lot, except with the optimal transport loss combined
to our generalized filter. We notice a similar effect on
the signal-to-artifact ratio (SAR), meaning that the sep-
aration process has created artifacts, which are actually
very noticeable when listening to the reconstructed sound,
except when using the generalized filter. This is probably
due to the fact that the heuristic mapping process cancels
a lot of frequencies which were in the test data.

4.4 Universal voice model for speech denoising
Setting Wenow use NMF to first learn a universal speech
model and noise models and then apply these models for

Fig. 7 Voice-voice separation score (cross-domain). Average and standard deviation of SDR, SIR, and SAR scores for voice BSS, in the cross-domain
setting where training spectrograms have fewer frequencies than testing spectrograms. The scores are for NMF with optimal transport (dark blue),
optimal transport with our generalized filter (light blue), Kullback-Leibler (green), Itakura-Saito (brown), or Euclidean (yellow) NMF
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Table 1 Speech denoising SDR scores

OT OT + OT filter KL IS E

k k k k k

5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20

Cicada 7.7 8.8 8.9 8.4 7.3 8.0 8.6 8.1 7.7 7.9 7.9 7.9 7.7 7.9 7.6 7.7 7.9 8.0 7.9 7.5

± 0.1 ± 0.1 ± 0.1 ± 0.1 ± 0.1 ± 0.1 ± 0.1 ± 0.1 ± 0.1 ± 0.1 ± 0.1 ± 0.1 ± 0.1 ± 0.1 ± 0.1 ± 0.1 ± 0.1 ± 0.1 ± 0.1 ± 0.1

Drums 1.3 3.6 2.7 2.8 1.5 3.8 2.7 2.9 2.0 3.3 2.6 3.1 0.5 0.9 0.6 1.0 1.9 3.4 2.0 2.0

± 0.6 ± 0.7 ± 0.7 ± 0.5 ± 0.5 ± 0.6 ± 0.7 ± 0.6 ± 0.3 ± 0.7 ± 0.4 ± 0.4 ± 0.2 ± 0.1 ± 0.1 ± 0.0 ± 0.6 ± 0.5 ± 0.4 ± 0.3

Sea 0.0 1.5 3.3 1.8 0.0 1.8 3.3 1.9 1.6 3.4 4.6 4.3 1.6 3.0 3.7 3.5 3.5 4.1 4.4 3.8

± 0.9 ± 0.7 ± 0.5 ± 1.1 ± 0.8 ± 0.6 ± 0.5 ± 1.0 ± 1.3 ± 1.0 ± 0.8 ± 0.7 ± 0.8 ± 0.6 ± 0.6 ± 0.5 ± 1.1 ± 0.9 ± 0.9 ± 0.6

Subway 2.0 2.8 1.5 2.2 1.8 2.8 1.6 2.3 1.8 2.0 1.9 1.8 2.0 1.4 1.7 2.1 1.5 1.8 1.7 1.7

± 1.1 ± 0.9 ± 0.9 ± 1.2 ± 1.0 ± 1.0 ± 0.9 ± 1.2 ± 1.3 ± 1.6 ± 0.9 ± 0.9 ± 0.6 ± 0.3 ± 0.3 ± 0.4 ± 1.9 ± 1.2 ± 1.0 ± 0.9

The bold figure in each line indicates the best score for a specific noise

speech denoising. The universal speech model is learned
on the concatenated training data of the first male and first
female voices of our dataset. For each noise type, we learn
a model with NMF on its training data. We then mix test
voices with test noise with a pSNR of 0 and use our BSS
approach to separate the voice. All the scores reported are
evaluated on the voices only since reconstruction of the
noise is not our goal here.
In this experiment, we kept the same parameters for the

cost matrix of optimal transport as in the ones selected in
the voice-voice BSS experiment. We report the scores for
each dictionary size k in {5, 10, 15, 20}.
Results Tables 1, 2 and 3 show the SDR, SIR and SAR
scores with their standard deviation for all methods and all
noise types. We can see from Tables 1 and 2 that the opti-
mal transport yields significantly better SDR and SIR than
other methods for all noises except “sea.” This is consis-
tent with our observation that the optimal transport loss
allows to good reconstruction with a universal model.

Dictionaries Figures 8 and 9 show the dictionaries
learned for the universal voice model and the cicada noise,
respectively, with all losses and a dictionary size of 5 and

10. The dictionaries learned with optimal transport tend
to be smoother and maybe with less overlap between
dictionary elements. They seem to have high activation on
bands, rather than isolated frequencies, and each dictio-
nary element has only a few bands with high activation.
The IS loss seems to induce similar effect to a lesser extent,
while the KL and even more so the Euclidean loss tend
to be spiked, with a lot of spikes for a same dictionary
element, and more redundancy between elements.

Running times. Our implementation of the method in
Python with numpy on 3 CPU cores of 2.93 gHz takes
about 3 min to fully learn a dictionary of 5 elements on the
cicada training data, which is about 20 s long, leading to
spectrograms in R

512 × 724. Test times are around 2 min
for sound files of around 50 s, which is not real time but
close. We used rather tight convergence criteria in these
experiments, and we believe that these times could be
reduced by using better hardware (multi-core, GPUs) and
looser convergence criteria. For comparison, computing
times for the KL loss, with a similar alternate minimiza-
tion scheme (with inner optimizations performed with the
multiplicative updates of [15]) and the same convergence

Table 2 Speech denoising SIR scores

OT OT + OT filter KL IS E

k k k k k

5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20

Cicada 8.5 10.0 10.2 9.6 8.0 8.8 9.7 9.1 8.5 8.8 8.8 8.9 8.5 8.8 8.5 8.6 8.7 8.8 8.7 8.4

± 0.1 ± 0.0 ± 0.1 ± 0.1 ± 0.1 ± 0.0 ± 0.1 ± 0.1 ± 0.1 ± 0.1 ± 0.1 ± 0.1 ± 0.1 ± 0.1 ± 0.1 ± 0.1 ± 0.1 ± 0.1 ± 0.1 ± 0.1

Drums 1.9 5.5 3.6 3.8 2.1 5.6 3.6 3.9 2.8 4.2 3.2 3.6 0.7 1.1 0.7 1.1 3.1 4.7 2.6 2.5

± 0.4 ± 0.7 ± 0.6 ± 0.6 ± 0.3 ± 0.6 ± 0.6 ± 0.6 ± 0.2 ± 0.6 ± 0.4 ± 0.4 ± 0.2 ± 0.1 ± 0.1 ± 0.0 ± 0.6 ± 0.5 ± 0.4 ± 0.3

Sea 1.4 2.8 4.6 3.0 1.3 3.0 4.6 3.0 4.7 6.2 6.7 6.2 4.2 5.0 5.7 5.4 10.1 8.9 8.1 5.5

± 0.9 ± 0.6 ± 0.4 ± 1.0 ± 0.8 ± 0.6 ± 0.4 ± 1.0 ± 1.0 ± 0.8 ± 0.6 ± 0.5 ± 0.3 ± 0.5 ± 0.6 ± 0.4 ± 1.0 ± 0.6 ± 0.6 ± 0.4

Subway 6.2 6.4 3.1 4.7 5.5 5.9 3.0 4.7 5.2 4.5 3.1 3.1 4.0 2.2 2.1 2.9 5.3 4.8 4.2 3.4

± 1.3 ± 0.9 ± 1.0 ± 1.2 ± 1.0 ± 0.9 ± 1.0 ± 1.2 ± 1.6 ± 1.7 ± 0.9 ± 0.9 ± 0.8 ± 0.4 ± 0.4 ± 0.5 ± 2.3 ± 1.3 ± 1.0 ± 0.9

The bold figure in each line indicates the best score for a specific noise
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Table 3 Speech denoising SAR scores

OT OT + OT filter KL IS E

k k k k k

5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20

Cicada 16.1 15.7 15.2 15.3 16.5 16.6 15.6 15.7 15.9 15.7 15.8 15.4 16.4 15.9 15.5 15.3 16.3 16.2 16.2 15.6

± 0.3 ± 0.3 ± 0.2 ± 0.2 ± 0.3 ± 0.4 ± 0.2 ± 0.2 ± 0.3 ± 0.3 ± 0.3 ± 0.2 ± 0.4 ± 0.3 ± 0.3 ± 0.2 ± 0.4 ± 0.3 ± 0.3 ± 0.3

Drums 12.5 9.0 11.6 11.1 12.9 9.5 11.8 11.4 11.7 12.1 13.4 14.0 17.9 17.4 20.7 19.9 9.9 10.5 12.7 13.7

± 1.7 ± 0.5 ± 0.6 ± 0.4 ± 1.5 ± 0.5 ± 0.6 ± 0.5 ± 1.6 ± 0.7 ± 0.5 ± 0.4 ± 2.1 ± 1.1 ± 0.4 ± 0.4 ± 0.8 ± 0.4 ± 0.4 ± 0.4

Sea 8.1 9.4 10.3 9.8 8.5 10.0 10.5 10.2 5.8 7.6 9.5 9.8 6.6 8.5 9.2 9.3 5.1 6.4 7.5 9.9

± 1.8 ± 0.9 ± 0.7 ± 1.0 ± 1.8 ± 0.9 ± 0.7 ± 1.0 ± 1.4 ± 1.3 ± 1.2 ± 1.0 ± 1.5 ± 0.9 ± 0.7 ± 1.1 ± 1.4 ± 1.1 ± 1.1 ± 1.1

Subway 5.0 6.3 8.6 7.1 5.4 6.8 8.8 7.3 5.9 7.1 10.0 9.5 7.8 11.6 13.6 11.9 5.0 6.3 6.8 8.3

± 1.3 ± 1.0 ± 0.5 ± 1.0 ± 1.3 ± 1.1 ± 0.5 ± 1.0 ± 1.3 ± 1.2 ± 0.9 ± 1.0 ± 0.9 ± 1.1 ± 0.7 ± 0.5 ± 1.4 ± 1.0 ± 1.0 ± 0.8

The bold figure in each line indicates the best score for a specific noise

criteria is about 50 s for training and about 20 s for
testing.

5 Discussion
Regularization of the transport plan. In this work,
we considered entropy-regularized optimal transport as

introduced by [7]. This allows us to get an easy-to-solve
dual problem since its convex conjugate is smooth and can
be computed in closed form. However, any convex reg-
ularizer would yield the same duality results and could
be considered as long as its conjugate is computable.
For instance, the squared L2 norm regularization was

Fig. 8 Universal voice model dictionaries. Dictionaries learned for the universal model. Top row: spectrogram of the training data. Middle and
bottom row: dictionaries learned with respectively 5 and 10 elements, with the optimal transport, Kullback-Leibler, Itakura-Saito, and Euclidean loss
(from left to right)
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Fig. 9 Noise dictionaries. Dictionaries learned for the cicada noise. Top row: spectrogram of the training data. Middle and bottom row: dictionaries
learned with respectively 5 and 10 elements, with the optimal transport, Kullback-Leibler, Itakura-Saito, and Euclidean loss (from left to right)

considered in several recent works [4, 26] and was shown
to have desirable properties such as better numerical sta-
bility or sparsity of the optimal transport plan. Moreover,
similarly to entropic regularization, it was shown that the
convex conjugate and its gradient can be computed in
closed form [4].

Learning procedure. Following the work of [22], we
solved the NMF problem with an alternating minimiza-
tion approach, in which at each iteration, a complete
optimization is performed on either the dictionary or the
coefficients. While this seems to work well in our exper-
iments, it would be interesting to compare with smaller
step approaches like in [15]. Unfortunately, such updates
do not exist to our knowledge: gradient methods in the
primal would be prohibitively slow since they involve solv-
ing t large optimal transport problems at each iteration.

5.1 Future work
Sparsity Many works using NMF for sound processing
add sparsity-inducing regularization to the NMF loss.

This is usually achieved with a l1 regularization on the
coefficient matrix W [16, 29]. We believe such sparsity
would also benefit our approach, although l1 regulariza-
tion cannot be applied directly. Indeed, we have con-
straints of the form ‖DWi‖1 = ‖Xi‖1, and since all
columns of D are in the simplex, this is equivalent to
‖Wi‖1 = ‖Xi‖1, so we already have a hard constraint on
the l1 norm of W. One solution to this problem is to use
an “unbalanced” optimal transport loss [6, 11], for which
both input do not need to have the same total weight.
Unbalanced versions of optimal transport as defined in [6]
do not have an easy-to-compute convex conjugate to the
best of our knowledge, but [12] casts unbalanced optimal
transport into a regular optimal transport problem, and
our approach should work with this loss.

Multi-channel sound processing. In order to use our
framework with multi-channel sound input, the main
issue is to have an optimal transport loss between multi-
channel spectrograms. A simple way to solve this is to
simply treat channels separately and sum the loss on
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each channel. A more interesting approach in our opinion
would be to design a cost matrix which would encode the
cost of moving power not only between frequencies but
also between channels.

Optimal transport in othermodels. We believe optimal
transport can improve upon other losses between spec-
trograms in many sound processing tasks, as long as the
loss is evaluated between spectrograms. For instance, one
can use a speech-denoising auto-encoder as done by [14]
and use the optimal transport loss with our proposed cost
matrix on the reconstructed spectrograms. However, the
simple linear model of NMF used in this paper allows
us to have simple and easy-to-optimize duals. This is
not the case with deep neural networks, and one would
have to resort to more computationally involved primal
gradient-based approaches as in [11] or [17].

6 Conclusion
We showed that using an optimal transport-based loss
can improve performance of NMF-based models for voice
reconstruction and separation tasks. We believe this is
a first step towards using optimal transport as a loss
for speech processing, possibly using more complicated
models such as sparse NMF or deep neural networks.
The versatility of optimal transport, which can compare
spectrograms on different frequency domains, lets us use
dictionaries on sounds that are not recorded or processed
in the same way as the training set. This property could
also be beneficial to learn common representations (e.g.,
dictionaries) for different datasets.

Endnotes
1 http://www.ntt-at.com/product/speech2002/
2 See availability of data section.

Additional files

Additional file 1: Reconstruction with optimal transport NMF. This WAV
file contains the reconstructed test sentences of the male validation voice
with optimal transport NMF and a dictionary of rank 5 (five columns),
where the dictionary was learned on the training sentences of the same
voice. (WAV 2831 kb)

Additional file 2: Reconstruction with Euclidean NMF. This WAV file
contains the reconstructed test sentences of the male validation voice with
Euclidean NMF and a dictionary of rank 5 (five columns), where the
dictionary was learned on the training sentences of the same voice.
(WAV 2831 kb)
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