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Abstract

Backscatter communication is widely adopted for radio-frequency identification (RFID). Recently, the possibility of
localizing passive tags or readers, exploiting phase measurements from backscatter signals, received large attention.
In particular, several applications with standard ultra-high frequency (UHF) RFID were proposed, thanks to the
availability of the phase information in many commercial readers, without requiring any hardware modification. In this
paper, the problem of localizing a tag or a reader using phase measurements is addressed from the estimation theory
point of view. The derived structure for the maximum likelihood estimator is compared with other approaches
proposed in the literature, showing its enhanced performance in a typical application context.
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1 Introduction

In the last years, the capability of communicating with a
passive transponder, thanks to the modulation of the sig-
nal backscattered by its antenna, has been exploited to
detect and identify cheap and small devices, namely tags
[1]. This technique, which is the foundation of passive
radio-frequency identification (RFID) systems, became
more and more pervasive from the introduction of the
second-generation standard, working in the ultra-high
frequency (UHF) band [2].

More recently, the possibility of localizing RFID tags
has attracted the research attention [3-5]. In fact, offer-
ing positioning capabilities to RFID tags would enable a
myriad of new applications, thanks to the very low cost
and size of such devices, and the absence of a battery.
Unfortunately, due to the low complexity of RFID tags,
only measurements from a set of the reference nodes (i.e.,
readers) can be exploited, without considering coopera-
tive techniques [6, 7]. Classical non-cooperative localiza-
tion techniques are usually based on reader-tag distance
estimation, where distance is computed from received
signal strength (RSS) or time-of-arrival (TOA) measure-
ments [8]. RSS-based techniques, generally considered for
their low complexity, offer poor performance, since RSS is
not a deterministic monotone function of the distance [8].
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Differently, precise TOA estimation is challenging in the
RFID context, since the achievable accuracy is related to
the signal-to-noise ratio (SNR) and to the signal band-
width, if classical non-coherent estimation techniques are
considered [9, 10], and the bandwidth is extremely narrow
in this kind of systems [1]. For this reason, ultra-wideband
(UWB) RFID was also proposed in order to merge the
high temporal resolution of wideband signals, beneficial
for high-accuracy TOA estimation, with the benefit of
backscatter communication in terms of extremely low
power [11, 12].

In order to enable precise localization also with narrow-
band RFID, the exploitation of phase measurements from
the backscatter signal has been proposed [13]. In par-
ticular, due to the backscattering mechanism, the phase
difference between the transmitted signal and the received
tag response is the object of the measure taken for local-
ization. Due to the intrinsic periodicity of the phase of
a narrowband signal, leading to ambiguities in distance
(and hence location) estimation, multiple phase measure-
ments are always considered for positioning [13]. Differ-
ent approaches differ on the method in which this set of
phase measures is collected. More specifically, there is a
class of problems dealing with localization of a reader or a
tag using multiple phase measurements. In particular, we
can consider the localization of the following:

¢ A moving tag using a steady reader [14—16],
e A steady tag using a moving reader [17-22],
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e A moving reader (e.g., carried by a robot) using
reference tags [23],

e Anarray of tags [24],
Tags using a reader equipped with multiple antennas
(25, 26],

e Tags using multiple interrogations on difference
radio channels [20, 27],

and, of course, combination of the previous ones (e.g.,
localization of a tag using multiple antennas and multiple
radio channels).

Among the aforementioned localization systems and
techniques, we can distinguish between the case of mov-
ing tag and fixed reader and the case of moving reader
and fixed tag. As application for the first case, we can con-
sider the localization of tags carried by items moving on
conveyor belts. In this case, the classical problem that can
be tackled is the determination of their order-of-arrival,
then enabling sortation of the goods for automatic dis-
patch (e.g., luggage in airports or packages in warehouses)
[28-31]. In such a scenario, the tags move on a known tra-
jectory (i.e., that defined by the conveyor belt) and one or
more readers collect several measurements to determine
the relative tags’ locations and, then, the tags’ order. A dif-
ferent application, dual if compared to the previous one
from the system setup point of view, is the localization of
goods in smart shelves (e.g., books in a library or pallets
in industrial racks). In this case, a reader moving along a
known trajectory (e.g., on a rail or carried by a robot) can
perform several measurements from different locations to
determine the position of tags attached to the items placed
on the shelves [20, 32, 33].

To the best of the author’s knowledge, no approaches
resorting to classical estimation theory were considered,
among the contributions available in the literature, to
identify the suitable signal processing scheme for infer-
ring the position of the tag (or of the reader), adopting
phase measurements. In this paper, the problem of local-
izing a tag using phase measurements, taken by a reader
moving along a known trajectory, is addressed exploit-
ing estimation theory. The structure of the maximum
likelihood (ML) estimator is derived, and it is showed
that it has a different form with respect to the esti-
mators previously proposed. The same signal process-
ing scheme applies unchanged to the other problems
detailed before, such as localization of readers using ref-
erence tags or localization of tags’ array. The ML esti-
mator performance is simulated and compared with that
of other approaches proposed in the literature showing
its enhanced accuracy. Moreover, it is analytically proved
that different approaches previously considered resort to
the same estimation structure, then presenting equivalent
performance.

The main contributions of this paper are as follows:
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e The analysis of the phase-based localization technique
for narrowband RFID, by presenting several
examples, insights and practical configurations;

e The derivation of the ML estimator structure for the
considered problem;

e The comparison of the proposed signal processing
scheme with others proposed in the literature,
showing their performance for the localization of a
tag with a moving reader, and the discussion of the
different approaches.

The remainder of the paper is organized as fol-
lows. Section 2 introduces the system and signal model.
Section 3 derives the structure of the ML estimator for
localization using phase measurements from narrowband
backscatter signals. Section 4 revises other techniques
proposed in the literature. Section 5 shows the simulated
estimation performance using different techniques, such
as the one derived in this paper and others analyzed in
Section 4. Finally, Section 6 concludes the paper.

2 System model

2.1 Signal model

Consider a narrowband RFID reader, with an antenna
transmitting a continuous wave (CW) signal of frequency
f, that is

st(¢) = ar cos(27ft). (1)

After traveling to the tag at distance dt from the trans-
mitting antenna, the signal is backscattered and reaches
the antenna of the receiver, placed at distance dg from the
tag (see Fig. 1). According to this configuration, the trans-
mitting antenna, the tag and the receiving antenna forms
a bi-static pairl. Then, the received signal is

r(t) =s@) +nt) =« - syt — 1) + 1) (2)

where « is the attenuation coefficient, accounting for the
propagation loss, T = (d-+dr)/c is the traveling delay, c is
the speed of light, and #(¢) is the additive white Gaussian
noise (AWGN). Then, we have

s(t) = ar cos(2uf(t — 1)) = ar cos2rft + ¢) (3)

where? ag =k - at and ¢ = —2nfT.

Considering a receiver synchronized in-phase with the
transmitter (e.g., a receiver co-located with the transmit-
ter, as in commercial RFID readers, exploiting the same
transmitted signal as reference for demodulation), the
received signal can be projected into the in-phase and
in-quadrature directions. Then, the reader measures the
in-phase and in-quadrature amplitudes or, equivalently
the magnitude and the phase, by returning a complex sam-
ple ae?, with the phase represented in the [0 - 27] range
(Fig. 1).
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Transmitter

Fig. 1 Phase estimation from a passive tag in narrowband RFID

Receiver

2.2 Geometric aspects

Due to the periodicity of the phase measured by the
reader, the sum of the distance dt + dr cannot be directly
inferred by observing ¢ because this would lead to an
infinite number of possible distances. Specifically, if we
consider a mono-static configuration (a reader with trans-
mitter and receiver co-located), the phase ¢ describes an
infinite set of circles, with center corresponding to the
reader’s position and radius equal to —% + k%, for k =
1,2,...,00 and A = c¢/f indicating the wavelength. Dif-
ferently, considering a bi-static configuration, the phase ¢
describes an ellipse, with foci corresponding to the trans-
mitter’s and receiver’s positions, respectively, and semi
major axis equal to — % —|—k%. The infinite number of cir-
cles/ellipses corresponding to a specific measured phase
value makes positioning more challenging with respect to
classical distance-based approaches resorting to trilatera-
tion, where three measurements are sufficient for unam-
biguous 2D localization [8]. Figure 2 presents an example
of this geometric interpretation of the phase-based local-
ization for a passive tag. Two readers (with transmitter
and receiver co-located) are considered in coordinates
[—1, 0] (blue) and [ 1, 0] (red); a tag is considered in [ 0, 2]
(green). Intersection of circles denotes the possible loca-
tions of the tag considering one phase measurement per
reader (only the first 20 are reported for each reader).
In this case, adopting such a couple of measurements,
ambiguity cannot be resolved due to the large number of

intersections, and localization results unreliable. For these
reasons, a (possibly rich) set of phase measurements is
exploited in order to minimize ambiguities and making
feasible the position estimation®.

Consider now that this set of phase measurements is
collected. As detailed in Section 1, measurements can be
taken by using different frequencies, multiple antennas,
or readers/tags moving along known trajectories. For sim-
plicity of notation, we assume here the case of tag localiza-
tion, by using multiple measurements taken by a reader,
eventually equipped with multiple antennas and/or using
different radio channels. The same results apply to the
other problems listed in Section 1.

Consider a tag in unknown position p =[x,y], and
the reader’s TX/RX antennas moving along known tra-
jectories, performing N tag interrogations. These mea-
surements are taken with the reader’s transmitting
antenna in positions pri,Pro--.,Pry> Where pr;
[x1i,y1i), and the reader’s receiving antenna in posi-
tions pry, Pros - - -» Pryy» Where pg; = [%ri, ¥ri], according
to Fig. 3. Moreover, each interrogation can be performed
at a given radio channel of frequency f;. Define the ith dis-
tance between the transmitting antenna and the tag, and
between the tag and the receiving antenna, respectively, as

(4)
(5)

dri(p) = \/(x —ar)? + O —y1)°,

dri(p) = \/(x —xr)” + (7 = yr)%.
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Fig. 2 Example of geometric configuration for the phase-based localization of a passive tag (f =868 MHz, A =35 cm): two readers are considered in
coordinates [ —1, 0] (blue) and [ 1, 0] (red); a tag is considered in [0, 2] (green). Intersections of circles denote the possible locations of the tag
considering the two phase measurements (first 20 displayed)

The collection of the N measurements leads to the
observation vector

and the ith phase value is given by

27f;

¢i(p) = ;(p) + dri(p)) - (8)

The amplitude a; and the phase ¢; are samples reported
by the reader for the ith measurement. Differently, a;
and ¢; are the corresponding noise-free values. Notice
that we considered an explicit dependence of the phase
¢; with p since our goal is to obtain a phase-dependent
position estimator; differently, the amplitude a; is treated
as an unknown deterministic parameter (i.e., a nuisance

=[riry... rN]T = [leei(pl leei(pz. .. ZZNej(pN]T =s+n

(6)
where n is the AWGN and*
s = [s1(p,a1) s2(p, @2) - .. sn(p,an)]”
::[ald¢ﬂp)uzd¢ﬂp)___aNeMw(m]T 7
PRi
N PRi
\\ Ri+1

Qe ——

P
Fig. 3 The considered model for tag localization with reader moving along a known trajectory

O —_

RX antenna trajectory

TX antenna trajectory
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parameter [34]), not related to the tag position p for the
estimation purposes. Such an assumption is reasonable
since the measured signal amplitude, that is, the RSS, is
known to be a poor position-related parameter [8].

The noise vector n = [n; 1 ... ny]T has independent
elements n; ~ CN (0, 02), which is a circularly symmetric
Gaussian random variable [35]. According to this model,
each I-Q component is Gaussian distributed with variance
o2/2.

2.3 Example of application

A practical example is reported in Fig. 4. The reader, with
co-located transmitter and receiver, is moving along a lin-
ear trajectory on the x axis, with the purpose of localizing
a tag placed in p =[4,1]. Such a movement describes
the so-called aperture, in relation with the synthetic aper-
ture radar (SAR) techniques. In Fig. 5 the continuous-like
phase received by the reader is reported in blue. Dur-
ing the movement, N phase measures (i.e., samples of the
blue curve) are collected in N different positions of the
reader. In the figures, N = 10 phase samples were con-
sidered, equally spaced between x = 2m and x = 6m
(red) or between x = 3m and x = 5m (green). Starting
from these phase samples, the position of the tag is esti-
mated, with a proper signal processing scheme. It is then
evident how the number of samples (i.e., N) and their loca-
tion in space/time (i.e., the position of the readers where
such samples are taken) play a role on the tag’s localization
capability. In fact, the position of reader where samples
are taken impacts in two different ways the localization
results:

1. It affects the capability of localizing the tag by solving

the phase ambiguities, as described in Section 2.2;
2. It affects the localization accuracy due to the relative

position between the reader and the tag. This effect is
usually known as geometric dilution of precision
(GDOP), and it is intrinsic of every localization
system [8].

Moreover, it can be noticed how the phase behavior
changes with the readers’ position. In fact, when the
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reader is far from the tag we have (x — 1) > y— yTi)Z,
and the relation between the measured phase and the
reader’s position on the x axis is almost linear (with-
out considering the [0 + 2m] representation), that is
i(p) ~ —%ﬁ (x — x1;). In this region, we observe a 27w
jump of the measured phase approximately every A/2.
Differently, when the reader approaches the tag, by mov-
ing along a different direction, the non-linear relation
between the measured phase and the reader’s position
along the x axis can be seen in Fig. 5.

The next section will derive the ML estimator for deter-
mining the tag position, that is, the scheme to process the
collected phase data.

3 Phase-based localization

Now, the ML estimator for the position of the tag, adopt-

ing phase measurements taken by the reader, is derived.
The likelihood function of the ith observation given p

and a; is [35]

o2 o2

PR N2
frilp,ai) = %exp {—lnsl(p’a’)'}

1 { Iri® + Is:(p, @) > — 2% {ris} (p, a)} }
BN

mo? o2
1 a? + a? — 2aa; cos(p; — ¢i(p))
= —5expy— %)
mo? o2

where 9(-) stands for the real part of a complex number
and (-)* indicates the conjugate. The likelihood function
independent of a; can be obtained by plugging an estimate
a; of a; into (9) [9], that is

f@ilp) =f (rilp,ai =a)) . (10)
By adopting the ML criterion, it is
a; = argmaxInf(x|p, a;)
a;
= argmax {—a% + 2a;a; cos (¢; — qbi(p))} . (11)

ai

Fig. 4 Example of a reader moving along a linear trajectory on the x axis to localize a tag in p={4, 1; N=10 phase samples between x=2m and

x=6m (red) or between x=3m and x=>5m (green)
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Fig. 5 Measured phase for the scenario of Fig. 4 (f =868 MHz, A =35cm)
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This can be explicitly computed according to

0
a;=a;: —f(rilp,a;)) =0 (12)
da;
l

so that it is obtained @; = a;cos (¢; — ¢;(p)), and the
likelihood function of the ith observation, now free of
nuisance parameters, becomes

~2 _ 20, _ 4.
a2 [1 — cos* (¢ ¢;(p)>]]' 13

o2

1
frilp)= ) exp[—

Considering multiple observations, thanks to their inde-
pendence, we have

N N
1
falp)=] [f(rilp) ocexp :—622&? sin%w—@-(p))].

i=1 i=1
Then, the maximum likelihood estimate p of the tag
position p is

N
P = argmaxInf(r|p) = argmax Z—Zz? sin?(@;—¢i(p)).
P

P
(14)

As usually assumed, the position can be determined
with the discretization of the search space in a grid
approach [19], then testing all the possible hypotheses for
p, and taking the most probable. In practice, the sequence
of measured phase values (6) is properly correlated using
(14) with a hypothetical sequence (7) according to the
position p under test®.

Notice that, according to (14), each phase measure-
ment is weighted by the received power a? returned by
the reader. In this manner, the phase values related to
higher SNR have a greater impact on the overall likelihood
function and contribute heavily to the position estimation.

3.1 Special case: constant amplitudes

The estimator previously derived exploits the measure-
ments of both phase and amplitude taken on the received
signal. If an estimator structure resorting to phase mea-
surements only wants to be obtained, as often considered
in the literature, a simplified model assuming constant
amplitude of the received signal can be considered. In
this case, we can neglect the presence of the a; from (7)
assuming

s=[s1(p)52(p) ... sn(@)]"
_ [eﬁm(p) Jh® e;'qm(p)]T .

Then, we have

N N N
Inf(xlp) oc =Y |ril> = Y Isi(p)I>+2 Y %{ris} (p)}
i=1 i=1 i=1
N

(15)
and the maximum likelihood estimate p of the tag position
pis

P = argmaxInf(r|p)
P

N
= argmax ) _ & cos(¢; — ¢i(p)) (16)

P =

N
~ argmax ) _ cos(g; — ¢i(p)) (17)

Pm
where the approximation holds at high SNR.
Notice that, using the ML approach with different signal
models, we have obtained a sort of maximal ratio com-
bining (MRC) estimators (through (14) and (16)) or equal
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gain combining (EGC) estimator (through (17)). The cor-
responding performance will be presented in Section 5.

4 Other approaches
For comparison purposes, in this paragraph, the
obtained ML estimator structure is compared with other
approaches already proposed in the literature.

In [19], the position is obtained as

N
Z gziel(lPi(P)ﬂpt)

i=1

(18)

P = argmax
P

In Section 5 the performance of this estimator will be
compared with (14) and (16), since it resorts to both
amplitude and phase. Moreover, in order to obtain an
estimator exploiting phase-only measurements, (18) was
also proposed by posing a; = 1,Vi. Such estimator, not
accounting for the amplitude of the signal, will be com-
pared with (17).

Differently, [14] proposed to consider phase-difference
values. In particular, the following expression is adopted

_ lap)t y|?
p = argmaxﬁ
P lla@)l*[|y|

where ()" denotes the Hermitian operator (conju-
gate transpose) and a(p), y are phase-difference vectors
obtained as difference between the generic phase value
and the first measure. Specifically, they are defined as [14]

(19)

a(p) =

[1 J P61 J DD e;‘(qu(p)wl(p))]T
(20)

y= [1 Joro) Jlos—o) e;'(w—gm)]T . (21)

Since [|a(p)||?> = ||y||2 = N, by making explicit the vector
product, (19) corresponds to

N 2
~ 1 i (O
P = argmax— 1+ @11 Z J@i—0iP)| (22)
p N i=2
Equivalently, (22) can be written as
N
B = argmax /@ ®)—e0) 7 gilei-6ie)
P i=1
N .
= argmax Ze’(d”'(l’)_‘p") . (23)
p i=1

Then, it has been proved that the approach (19), resorting
to phase differences reported in (20) and (21), is for-
mally equivalent to (18) with constant amplitudes, then
presenting the same performance. In fact, phase is rel-
ative because of its periodic behavior, so considering
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phase differences with respect to a fixed reference (i.e.,
the first measurement) shall not improve or degrade the
performance.

5 Results and discussion

In this section, the performance of the derived ML esti-
mators is compared with that of the approaches already
proposed in the literature.

5.1 Numerical setup

We consider a single-antenna reader moving along a rec-
tilinear trajectory on the x axis and taking N =10 equally
spaced measurements between x =3 m and x =5 m, with
y=0m. The tag to be localized is located in p=[ 5, 1].

A single-channel CW signal is considered for all the
interrogations, with frequency f; = 868 MHz, Vi. Sig-
nal amplitude of each sample is simulated according to
the two-way path loss in free space. The SNR is defined
as average among the different samples constituting the
observation vector.

For what concerns the implementation of the algorithms
for position estimation, a 1D search along the x axis is con-
sidered, by assuming known the tag coordinate y=1. The
search for the tag position along the x axis is performed
between x=2m and x =8 m, with step 1 mm.

Results are presented in terms of root-mean-square
error (RMSE) of the tag position estimation obtained
among all the Monte-Carlo trials. Specifically, 10° trials
were considered in the simulations.

5.2 Variable amplitude

Figure 6 reports the RMSE of the tag position estima-
tion as a function of the SNR, for different estimators.
In particular, the results obtained with the ML estima-
tors are reported, together with the results for approach
(18), for both amplitude and phase or phase-only (ie.,
(19)/(23)). In order to easy the reading of the figures,
the legends report the equation related to a specific
approach together with indication MRC for estimators
(14), (16), and (18), which use the received signal ampli-
tude to weight the phase terms, or with indication EGC
for estimators (17) and (23) exploiting only the phase
information.

As itis possible to notice, at high SNR all the ML estima-
tors outperform the approaches proposed in the literature,
regardless the adoption of phase-only (i.e., (18)) or both
amplitude and phase (i.e., (23)). Figure 6 shows that (14)
ensures the best performance in the asymptotic region.
Similar performance is given by (16); in this case, the
small degradation is due to the model mismatch, since the
latter was derived from the assumption of constant ampli-
tude signal, which does not correspond to the simulated
scenario. A small performance degradation is offered by
estimator (17), which does not require the availability of
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Fig. 6 Localization RMSE as a function of the SNR for various estimator structures; variable amplitude. Continuous lines refer to the ML estimators
here proposed. Dashed lines refer to other approaches from the literature

15

the signal amplitude then leading to a simpler implemen-
tation. At high SNR, 3dB of performance gap is present
between (14) (i.e., the MRC approach) and (17) (i.e., the
EGC approach).

Comparison between ML estimators and other
approaches presented in [14, 19] shows the enhanced
performance of the first group. In particular, if we con-
sider the asymptotic region, an error of 107>m can
be obtained with 20dB SNR for (14), and 35dB SNR
for (18) (not displayed for space constraints), resulting
in a 15dB gap. Similarly, at 20dB SNR, the difference
between the two approaches is of about 5 times on the
achievable RMSE.

In general, it is possible to notice the classical behavior
of non-linear estimators, with different operating regions
at different SNR [34, 35]. At low SNR, the performance
becomes quickly quite poor for all the estimators. In this
region, approach (18) has a performance slightly improved
with respect to the ML estimators. The explanation of
such a phenomenon can be found in the structure of the
functions that are maximized. Figure 7a shows the likeli-
hood function (14), in the absence of measurement noise.
Differently, the function (18) is depicted in Fig. 7b. It is
possible to notice the sharpness of the main lobe of (14),
for which the ML is expected to work very well in the high
SNR region, where the probability of selecting the cor-
rect lobe is high.® Differently, the performance of (18) in
this region is intrinsically poorer, due to the larger main
lobe. The situation swaps at low SNR, where the noise
could lead to ambiguities in the selection of the main lobe
of (14); in this case a smoother behavior, as reported in
Fig. 7b, could be beneficial.

5.3 Constant amplitude

With Fig. 6, it has been shown that the performance of
the estimator exploiting phase-only (i.e., EGC) is poorer
due to the mismatch with the signal model. For compar-
ison purposes, in Fig. 8 the RMSE of the tag position
estimation as a function of the SNR is reported in the
case of constant amplitude for the received signal, that
is, without accounting of the path loss in the simulation.
Again, it is possible to appreciate the increased accu-
racy offered by the ML (16) with respect to approach
(18) and (23). Moreover, approximation (17) is showed
to hold, especially in the asymptotic region, thanks to
the supposed constant amplitude in the model adopted.
In this case, estimators accounting for variable amplitude
show a degraded performance due to the model mis-
match, so that the use of the phase information only is
beneficial, especially at medium SNR, due to the absence
of any variation in the amplitude of the received signal
(ideal case). It is interesting to see that the presence of
a signal with constant amplitude for all the samples does
not improve significantly the estimation accuracy which
can be obtained in the asymptotic region, but moves sig-
nificantly the SNR value where such a region starts. In
fact, for the ML estimator (16), the asymptotic region
starts at 9dB SNR in case of signal with constant ampli-
tude, while 16 dB SNR are necessary in case the signal
path-loss for every phase sample is considered in the
simulation.

5.4 Effects of the tag position
Previous results presented the performance of the
different estimators for a tag placed in a specific position.



Decarli EURASIP Journal on Advances in Signal Processing

(2018) 2018:70 Page 9 of 12

-10
2

4 5 S 7 8
hp. tag position - z axis [m]

()

12

10

|
4 5 6 7 8
hp. tag position - z axis [m]

(b)

Fig. 7 Examples of objective functions for the ML estimator (14) and the approach presented in [19]. a Approach (14). b Approach (18)

the literature

RMSE [m]

103

ML (MRC) - (16)
ML (EGC) - (17)
ML (MRC) - (14)
[14] (EGC) - (23)
(19] (MRC) - (18)

0

|
5 10 15 20
SNR [dB]

Fig. 8 Localization RMSE as a function of the SNR for various estimator structures; constant amplitude. Dashed lines refer to other approaches from




Decarli EURASIP Journal on Advances in Signal Processing (2018) 2018:70 Page 10 of 12

1071 T T T T T T T T T T T 7]

B ML (MRC) - (16) ]

- [19] (MRC) - (18) 1
£

E,ﬂ) 1072 — =

E L i

= i ]

-3 Il | Il | Il | Il | Il | Il
10 1 2 3 4 5 6 7
Tag position [m)]
Fig. 9 Localization RMSE as a function of the tag position along the x axis, for various estimator structures

However, it is well known that, in localization problems,
the performance changes depending on the relative posi-
tions of readers and tags, since both measurements’ qual-
ity and the geometric configuration (i.e., GDOP) play a
crucial role [8, 36], as briefly discussed in Section 2.3. In
order to show how the tag position impacts its position
estimation capability with phase-based techniques, Fig. 9
presents the RMSE in this setting. In particular, the ML
(16) and (18) are considered.

It is possible to notice that the derived ML outper-
forms the other approach for every tag position at the
selected SNR of 15 dB. Depending on the tag position, up
to one order of magnitude of difference in the localiza-
tion accuracy is experienced (e.g., for x =2m or x =6m).
Differently, when the tag is located along the direction
orthogonal to the middle point of the synthetic aper-
ture described by the reader, the two approaches presents
the same performance. Notice that uniform spatial sam-
ples along the synthetic aperture where considered in the
simulation.

6 Conclusion

This paper presented the structure of the ML esti-
mator for the position of a RFID tag, using phase
measurements. The derivation was conducted under
different models of the received signal, in order to
obtain estimators exploiting only the phase information,
or both amplitude and phase. The derived estimators
were compared with the approaches already proposed
in the literature, showing the performance improve-
ment that can be obtained using the proposed signal
processing scheme. Moreover, it has been proved that

other approaches presented in the literature lead to the
same estimation structure, then presenting equivalent
performance.

It has been shown how approaches that properly
weights the phase information with the received signal
amplitude ensure the best performance. In the high SNR
regime, the use of the ML estimator corresponds to an
improvement of up to one order of magnitude in the
estimation error for certain tag positions. Differently, at
low SNR the performance of all the estimators is similar
and ambiguities limit severely the effectiveness of these
positioning schemes.

Future research attention should be devoted in deter-
mining the design criteria of these positioning schemes,
since many aspects affect the feasibility of the localization
and the performance, as the number of measurements
and their position (i.e., the spatial sampling), frequency,
tag position, and number of antennas. Finally, the charac-
terization of the effects of multipath propagation, which
can severely affect the phase information, should be
investigated, also considering experimental studies in real
scenarios.

Endnotes

! Transmitting and receiving antenna can be also co-located
as in classical RFID. Advantages of bi-static configurations
for RFID have been recently highlighted [37, 38].

2 Additional phase shifts due to the circuits at reader and
tag side [13] are supposed calibrated out.

3Notice that, according to the approaches proposed
in the following, ambiguity is not resolved explicitly as
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in other approaches [39], but every new measurement
poses additional constraints to the problem, then making
feasible the position estimation.

“Notation s;(p, a;) denotes that the sample s; is a func-
tion of the tag position p, to be estimated, and of the
unknown parameter a;.

>The sets of measured phase values {¢;} and hypoth-
esized phase values {¢;(p)}, for a given position p, are
also known as phase history or phase profile and nominal
history or reference phase profile, respectively [14, 21].

®In fact, the sharpness of the likelihood function deter-
mines how accurately we can estimate the parameter, as
accounted by the Cramér-Rao bound (CRB) [35].
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