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Abstract

Indoor location identification and navigation need to be as simple, seamless, and ubiquitous as its outdoor GPS-based
counterpart is. It would be of great convenience to the mobile user to be able to continue navigating seamlessly as he
or she moves from a GPS-clear outdoor environment into an indoor environment or a GPS-obstructed outdoor
environment such as a tunnel or forest. Existing infrastructure-based indoor localization systems lack such capability, on
top of potentially facing several critical technical challenges such as increased cost of installation, centralization, lack of
reliability, poor localization accuracy, poor adaptation to the dynamics of the surrounding environment, latency,
system-level and computational complexities, repetitive labor-intensive parameter tuning, and user privacy. To this end,
this paper presents a novel mechanism with the potential to overcome most (if not all) of the abovementioned
challenges. The proposed mechanism is simple, distributed, adaptive, collaborative, and cost-effective. Based on
the proposed algorithm, a mobile blind device can potentially utilize, as GPS-like reference nodes, either in-range
location-aware compatible mobile devices or preinstalled low-cost infrastructure-less location-aware beacon nodes.
The proposed approach is model-based and calibration-free that uses the received signal strength to periodically and
collaboratively measure and update the radio frequency characteristics of the operating environment to estimate the
distances to the reference nodes. Trilateration is then used by the blind device to identify its own location, similar to
that used in the GPS-based system. Simulation and empirical testing ascertained that the proposed approach can
potentially be the core of future indoor and GPS-obstructed environments.
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1 Introduction

The need for GPS-like ad hoc indoor navigation and loca-
tion identification systems is a tenacious fact nowadays. It
is very annoying to lose the capability to navigate or iden-
tify your current location as soon as a building or a tree
shadows the GPS signal. Imagine having a mobile device
that is able to continue navigating seamlessly as you enter
a large public building such as a shopping mall, hospital,
or government complex without any user intervention.
Alternatively, imagine being shadowed from the GPS sig-
nal, but still being able to identify your location seamlessly
using other mobile devices as reference points. Similarly,
during a search-and-rescue operation, the mobile device
or a trapped victim can identify its own location using the
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rescuers’ mobile devices as reference points and send help
beacons with its coordinates [1].

As mobile devices are becoming an integral part of peo-
ple’s daily lives for the countless number of applications
and services they provide, more and more mobile-based
location-based services and solutions are yet to be discov-
ered and developed. In fact, mobile devices are no longer
used only for conventional communication services, but
also to provide advanced sensing capabilities due to
powerful sensors equipped within, including motion sen-
sors (e.g., gyroscope and accelerometer) and location
sensors (e.g., GPS and Wi-Fi). Hence, the valuable sensed
location can be leveraged in many different location-
dependent applications and research projects such as
mobile-based travel surveys for urban planning [2, 3],
tracking systems [4], and environmental solutions to
estimate emission of CO, [5, 6]. Indeed, there are endless
potential solutions for existing real-life problems.
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Recently, research communities have been very motivated
to provide indoor mobile-based localization systems [7—10].
Enormous number of studies leverage location-based ser-
vices in a wide range of applications with highly in-demand
features. For example, location-based services are integrated
with the Internet-of-Things (IoT) to track patients and staff
in health care facilities [11] and track blind and impaired
people around [12]. Additionally, most popular applications
of location-based services are for indoor navigation
purposes in large buildings such as museums and
shopping malls.

For indoor localizations, the most popular and wide-
spread technology used is Wi-Fi because it has become a
commodity in every mobile device made nowadays. This
reduces the cost and allows for leveraging the existing
Wi-Fi infrastructure devices (i.e., base stations or access
points) or other peer devices (i.e., other client devices in
ad hoc mode) as reference nodes to obtain position infor-
mation. Thus, using Wi-Fi for indoor localization repre-
sents a great opportunity to investigate efficient and
low-cost solutions. Even though Wi-Fi may achieve ac-
ceptable performance, yet it still poses many limitations
and challenges.

This work presents a novel approach to address one of
the most challenging scenarios in wireless location identi-
fication, which is when the device that needs to identify its
own location (called blind node) is shadowed from the
GPS signal and no Wi-Fi infrastructure signal is in reach.
In this case, it is sufficient to have at least three other
in-range devices with known locations (called reference
nodes) broadcast special beacon packets to help the blind
node identify its own location. This beacon packet must
contain the necessary information the blind node needs in
order to estimate its own location in a seamless and dy-
namic way regardless of the surrounding environment.
The reference nodes need not be interconnected in any
specific way and can be other mobile devices, of which the
GPS signal is not shadowed (e.g., an indoor mobile blind
node using outdoor mobile reference nodes), or
intentionally installed beacon nodes at known location
(e.g., low-cost Wi-Fi IoT modules).

For example and without loss of generality, in emer-
gency situations, where the communication infrastructure
is either dismantled by catastrophes or does not originally
exist (e.g., as in forests), search-and-rescue operations can
make a crucial benefit from victims’ smart mobile devices
working in an ad hoc mode. When a victim is trapped
under rubble or lost in the pushes, where no GPS signal is
reachable, the rescuers’ and the victim’s mobile devices
can collaborate an ad hoc Wi-Fi network mode to identify
the victim’s location [1]. In such case, the rescuers’ mobile
devices can act as reference nodes, forming GPS-like
localization system. If the rescuers’ devices happen to be
in clear areas, where GPS signals are detected, an absolute
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identification of the victim’s location is straightforward.
Otherwise, a relative location identification is a good alter-
native, where the reference nodes are positioned at known
locations and the location of the blind node is identified
relative to these locations. Note that drones equipped with
GPS receivers and Wi-Fi radios can also be used as refer-
ence nodes by flying above obstacles and providing refer-
ence to blind nodes.

In fact, the widespread usage of mobile devices led to
the concept of smart environments [13], which means that
more and more of wireless technologies and sensing cap-
abilities are integrated with the environment to make it
smart. Exploiting existing mobile devices in the environ-
ment to collaboratively assist in location identification sys-
tems is an attractive solution that could expand the
spectrum of location identification services and seamlessly
obtain location information from almost any environment
even if it is not equipped with infrastructure devices.

Many indoor localization algorithms were proposed in
the literature to enable location-based services. The general
classification of existing mechanisms is calibration-free
and calibration-based (also called model-based and
fingerprinting-based, respectively). These mechanisms
vary in accuracy, cost, and complexity, as well as robust-
ness to the environment changes. In calibration-based
methods, collected data set in the target environment are
used to infer an accurate relationship between each pos-
ition and the corresponding received signal strength
(RSS). This type requires prior knowledge of the target en-
vironment, and it is labor-intensive. Relatively high levels
of accuracy can be achieved in calibration-based
localization, but it required periodic recalibration, espe-
cially in dynamic environments. On the other hand,
calibration-free are less complex and can be smoothly
configured based on the characteristics of the environ-
ment, which makes it more practical for ad hoc mode.
However, this requires an accurate and dynamic estima-
tion of the environment characteristics.

Wi-Fi-dependent location identification techniques are
generally based on measurements of time-of-arrival (TOA)
[14], time-difference-of-arrival (TDOA) [15], angle-of-arrival
(AOA) [16-18], or RSS [19]. Both TOA and TDOA
methods suffer from time synchronization problems. There-
fore, most existing Wi-Fi location identification solutions
are based on AOA or RSS. Although, AOA-based methods
can achieve higher accuracy than RSS-based, it is more
complex and it requires a special type of antennas [20]. The
major advantages of RSS-based methods are its low com-
plexity and speed of calculation compared to the other
methods [14-16, 18]. Thus, RSS-based methods are the
most widely used [19-22].

In general, RSS-based methods are highly dependent on
the environmental characteristics and changes, which can
degrade the overall accuracy. Therefore, the accuracy of
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RSSI-based methods is still not satisfactory due to the fre-
quent changes of RSS level even in non-changing environ-
ments [23]. As a result, more development needs to be
investigated to further enhance the level of accuracy.
Many researchers have attempted to validate and
improve RSS methods from different perspectives. In [24—
26], fusion of additional information obtained from
body-mounted sensors of the mobile devices asset the ac-
curacy level. However, these approaches suffer from high
computational power and thus degrade the performance
of the localization system. In [27], an Al algorithm was
proposed to adjust the location of existing access points
until each specific area receives a unique set of RSS values
and thus enhance the accuracy of RSS-based localization
algorithms. The algorithm was shown to achieve 90% of
RSS uniqueness when seven access points are active.
Hence, this strategy is suitable for large-scale environ-
ments with a large number of access points.
Calibration-based solutions use fingerprints of average
RSS values over a specific duration at specific locations in
order to diminish the impact of variation in the RSS values
[28-30]. Even though calibration-based techniques pro-
vide more localization accuracy than calibration-free, they
require extensive efforts to collect the calibration data.
This problem rises dramatically in dynamic environments
since any change in the environment or the configuration,
requires new calibration data to be collected. To address
this issue, a number of methodologies were proposed to
reduce the time required to collect the calibration data.
For example, in [31], an effortless indoor Wi-Fi solution
that leverages the floor plan and walls within the environ-
ments to generate RSS maps of access points and the tar-
get node location is estimated using a map overlapping
technique. This work eliminates the necessary time to sur-
vey the environment. However, it does not address the
changes of RSS due to changes in the environment over
time, to provide accurate results. In [32], a novel algorithm
that solves the problem of regenerating calibration dataset
was proposed. In this approach, access points with
custom-made firmware were allowed to scan the channel
and record RSS levels of each other, as well as the RSS
level of a special anchor device. It also requires the mobile
device to be in an access point mode in order to send bea-
con frames and allow other nodes in the system to con-
nect to it. Although, in [31, 32], good attempts were made
to solve the limitations of fingerprinting methods, these
are client-server-based techniques and cannot be adapted
for distributed Wi-Fi location identification systems.
Calibration-free solutions are usually based on signal
propagation models, thus called model-based techniques.
The distinction among these techniques lays in the way
the parameters of the used model(s) are inferred in order
to estimate the distance to the reference nodes. In [21], a
blind node sends the RSS levels obtained from the beacon

Page 3 of 20

frames of the existing access points to a remote server.
This server dynamically adjusts the propagation model
based on the RSS values and localizes the blind node using
trilateration. The reported mean localization error is
slightly lower than 4 m. “A self-adaptive model-based
Wi-Fi indoor localization method” introduced in [33] used
extended versions of two well-known propagation models
(namely the free-space path loss and ITU). Similar to [32],
access points with custom-made firmware were used in
monitor mode to capture each other’s beacon frames. The
collected data are transferred to a centralized server that
continuously estimates the propagation parameters of the
environment and the location of the mobile terminal. The
method requires the positions of access points and posi-
tions and properties of the walls. The localization accuracy
was in the range of 2 to 4 m. The “multiple frequency
adaptive model-based indoor localization method”
(MFAM) proposed in [34] was built upon the work in [33]
using multiple frequency bands. MFAM was reported to
improve the localization performance of its predecessor
by 6%. The authors of [35] utilized a two-slope channel
model to propose a robust indoor mobile target tracking
algorithm using a set of interacting multiple models, each
involving two extended Kalman filters. The target mobile
node collects the RSS levels and sends them to a central-
ized tracking server. The system was tested using a mobile
robot, and the reported mean localization error was
0.19 m. Thus, all abovementioned RSS-based calibration-
free methods are, in fact, localization (i.e., tracking) rather
than location identification techniques that depend
primarily on infrastructure devices and a central server to
estimate the parameters of the model and calculate the es-
timated location. To address this issue, we proposed a
novel approach called “smartphone-assisted location iden-
tification (SALI)” for search-and-rescue services [1], which
was the first collaborative calibration-free RSS-based ad
hoc Wi-Fi location identification system.

In this paper, we present an RSS-based, distributed,
calibration-free, and real-time location identification
strategy for mobile devices, called distributed and adap-
tive location identification system (DALIS), as a compre-
hensive extension of SALI algorithm. To this aim, we
performed a comprehensive study on the propagation
model parameters that influence the accuracy of
RSS-based location estimation. Based on that, a distrib-
uted algorithm that adapts to the dynamics of the chan-
ging environment characteristics was devised. To the
best of our knowledge, this is the first attempt to investi-
gate the possibility of using RSS-based location identifi-
cation in a distributed ad hoc fashion even when
reference nodes are mobile. According to the simulation
and experimental testing results, the proposed mechan-
ism is robust enough with both mobile and stationary
nodes. As a result of this study, we propose an efficient
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low-cost and infrastructure-less indoor location identifi-
cation strategy using IoT Wi-Fi modules.

2 Methods

DALIS is based on the lognormal shadowing with expo-
nential path loss model for wireless signal propagation
[36, 37], which fits both indoor and outdoor environ-
ments since it can be configured according to the corre-
sponding environmental characteristics. This model is
expressed as follows:

Prx = Prx-PL(do)-10 n log,,(d/do) + x,, (1)

where:

e DPry is the transmitted power at the transmitting
antenna in dBm.

e PL(dy) is the path loss at some reference distance d
from the transmitting antenna in dB. Usually, dp =1
to 10 m for indoor environments.

e 1 is the path loss exponent (PLE), which is
dependent on the specific propagation environment.

o x~N(O0, ) is a normally distributed random
variable with zero mean and standard deviation o. y,
represents the variation in RSS caused by the
random shadowing.

Note that PL(d,), n, and y, are environment-dependent
parameters that are experimentally measured. However,
typically, Prx is between 15 and 20 dBm and, for indoor
environments, PL(dy =1 m) is around 40 dB and y,, con-
verges to zero after averaging sufficient number of RSS
samples at the same location with ¢ between 1 and 8 dB
[37]. On the other hand, # is the most critical parameter
since it represents the exponential decay of the signal as a
function of the distance and it may dynamically vary
around the clock according to the instantaneous changes
in the environment. Therefore, # needs to be updated on
real time in order to obtain an accurate estimation of the
signal and distance. Thus, given d, Prx, and PL(dy), an in-
stantaneous estimation of #, or 7, can be calculated. Simi-
larly, given Prx, PL(dp), and 71, an estimation of d, or d,
can be calculated as follows:

Prx—PL(do)-Prx(d) + X,

n= 2
10 log,o(d/do) )

~ X~ - )+Xe

4= dy x 102 (3)

The main principle of the current approach is that
there must be at least three reference nodes within com-
munication range of each other and that each reference
node must periodically broadcast a beacon packet that
contains its current coordinates, Pry, and its 7. Each ref-
erence node obtains the RSS values associated with the
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beacon frames from the reference nodes, along with
their coordinates, and calculates the Euclidean distance,
the average RSS, and 7. This allows each reference node
to keep n dynamically updated and announced on real
time. On the other hand, for a blind node to be able to
estimate its own location, it must receive beacon packets
from at least three reference nodes. This allows the blind
node to estimate the distance to each of the reference
nodes and then use the trilateration method [38] to
identify its own location.
The operation of DALIS is summarized as follows:

1. Reference node RN; periodically sends a beacon
packet, which includes the following parameters:

Its transmit power, Pry;
Its current coordinates, (x; y;)
Its current estimation on #, 71;

2. After receiving w, beacon packets from RN,
reference node RN; calculates the Euclidean
distance with RNj as follows:

dji = \/(x,-—xj)z + (yi_yj)2 (4)

and calculates the average RSS from RN; and the esti-
mated 7 from RN, 7;; using (2) as follows:

= 1 Wr
Pry; = EZ Pry; (5)

~ 1 w,
Prx;—=PL(do)~Prx; + w > %,
10 logw (dﬂ/do)

(6)

flﬁ =

where j)in is the average of the last w, RSS levels ob-
tained. Note that w, is the window size of the moving
average of RSS. For sufficient w, > 1,

1 &
> x —Elxe] =0 )
SO,

P Prx;—PL(do)~Prx;
? 10 logw (d/‘i/do)

(8)

3. Reference node RN; calculates the overall
estimated # from all reference nodes, 7;, by
averaging 71; of all other reference nodes within
communication range as follows:
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. 1 N;
=, o ®

where N; is the number of reference nodes within com-
munication range of RN;.

4. After receiving w, beacon packets from RN;, the blind
node calculates the average RSS from RN; as in (5)
and estimates the distance to RN; using (3) as follows:

Prx;-PL(dg)-Ppy;

di=dyx 10" (10)

then calculates the average distance to RN; for the last
w, estimations of d; as follows:

~ 1 Wy ~
di —W—dz d; (11)

5. After calculating d; for three reference nodes, the
blind node estimates its location, L, using the
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trilateration method [38]. Then, take the average
(i.e., the centroid) of the last w; location
estimations as follows

- 1 VIR
L:EZ L

L represents the current estimated location of the
blind node.

The reader might wonder about the reason we define
averaging windows rather than averaging the samples
altogether. One main reason is that averaging all the ob-
tained samples works only when all nodes, whether refer-
ence or blind, are stationary, but if any node is mobile, the
sample becomes obsolete as soon as the nodes move away
from the corresponding location. In fact, having such sam-
ples in the average calculation degrades the localization
performance, as we will show in the results section.

(12)

3 Simulation results
The performance of DALIS was evaluated statistically via
simulation using QualNet network simulator [39]. The
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performance metric used throughout this study is the mean
localization error (MLE), which is the Euclidean distance
between the blind node’s actual location and the estimated
location. First, we investigate the effect of averaging the
RSS and the location estimation on the localization accur-
acy. Then, we study several possible practical scenarios,
ranging from all nodes being stationary to all nodes being
mobile. For selected scenarios, we study the effect of the
roaming area, the averaging window sizes, and the standard
deviation of the RSS signal fluctuation. Additionally, for the
mobile scenarios, we study the impact of the speed of
mobility.

3.1 Case 1: Stationary nodes

The case of stationary nodes may not be the most prac-
tical, but it helps us understand the effect of different
parameters on the performance of the current mechan-
ism. Since it represents the best case possible for
localization efficiency, it allows us to define the upper
performance limits.

We investigated the impact of w, and w; on the
localization performance when all nodes are stationary by
examining three window sizes for each: the minimum (ie.,
no averaging), which is the worst case; an intermediate
(ie., averaging a fair number of samples), which is the
average case; and the maximum (i.e., averaging all received
samples o far), which the best case.

o (b)
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30 F -

- .oz omgigiBedgiual position
20
10 | * RN1

0 L L L L L L L L L |

0 5 10 15 20 25 30 35 40 45 50
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0 5 10 15 20 25 30 35 40 45 50

Fig. 2 Effect of averaging RSS on the localization accuracy when all
nodes are stationary. (@) No averaging (i.e, only the instantaneous RSS is
considered), w, = 1. (b) Intermediate window size, w, = 50. (c) Average all
RSS samples, w, = oo
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Table 1 A summary of the effect of average window size on
the mean localization error. Each result is the average MLE of
100 trials, each with a different random seed

Parameter w=1 w=150 W =00
RSS 1033 m 171 m 071 m
Distance 1033 m 339m 183 m
Location 1033 m 288 m 094 m

3.1.1 Effect of averaging window sizes

Consider a 50 m x 50 m area with one blind node at the
center and three reference nodes around the blind node.
All nodes are stationary and operate based on DALIS.
Each reference node broadcasts beacon packets at a rate
of 10 packets per second with o =4 dB.

Figure 1 depicts the effect of RSS average window size
on the stability of the signal level over time, as detected
by the blind node for the three reference nodes. Figure 1a
shows how much the instantaneous RSS level fluctuates
with respect to time when no averaging is performed. It
is obvious that the signal level is very unstable. Figure 1b
shows that averaging the last 50 RSS levels obtained (i.e.,
over the past 5 s) improves the RSS stability quite a bit
with some small-scale fluctuation left. In Fig. 1c, the ad-
vantage of averaging all RSS levels received so far is sig-
nificant as the signal levels become nearly constant in a
few seconds. Thus, the more RSS samples are averaged,
the more stable the signal level becomes. However, this
only applies when the sending and receiving nodes are sta-
tionary and the surrounding environment is mainly stable.

Figure 2 shows the effect of the RSS averaging and re-
ceived signal on the localization accuracy and distribu-
tion of the estimated location around the actual location.
Each dot represents one estimated location. Note that
the first few estimated locations are always the worst
since only a few RSS samples are used.

To investigate the individual effect of each parameter’s
average window size on MLE, we ran 100 experiments
per scenario, each with a different random seed. Table 1
lists the average MLE of each scenario. It is obvious that
averaging the RSS samples provides the best noise filtra-
tion, followed by averaging the estimated locations, and
the least is averaging the estimated distances. The reason

Table 2 A summary of the effect of averaging RSS, estimated
distances, and estimated locations altogether on the mean
localization error for different window sizes and different
standard deviations. Each result is the average MLE of 100 trials,
each with a different random seed

o (dB) w=1 w=10 w=50 w =100
2 6.38 m 151 m 078 m 063 m
4 1033 m 31Tm 155 m 1.28 m
6 1118 m 485 m 235m 197 m
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Table 3 The percent improvement of averaging RSS, estimated
distances, and estimated locations altogether on the mean
localization error compared to the case with no averaging based
on Table 2

o (dB) w=10 w =50 w =100
2 76% 88% 90%
4 70% 85% 88%
6 57% 79% 82%

is that the impact of the noise on RSS is linear, whereas
it is exponential on the distance. On the other hand,
even though the location estimation is dependent on the
distance estimation, the estimated location tends to scat-
ter around the actual location, which makes the centroid
of the estimated locations always within near proximity
of the actual location.

It is worth noting that the computational complexity
of estimating the location by the blind node per iteration
is relatively very low, which makes it very practical for
walking-speed real-time applications such as in-building

Page 7 of 20

Table 4 The incremental percent improvement of averaging
the parameters on the mean localization error compared to the
case with no averaging based on Table 2

o (dB) w=10 w =50 w =100
2 76% 48% 18%
4 70% 50% 17%
6 57% 52% 16%

navigation or efficient and timely saving of a trapped
victim.

3.1.2 Effect of combined averaging

The results in Table 1 demonstrate that averaging one of
the parameters can improve the localization performance
considerably, especially either RSS or the estimated loca-
tions. Hence, it became worth investigating the possibility
of combining the averaging of all parameters to investigate
the potentially leveraging the benefit of all. Therefore, we
repeated the same experiment as in the previous section,
but with all parameters averaged at different window sizes
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Fig. 3 Effect of combined averaging of RSS and estimated locations on the mean localization error when all nodes are stationary, (a) w, =50 and
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and standard deviations as listed in Table 2. The results in
Table 2 suggest the following:

1. The potential to achieve decent localization accuracy is
high, even with relatively small window sizes (i.e., w <
50). This indicates that a decent localization accuracy
can potentially be achieved within a relatively short
time, which is especially important when some nodes
are mobile. That is, as the user is moving around at the
walking speed, his/her mobile device can potentially
track his/her movements within a couple of seconds.
This is well investigated in the next section.

2. The percent improvement on the localization
accuracy as a function of window sizes, compared
to the case with no averaging, increases rapidly at
the small window sizes, but it slows down
noticeably as the window size increases, as listed in
Table 3. That is, the incremental benefit of
increasing the window size diminishes rapidly, as
seen in Table 4. For example, increasing the
window size from 10 to 50 improves the
performance by 48%, whereas increasing it from 50
to 100 increases the performance only by 18%.
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Now, since the averaging of the estimated distance is
found to be much less effective than averaging the RSS
and the estimated locations and for the purpose of redu-
cing the computations on the blind node without
impacting the localization performance, we investigated
the possibility of skipping it. Thus, we performed two
experiments, where in one experiment, we set w, =50
and changed w;, whereas in the other experiment, we set
w; =50 and changed w,. Figure 3 shows the results of
the two experiments, respectively. The most important
observation in the figure is that when compared to
Table 2, the contribution of averaging the estimated dis-
tance in improving the localization accuracy is less than
5%. This indicates that averaging the estimated distance
can be an added cost with very small benefit.

3.1.3 Effect of area size and inter-node distance

We ran an experiment to investigate the relative impact
of the area size and the corresponding separation among
the nodes on the localization performance. We set w; = 50,
0=4 dB, and changed the area size and, correspondingly,
the distances among the nodes. Figure 4 shows that the
closer the reference nodes to the blind node, the better
the localization accuracy. One reason is that as the farther

Mean Localization Error (m)

50 75 100
RSS Window Size

—m— 50mx 50m,d‘ =23m —@— 75mx 75m, di=36m —— 100m x 100m, di=48m

Fig. 4 Effect of area size and inter-node distance on the mean localization error when all nodes are stationary
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the nodes get apart, the RSS becomes weaker and more
prone to noise, interference, and multipath fading impair-
ments, which corrupt the received signal level and increase
the packet error rate (i.e., lower effective packet rate).

3.2 Case 2: Mobile nodes

In this section, we investigate a more practical case,
when some or all nodes are mobile. The objective of this
part is to find out whether it is feasible to rely on mobile
reference nodes. Reference node mobility limits the use
of RSS averaging, and blind node mobility limits the use
of location averaging. As the node moves, the distance
d;; may no longer be constant in (4), (5), (6), and (8) and
(7) may no longer converge to zero. However, at the
walking speed of the person carrying the mobile device,
the slight change in dj; within a short period in time
may not have significant impact on the localization ac-
curacy, given that the averaging window is small enough
to minimize the impact and large enough to filter out
the severe signal fluctuations, at least. The same thing ap-
plies to the location averaging when the blind node is mo-
bile. It may not be very easy to optimize these parameters
on real time, but we believe it is worth investigating the
limits of such problems. To this end, we ran a number of
experiments to test the limits of the proposed mechanism.
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3.2.1 Mobile reference nodes and a stationary blind node

In this experiment, we investigate the effect of average
window sizes on the localization accuracy when the ref-
erence nodes are mobile, which is the case of collabora-
tive mobile ad hoc location identification. We first start
with a stationary blind node, followed by the case when
all nodes are mobile. The mobile nodes are assumed to
follow the random way point (RWP) model [40] with a
random average speed of 2 m/s (i.e., walking speed). In
order to emulate the human walking behavior in an
obstructed environment, where there are usually more
turns than unobstructed environments, we modified the
RWP model slightly by making the selected next loca-
tion to move to within 10% of the area.

Figure 5 shows the results of allowing the reference
nodes to move randomly at an average walking speed
following RWP with zero pause time (ie., continuous
mobility), while the blind node is stationary at the center
of a 50 m x50 m area. Note that there is no location
averaging performed by the blind node. It is obvious that
the RSS samples can be beneficial for a short period of
time before they expire or else degrade the performance
if used after that. For this experiment, the optimal RSS
average window size is nearly 30, which indicates that
within 3 s of continuous random mobility (or 6 m of
roaming around any starting point), averaging RSS levels

-
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Fig. 5 Effect of RSS window size on the mean localization error when the reference nodes are mobile and the blind node is stationary
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is of benefit. Since the blind node is stationary, we re-
peated the same experiment, while the RSS average win-
dow size is set to 30 and averaging the estimated
location. Figure 6 shows that this can improve the accur-
acy considerably over time.

3.2.2 Mobile reference nodes with a mobile blind node

In this experiment, we investigate the performance of the
proposed mechanism in a large-scale collaborative mobile
ad hoc mode. The mobile blind node attempts to identify
its own GPS-shadowed location using mobile reference
nodes roaming within a large area of 150 m x 150 m at an
average random speed of 2 m/s and with RSS standard de-
viation of 0=4 dB. All nodes are assumed to follow the
RWP model, but with different pause time periods. Since
the blind node is mobile, no location averaging is per-
formed. The results are depicted in Fig. 7, which indicates
that if the blind node pauses occasionally, a localization
accuracy of 8 to 9 m can be achieved. This may not be
good enough for regular indoor navigation, but it can be
of a great benefit in search-and-rescue applications, espe-
cially a lost person in the bushes, where the trapped per-
son may become within the visual or audible range. As
seen earlier in Fig. 4, if the reference nodes (e.g., the res-
cuers in this case) move towards the blind node and
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become within closer proximity, the localization accuracy
improves incrementally as reported in [1].

3.3 Case 3: Distributed low-cost and efficient indoor
location identification system

Based on the observations we had on the results pre-
sented in the previous sections and given the recent [oT
advancements and the associated low-cost and small
form-factor System-On-Chip (SoC) devices with embed-
ded Wi-Fi radios (e.g., ESP8266 module [41]), we
propose a distributed low-cost and efficient indoor loca-
tion identification system. These Wi-Fi SoC modules
can be programmed to operate as beacon nodes based
on DALIS strategy and be installed on the ceiling and/or
sidewalls of large-scale indoor environments in a proper
density to provide GPS-like referencing to mobile
devices. That is, each module is set with hardcoded
in-building coordinates, at which it is installed, and is
programmed to exchange beacon packets with the other
modules within its communication range. This allows all
modules to experimentally and dynamically extract the
RF environmental characteristics on real time and pro-
vide location referencing with reasonable accuracy. To
prove the concept, we ran an experiment with a grid of
100 beacon nodes using different grid sizes and tested
the localization accuracy with stationary and mobile

Mean Localization Error (m)

35 L

50 75 100
Location Window Size

|+r7=2 —8—o=4 —0—U=6|

Fig. 6 Effect of estimated location window size on the mean localization error when the reference nodes are mobile and the bind node is stationary
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Fig. 7 Effect of RSS window size and mobility pause time on the mean localization error when all nodes are mobile

blind nodes. The experiment consisted of ten trials
of 100 s each. The mobile blind node moved based
on the RWP model with random speeds between of
1 to 2 m/s and zero pause time and with w, =20
and w;=20, whereas the stationary blind nodes
stayed at the center of the testing area with w, =50
and w; =50.

Figure 8 shows the obtained results for the stationary
and mobile blind nodes at different grid sizes. The results
suggest that reasonable cost-effective localization accur-
acies can potentially be achieved using this strategy.

4 Empirical testing results

To validate the simulation results obtained in Section 3
and to verify the practical feasibility of DALIS for indoor
location identification with stationary reference nodes, a
small-scale experimental testing was conducted in a real
indoor-obstructed environment via two sets of experi-
ments. In the first experiment, a stationary blind node
testing included a standstill and an in-place random
moving and rotating. In the second experiment, a mobile
blind node at a walking-speed testing was conducted
along a predefined path within the testing environment.
This corresponds to Section 3.3 of the simulation study.

4.1 Experimental testing setup

Due to the scarcity of existing support for ad hoc mode
in the commercial off-the-shelve Wi-Fi devices, the
ESP-8266 open-source Wi-Fi module [41] was used and
a special firmware was developed to use it as a
DALIS-based reference node. In addition, a simple appli-
cation was developed for an Android mobile phone to
use it as a DALIS-based blind node. For the purposes of
this experimental testing, an HTC M8 mobile phone
was used as a blind node. Figure 9 shows snapshots of
the hardware and software tools developed for the
experimental testing. The ESP8266 module with a devel-
oped power adapter circuit (left) allows for a fast refer-
ence node deployment. The mobile application (right)
registers and logs the RSS levels as they are reported by
the device radio and the estimated PLE sent by the refer-
ence nodes. Then, based on the collected data, the dis-
tance to each reference node and the corresponding
relative location estimation are calculated.

Since the ESP8266 module does not support ad hoc
mode, it was configured to function as an access point.
However, the standard access point operation does not
allow any data communication with other access points
over the wireless link or with client devices (e.g., the
blind node) until they associate with the access point.
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Furthermore, the standard Wi-Fi client device is not
allowed to associate with more than one access point at
a time. On the other hand, in DALIS, the blind node is
required to receive data from all nearby reference nodes
without having to associate with any. Therefore, a spe-
cial firmware was developed for the ESP8266 modules in
order to allow it to exchange DALIS parameters via es-
pecially encoded Service Set ID (SSID) within the stand-
ard beacon frame. Each SSID consists of a node ID, the
coordinates, and the latest estimation of the PLE. Thus,
the SSID of each reference node may change at any mo-
ment as one or more parameters it contains are updated.
The only parameter that may not change is the node ID.
The blind node application was also made to decode

such SSIDs and distinguish them via their node IDs. Fig-
ure 10 shows a snapshot of encoded SSIDs for two refer-
ence nodes over a time graph captured using the “WiFi
Analyzer” open-source mobile application [42]. Note
that the leftmost digit of the SSID represents the node
ID. Thus, reference node with ID 4 used two different
SSIDs over the captured period, which indicates that at
least one parameter (e.g., estimated PLE) has been modi-
fied, whereas reference node with ID 3 used one SSID.
The reference nodes were configured to calculate the
PLE based on an RSS averaging window size of 50
(i.e., w,=50).

The testing environment used was a technical work-
shop, which represents an obstructed open space indoor

Stationary
; Testing
Locations

Fig. 11 Indoor environment used for experimental testing

Mobility
Testing
Path
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environment. A snapshot of the testing area and setup is
shown in Fig. 11. Three reference nodes were deployed
at three corners of a 4 m x4 m square at a height of
about 1.75 m, representing a grid-based setup as ex-
plained in Section 3.3. The three reference nodes were
located at (x, y) coordinates (4, 0), (4, 4), and (0, 4), re-
spectively. Figure 11 also shows the spots used for sta-
tionary testing as well as the path used for mobility
testing. The stationary testing spots are located at (2, 0),
(2, 1), (2, 2), (2, 3), and (2, 4), and the mobility testing
path forms a rectangle around the middle set of benches
with two opposite corners located at (- 0.5, 2) and (4.5, 4.5).

4.2 Case 1: Stationary blind node

In this experiment, a stationary blind node location
identification testing was conducted using two scenarios:
standstill and in-place rotating.

4.2.1 Standstill blind node experiment
In this scenario, a blind node was held without any move-
ment for 2 to 3 min in each of the five abovementioned sta-
tionary testing spots and the location was estimated after
each new RSS sample is passed from the device radio.
These location estimates were enumerated and statistically
analyzed to assess the average and distribution of the
localization accuracy. Figure 12 shows the overall error
probability distribution at the testing locations altogether
with an MLE of 1.6 m and 90% of the errors are below 2 m.
To have a closer look at the details, let us examine the
testing spot located at (2, 2) and see how the system actually
behaved over time. Figure 13 shows the instantaneous esti-
mated PLE, 71, estimated by each reference node along with
the localization error experienced by the blind node over
200 samples. The mobile application received approximately

Median=1.54m, Mean=1.59m, STD=0.80m
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Fig. 12 Error probability distribution for standstill blind node
stationary testing
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one sample RSS from the device radio every 1 to 2 s. Fig-
ure 13 demonstrates how the PLE at each reference node
adapts smoothly and independently with the dynamics of
the environment. This, along with the RSS variations at the
blind node’s device radio (Fig. 14), causes some fluctuation
in the estimated location, represented by the instantaneous
localization error. Note how the RSS averaging in Fig. 14 fil-
ters out the sudden instantaneous variations in the environ-
ment and variations in the location estimation (Fig. 13).

The spatial distributions of the instantaneously estimated
locations, using different RSS averaging window sizes, are
shown in Fig. 15. As the window size increases, the esti-
mated locations become less scattered around the mean es-
timated location, calculated as the centroid of all estimated
locations and represented as a triangle in Fig. 15.
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Fig. 14 The variation of the reference points’ RSS at the blind node over
time for stationary standstill blind node testing at sample test location (2, 2)
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4.2.2 Moving in-place blind node experiment

In this experiment, the scenario in Section 3.2.1 was re-
peated except that the blind node was slightly moving
up and down and slowly turning left and right and rotat-
ing around itself in a random fashion. This resembles a
more practical scenario of a person holding a mobile
phone and naturally looking around for a direction to
move in than the standstill scenario.

Figures 16 shows that the MLE of the moving in-place
scenario is about 15% larger than that of the standstill sce-
nario and its error distribution is somewhat worse as only
about 75% of the errors are less than 2 m (versus almost
90% for standstill). However, the moving in-place scenario

Median=1.82m, Mean=1.83m, STD=0.83m
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Fig. 16 Error probability distribution for moving in-place stationary
blind node testing

obtained 9% errors with less than 1 m (versus only 2% for
standstill). Overall, almost all errors (~97%) in both sce-
narios are less than 3 m. The moving in-place seems to
benefit from the rotation by neutralizing the effect of the
user body that may be blocking the signal of certain refer-
ence nodes. This gives the blind node a better chance of
getting a line-of-site signal from all reference nodes.

To examine the results obtained at sample testing
point located at (2, 2) again, Fig. 17 depicts that even
though the environment is moderately stable, repre-
sented by the estimated PLE’s by the reference nodes,
the instantaneous localization error is not, and it goes

25 T T T T T T T T T
’A
[
2 " n W
n, I
=4 — — —MLE,W =1 | |

€ S5 r I \ | b

S R MLE, W =50 | [

o ‘ ! Lo

s ! |

~ AN P P
c 11 P\ My Iy | ]

., U - l' |

1138, |
., N~y p T, JI e | : I
| | ]’ W | ‘ ", | 5 \l \
05k 1\‘ ;‘ l() \ \\ | \ vort] l\( &
Y \ v W/ \
v N N / | f\ \/
% WA
0 . . . . . . | . .
0 20 40 60 80 100 120 140 160 180 200
Sample

Fig. 17 The PLE estimation by the reference nodes and the

corresponding MLE by the blind node over time for stationary

moving in-place blind node testing at sample test location (2, 2)
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Fig. 18 The variation of the reference points' RSS at the blind node

over time for stationary moving in-place blind node testing at sample
test location (2, 2)

through quasi-periodic slight ups and downs. This is
caused by the continuous in-place movements of the
blind node. This behavior can also be noticed on the ref-
erence nodes’ RSS values at the blind node, as shown in
Fig. 18. However, the RSS averaging at the blind node
can still smooth out these variations and provide more
stable location estimation.

Figure 19 shows that, even though the instantaneous
location estimations are more scattered than those of
the standstill scenario, the RSS averaging by the blind
node can still filter out the scattering and provide more
consistent location estimation.
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4.3 Case 2: Mobile blind node

In this experiment, a simple blind node tracking test was
conducted by moving the blind node along a predeter-
mined path (as explained in Section 3.1) and comparing
it with the path estimated by the blind node.

The result of the experiment is shown in Fig. 20. Even
though the estimated tracking path does not look very
much like the traversed path, it still covers the most part
of it within 2 m accuracy, especially when an RSS win-
dow size of 10 is used. Since there is no other precise
tracking system that can be used as a reference, there is
no one-to-one correspondence between the actual loca-
tions and estimated locations. Therefore, it is infeasible
to perform any statistical analysis or comparison and
hence visual inspection can be only used.

As explained in Section 2, with node mobility, using
relatively large window sizes can degrade the localization
performance since early RSS samples expire and become
no longer valid. This is clearly depicted in Fig. 20. w,=5
and w, = 10 provide an incremental improvement to the
results, whereas w, = 25 degrades it significantly.

4.4 Limitations of the current experimental testing

The system developed for experimental testing is fairly
simple and was mainly designed to prove the basic con-
cepts of the proposed methodology. There are, in fact, a
number of limitations the system suffers from. One limi-
tation is that the radiation pattern of the ESP8266 sur-
face mount antenna is not uniform. Figure 21 shows the
radiation pattern of the ESP8266 antenna that was ex-
perimentally constructed, as reported in [43]. There is
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approximately 6 dB difference between the minimum
and maximum signal levels at angles 70° and 250°,
respectively. This would definitely confuse the PLE calcu-
lations at the reference nodes and would add considerable
noise to the distance estimation at the blind node, de-
pending on the angle of incidence. To solve this problem,
an external antenna with a sufficiently uniform radiation
pattern has to be used, which mandates some hardware
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Fig. 21 The ESP8266 antenna radiation pattern [43]

modifications to the module. Another software-related
limitation is the inability of a simple mobile application to
access the low-level Wi-Fi radio parameters. This is
needed to control the RSS averaging, which was shown to
have a significant impact on the localization performance.
Existing operating systems usually perform some low-level
RSS averaging before the scanning results are reported to
the user-space. The typical beacon rate of a Wi-Fi access
point is 10 frames per second, whereas existing commer-
cial mobile phones take a few seconds before updating the
scanning results to the user space, including the RSS sig-
nal strength [44]. Hence, having a system-level access to
the Wi-Fi radio can help improve the localization and
tracking performance significantly. In addition, in real-life
location identification and navigation application, real map-
ping information (e.g., wall, walking paths, and hallways)
can also be used to improve the system performance.

As a conclusion, in spite of the abovementioned limi-
tations the experimental testbed suffered from, on top of
using two different types of Wi-Fi devices, the results of
the experimental testing are fairly acceptable, confirming
the high potential the proposed location identification
methodology has.

4.5 Comparison with state of the art

Comparing the accuracy of different indoor localization
algorithms is a challenging task to do, given the diversity
in hardware components and devices and in software
implementations. Therefore, the comparison depends
mainly on how well the authors describe the test scenarios
and on how the reader interprets that. Table 5 compares
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Table 5 A comparison between the proposed method and the recent state-of-the-art model-based methods

Method Model Architecture Scenario MLE <3m

A self-adaptive Modified dual-model Centralized client-server Single room, stationary 2-3m  70%

model-based [33] (localization and tracking) Multi-room, stationary 3am 0%

MFAM [34] Modified dual-mode model Centralized client-server Multi-room, stationary 216 m  NA
with multi-frequency (localization and tracking)

IMM-EKF [35] Dual-slope, interacting multi-model  Centralized client-server Multi-room, mobile 019 m  100%
with Kalman filters (localization and tracking)

DALIS (proposed)  Pure model-based Distributed ad hoc Single room, stationary, standstill ~ 1.59 m  98%

(pseudo-GPS location identification) Single room, stationary, 183m  97%

moving in-place

the empirical results of the proposed DALIS algorithm to
the state-of-the-art methods discussed earlier within the
related work. In summary, as far as the localization accur-
acy is concerned, the performance of DALIS is better than
most of the state-of-the-art techniques. Furthermore,
DALIS is unique in being the only fully distributed and
simple pure model-based technique for navigation and
location identification. The only method that achieves
higher accuracy than DALIS is IMM-EKE, which is a very
complicated method that uses a centralized server to
process and analyze the RSS data and track the mobile tar-
get. Thus, the advantages of DALIS are its simplicity in
terms of the required calculations and in involving each
device in performing its own tasks. On top of that, privacy
of the mobile device is maintained.

5 Discussion

In light of the numerous technical challenges and limita-
tions that face traditional infrastructure-based indoor
localization systems such as costly deployment and
centralization; poor reliability, accuracy, and adaptability
to the RF environment changes; delayed; complexity;
labor-intense operation; and security concerns, this
paper presents an innovative core solution to most of
such challenges and deficiencies.

The key principle of the proposed methodology is to keep
the system as simple and robust as possible. The distributed
and ad hoc nature of the mechanism makes easier and fas-
ter to deploy and more reliable than infrastructure-based
counterparts. In addition, its simplicity makes easy to install
and operate in resource-limited devices because the algo-
rithm is based on closed-form mathematical expressions, in
addition to limited storage and averaging operations of the
RSS samples or estimated locations. Thus, its overall com-
putational complexity is comparable to that of the real-time
GPS-based navigation systems. Furthermore, it collabora-
tive nature allows it to utilize whatever devices are available
to achieve the best possible performance.

The simulation and experimental testing results, re-
ported earlier in the paper, substantiate that the pro-
posed methodology can potentially provide practical

location identification for blind devices in a number
of scenarios and for several critical applications. Ac-
cording to the results, the most practically durable
scenario is when the reference nodes are stationary
and the blind node is moving at the normal human
walking speed, which makes it suitable for large-scale
indoor navigation and location-based services such as
in shopping malls, hospitals, museums, and city halls.
However, if the reference nodes are mobile, such as
in collaborative ad hoc mobile phone localization, the
possible continuous mobility of all nodes makes the
system less durable for the general navigation appli-
cations. On the other hand, it can possibly be ac-
ceptable for certain critical applications such as
search-and-rescue operations, where rough location
estimation can suffice with the use of other sensing
capabilities such as vision and hearing that can help
pinpoint the target location.

To illustrate the potential of the proposed approach,
assume that a swarm of small and low-cost unmanned
aerial vehicles (UAV), such as quadcopter drones, are
equipped with GPS-enabled autopilot systems and Wi-Fi
radios. These drones can now be easily programmed to
autonomously position themselves at a proper GPS-clear
altitude and within radio communication range of one
another. This swarm of drones can serve, based on the
proposed mechanism, as a pseudo-GPS system for
ground-based blind mobile devices or stations within a
GPS-obstructed indoor or outdoor environment. Several
applications can benefit from this setup such as a
search-and-rescue operation (see [45] as an example) by
either human rescuers or unmanned ground vehicles
(UGV) such as mobile robots (see [46] as an example).
Similarly, low-cost Wi-Fi modules can be deployed in an
indoor environment at known locations and with a
proper density to facilitate an indoor pseudo-GPS sys-
tem for indoor navigation and location-based services.
Perhaps, the most challenging scenario for the proposed
mechanism is to use location-aware mobile devices as
reference nodes, which makes it less accurate and less
robust. However, in situations where no better other
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choices exist, a rough location estimation is better than
none. In addition, intelligent software and mapping tech-
niques can be employed in such case to enhance the effi-
ciency at higher computational costs.

6 Conclusions

The current research work proposes a non-traditional
novel GPS-like location identification strategy for indoor
or GPS-obstructed environments. The proposed strategy
is simple, distributed, and collaborative, and is of low
cost, yet efficient and robust with the potential to
become the best alternative to most existing costly
infrastructure-based strategies. The proposed approach
has low complexity, and it can adapt to dynamically
changing RF environments to provide real-time location
information. The simulation and empirical testing re-
vealed that the proposed strategy suits a large number of
potential scenarios and critical applications and has the
potential to provide location information with an accur-
acy of less than 3 m.

The main contribution of this work is a low-cost distrib-
uted and adaptive indoor location identification and navi-
gation system for mobile devices. This system can be
easily deployed using low-cost IoT Wi-Fi modules that
can be used as beacon nodes in a pseudo-GPS system for
location referencing. The mobile blind node uses the bea-
con packets to independently identify its own location and
navigate through the environment in real time.

As a future work to this research, some limitations,
such as device heterogeneity and its impact on the loca-
tion identification accuracy, are to be investigated. In
addition, a large-scale implementation and integration
with the real mapping information is to be considered.
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