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Abstract

It has been pointed out that the nonlinear spline adaptive filter (SAF) is appealing for modeling nonlinear systems
with good performance and low computational burden. This paper proposes a normalized least M-estimate adaptive
filtering algorithm based on infinite impulse respomse (IIR) spline adaptive filter (IIR-SAF-NLMM). By using a robust
M-estimator as the cost function, the IIR-SAF-NLMM algorithm obtains robustness against non-Gaussian impulsive
noise. In order to further improve the convergence rate, the set-membership framework is incorporated into the
IIR-SAF-NLMM, leading to a new set-membership IIR-SAF-NLMM algorithm (IIR-SAF-SMNLMM). The proposed IIR-SAF-
SMNLMM inherits the benefits of the set-membership framework and least-M estimate scheme and acquires the faster
convergence rate and effective suppression of impulsive noise on the filter weight and control point adaptation. In
addition, the computational burdens and convergence properties of the proposed algorithms are analyzed. Simulation
results in the identification of the IIR-SAF nonlinear model show that the proposed algorithms offer the effectiveness
in the absence of non-Gaussian impulsive noise and robustness in non-Gaussian impulsive noise environments.
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1 Introduction
Due to their concise design and low complexity, the adap-
tive linear filters have gained wide attention in system
modeling and identification [1, 2]. The adaptive linear fil-
ter is conventionally modeled as a finite impulse response
(FIR) filter or an infinite impulse response (IIR) filter. Its
tap weights are updated iteratively by using adaptive algo-
rithms such as the least mean square (LMS) algorithm,
normalized least mean square (NLMS) algorithm, and
affine projection algorithm (APA). However, in the case of
nonlinear system, linear models are inadequate and suffer
from the performance losses due to the failure to model
the nonlinearity. Hence, in order to model the nonlinear-
ity, several adaptive nonlinear structures have been pre-
sented such as truncated Volterra adaptive filters (VAF)
[3], neural networks (NNs) [4], block-oriented architec-
ture [5], and spline adaptive filters (SAF) [6–9]. Truncated
VAF, originated from the Taylor series expansion, is one
of the most used model for the nonlinearity. However, its
implementation is limited because of a huge complexity
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requirement, in particular, for high-order Volterra mod-
els. To overcome the drawbacks of the truncated VAF, one
of the most well-known structure is the block-oriented
nonlinear architecture, which can be represented by the
connections of linear time-invariant (LTI) models and
memoryless nonlinear functions. There are several basic
classes of the block-oriented nonlinear structure including
the Wiener model [10], the Hammerstein model [11], and
the variants originated from these two classes in accor-
dance with different topologies (i.e., parallel, feedback,
and cascade). Specifically, the Wiener model consists of a
cascade of a linear LTI filter followed by a static nonlinear
function which sometimes is deemed as linear-nonlinear
(LN) model, and the Hammerstein model comprises a
static nonlinear function connected behind a linear LTI
filter which usually is considered as nonlinear-linear (NL)
model. The cascademodel, such as linear-nonlinear-linear
(LNL) model or nonlinear-linear-nonlinear (NLN) model,
has been proved to be more suitable for the generality of
the model to be identified [12]. NNs are a flexible applica-
tion for modeling nonlinearity, but it suffers from a large
computational cost and difficulties in online adaptation.
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Recently, combining the block-oriented architecture
with the spline function, several novel adaptive nonlin-
ear spline adaptive filters (SAFs) have been introduced
such as Wiener spline filter, Hammerstein spline filter,
cascade spline filter and IIR spline adaptive filter (IIR-
SAF). These spline adaptive models can be implemented
by different connections of the spline function and lin-
ear time-invariant (LTI) model. The nonlinearity in this
kind of structure is modeled by the spline function, which
can be represented by the adaptive look-up table (LUT)
interpolated by a local low-order spline curve. The SAFs
achieve improved performance in modeling the nonlin-
earity. Furthermore, in each iteration, only a portion of
the control points is tuned depending on the order of
the spline function and the nonlinear shape is slightly
changed. Consequently, this local behavior of the spline
function results in the considerable saving in the compu-
tation complexity.
Note that in all spline filters mentioned above, their

update rules are based on the mean square error (MSE)
criterion in additive white Gaussian noise (AWGN) envi-
ronment which considers the cost function J = E

[
e2(n)

]
,

where E[ ·] denotes the mathematical expectation and
e(n) is the output error. However, in some cases of
non-Gaussian noise such as underwater acoustic signal
processing [13], radar signal processing [14], and com-
munication systems [15], the SAFs may suffer from per-
formance deterioration or failure to be robust against
non-Gaussian noises. To address this problem, a least M-
estimate scheme [16, 17] has been proposed by using the
least M-estimator as the cost function which achieves
the satisfactory performance when the input and desired
signals are corrupted by non-Gaussian impulsive noises.

In this paper, extending the least M-estimate idea into
the IIR-SAF, a normalized leastM-estimate adaptive filter-
ing algorithm based on IIR spline adaptive filter (IIR-SAF-
NLMM) is proposed for nonlinear system identification.
The update rule is based on the modified Huber M-
estimate function, thus yielding a good effectiveness in
suppressing non-Gaussian impulsive noises. To further
improve the convergence performance of the IIR-SAF-
NLMM, we incorporate the set-membership framework
into the IIR-SAF-NLMM and propose a set-membership
IIR-SAF-NLMM (IIR-SAF-SMNLMM) algorithm. It is
derived by minimizing a new M-estimate-based cost
function associated with a robust set-membership error
bound. Due to the combination of the robust set-
membership error bound and threshold parameter used
to reject the outliers, the IIR-SAF-SMNLMM provides
faster convergence rate and robustness against non-
Gaussian impulsive noise compared with the conventional
SAF algorithms.
The paper is organized as follows. The IIR-SAF struc-

ture is reviewed in Section 2. In Section 3, we derive
the IIR-SAF-NLMM and IIR-SAF-SMNLMM algorithms.
The computational complexity is given in Section 4, and
convergence properties of the IIR-SAF-SMNLMM are
analyzed in Section 5. Some simulation results are demon-
strated in Section 6. Finally, Section 7 concludes the paper.

2 IIR-SAF structure
The structure of the IIR-SAF is shown in Fig. 1, which
consists of an adaptive infinite impulse response (IIR)
filter followed by a nonlinear network. In the nonlin-
ear network, the spline interpolater, connected behind
the adaptive LUT, determines the number and spacing of

Fig. 1 Structure of the IIR-SAF
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points (knots) contained in the LUT. The output of the
adaptive IIR is given by:

s(n) = wT (n)x̄(n), (1)

where w(n) is the weight vector of the IIR filter
which is defined as w(n) = [b0(n), b1(n), · · · , bM−1(n),
a1(n), · · · , aN (n)]T , bl(n) (l = 0, 1, · · · ,M − 1), and
ak(n) (k = 1, 2, · · · ,N) denote the lth coefficient of
the MA part and kth coefficient of the AR part in the IIR
adaptive filter respectively. x̄(n) = [x(n), x(n − 1), · · · ,
x(n − M + 1), s(n − 1), · · · , s(n − N)]T is the input
vector of the IIR filter.
The local parameter un and span index i can be com-

puted as:

un = s(n)/�x − �s(n)/�x� , (2)

i = �s(n)/�x� +(Q − 1)/2, (3)

where Q is the number of the control point, �x is the uni-
form space between two adjacent control points, and �·�
denotes the floor operator.
The output of the whole system is given as:

y(n) = ϕi(un) = uTnCqi,n, (4)

where, in this paper considering the cubic spline interpo-
lation scheme, thus the control point vector qi,n can be
defined qi,n = [

qi,n, qi+1,n, qi+2,n, qi+3,n
]T with length 4,

and the vector un is defined as un = [
u3n,u2n,un, 1

]T . The
superscript T denotes the transposition operation. C is
the spline basis matrix whose dimension is selected
to be 4 × 4. Two suitable types of spline basis matrix are
Catmul-Rom (CR) spline and B-spline matrices which are
given by:

CCR = 1
2

⎡

⎢⎢
⎣

−1 3 −3 1
2 −5 4 −1

−1 0 1 0
0 2 0 0

⎤

⎥⎥
⎦ , (5)

CB = 1
6

⎡

⎢⎢
⎣

−1 3 −3 1
3 −6 3 0

−3 0 3 0
1 4 1 0

⎤

⎥⎥
⎦ . (6)

According to the Lagrange multiplier method pre-
sented in [18], two recursive equations of the tap weights
and control points of the normalized least mean square
algorithm based on IIR-SAF (IIR-SAF-NLMS) can be
formulated as;

wn+1 = wn + μw
e(n)

uTn un + ε

1
�x

u̇TnCqi,ngn, (7)

qi,n+1 = qi,n + μq
e(n)

uTn un + ε
CTun, (8)

where μw and μq are the step-sizes in the linear net-
work and nonlinear network, respectively; the small
positive constant ε is used for avoiding zero division.
The vector gn is defined as gn = [∂s(n)/∂b0(n), · · · ,
∂s(n)/∂bM−1(n), ∂s(n)/∂a1(n), · · · , ∂s(n)/∂aN (n)]T , and
u̇n = [

3u2n, 2un, 1, 0
]T , e(n) is the output error which

can be expressed as e(n) = d(n) − y(n) = d(n) −
uTnCqi,n, where d(n) is the desired signal which contains
non-Gaussian impulsive noises.

3 Proposed IIR-SAF-NLMM and IIR-SAF-SMNLMM
algorithms

3.1 IIR-SAF-NLMM algorithm
In the non-Gaussian impulsive noise environment, the
desired signal d(n) is commonly contaminated by impul-
sive noises. Then, the performances of the SAF-LMS [6]
and SAF-NLMS [18] algorithms based on the MSE cri-
terion can be affected severely by large elements in the
output error. Instead of the MSE cost function, the least
M-estimate schememakes use of a robustM-estimate cost
function to suppress the adverse effect caused by the out-
liers in output errors. In this paper, the cost function can
be expressed as:

J(n)=
(
uTn un

)−1
ρ[e(n)] , (9)

where ρ[ e(n)] is the modified Huber M-estimate function
which gives:

ρ[e(n)]=
{
e2/2, 0 ≤ |e| < ξ

ξ2/2, otherwise, (10)

where ξ is a threshold parameter for rejecting the outliers
which is computed as ξ = 2.576σ̂e(n), and σ̂ 2

e (n) is the
variance estimate of the impulsive-free error [17], which
is given by:

σ̂ 2
e (n)=λ0σ̂

2
e (n − 1) + a1(1 − λ0)med[Ce(n)] , (11)

where λ0 is the forgetting factor close to but
smaller than 1, a1 = 1.483(1 + 5/(Nw − 1)) is a
finite correction factor, and Nw is the data win-
dow. med[ ·] denotes the median operator and
Ce(n) = [

e2(n), e2(n − 1), · · · , e2(n − Nw + 1)
]
.

Note that in [17], the threshold parameter ξ is evaluated
with the assumption of Gaussian distribution of the out-
put error. However, even in the case that e(n) is subject
to other distribution, we also can compute the threshold
value which is used to reject the impulse in output errors.
Taking the derivative of the cost function J(n) with

respect to the IIR weight vectorwn and applying the steep-
est descent method, the update equation of the weight
vector can be obtained by:

wn+1 = wn − μw
∂J(n)

∂wn
= wn + μw

ψ[e(n)]
uTn un + ε

1
�x

u̇TnCqi,ngn,

(12)
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where the function ψ[e(n)] is given as:

ψ[ e(n)]=
{
e, 0 ≤ |e| < ξ

0, otherwise, (13)

In a similar way, taking the derivative of the cost function
J(n) with respect to qi,n and using the steepest descent
method, the recursive equation of the control point vector
is expressed by:

qi,n+1 = qi,n − μq
∂J(n)

∂qi,n
= qi,n + μq

ψ[e(n)]
uTn un+ε

CTun.(14)

It can be seen in (12) and (14) that the output error
is replaced by the score function ψ[e(n)], resulting into
the freezing on the update of the IIR weight vector and
control point vector when the output error is larger than
the threshold parameter. This way helps the IIR-SAF-
SNLMM algorithm to suppress the adverse effect of the
non-Gaussian impulsive noise.

3.2 IIR-SAF-SMNLMM algorithm
As we know, in the case of linear adaptive filters, the set-
membership scheme chooses the specified bound γ ∈ R+
to find an appropriate data set S containing all possible
input-desired data pairs (x, d) which satisfy [19]

� = ∩
(x,d)

{
w ∈ RL :

∣∣∣d − wTx
∣∣∣ ≤ γ

}
, (15)

where � is the feasibility set in which all the tap-weight
vectors are available for

∣
∣d − wTx

∣∣ ≤ γ , and L denotes the
linear filter length.
In the case of the IIR-SAF, we consider both the IIR

adaptive filter tap-weight vector and control point vector,
and the feasibility set can by given by:

�0 = ∩
(x,d)

{
(w,q) ∈ RM+N × R4 :

∣∣∣d − uTCq
∣∣∣ ≤ γ

}
,(16)

The spline adaptive filter updates IIR tap weights and
control points by using the input-desired data pairs
[ xn, d(n)] at time instant n , and then we define the con-
straint set Hn with all the combined vectors (w,q) for
which the output error is upper bounded by γ and is
mathematically expressed by:

Hn =
{
(wn,qi,n) ∈ RM+N × R4 :

∣∣∣d(n) − uTnCqi,n
∣∣∣ ≤ γ

}
,

(17)

The exact membership set which is interpreted as the
intersection of the constraint setsHk over all time instants
k = 1, 2, · · · , n is given as:


n = ∩n
k=1Hk , (18)

Note that the membership set 
n is the minimal set esti-
mate of �0 at time n, if we choose the magnitude of
the error upper bound γ properly, the membership set
is nonempty. Thus, the set-membership adaptive scheme

can be incorporated into the IIR-SAF-NLMM to seek the
valid estimates of combined vectors (w,q) which lie in the
membership set at the steady-state.
Employing the set-membership framework in the IIR-

SAF-NLMM and using the set-membership constraint
value g(n), the modified M-estimate-based cost function
can be set as:

J̄(n) = θ
(
uTn un

)−1
ρ

[
e(n) − g(n)

]
, (19)

Then, themodifiedHuberM-estimate function associated
with the constraint value is given by:

ρ
[
e(n) − g(n)

] =
{ [

e(n) − g(n)
]2

/2, 0 ≤ |e(n)| < ξ

ξ2/2, otherwise,
(20)

where θ is a constant, g(n) = γ sgn[ e(n)], γ ≥ 0 is the set-
membership error bound, and sgn[ ·] is the sign function.
Applying the steepest descent method, the update

equation of the IIR tap-weight vector can be obtained as:

wn+1 = wn − ∂ J̄(n)

∂wn
, (21)

For 0 ≤ |e(n)| < ξ , the derivative of the cost function (19)
with respect to wn is derived as;

c
J̄(n)

∂wn
= θ

(
uTn un

)−1
∂ρ

[
e(n) − g(n)

]

∂wn

= −2θ
(
uTn un

)−1 [
e(n) − g(n)

] ∂y(n)

∂un
∂un
∂s(n)

∇wn s(n)

= −2θ
(
uTn un

)−1 (
e(n) − γ sgn[ e(n)]

)
(1/�x) ϕ′

i(un)gn

= −2θ
(
uTn un

)−1
e(n)

(
1 − γ

|e(n)|
)

(1/�x) ϕ′
i(un)gn,

(22)

where ϕ′
i(un)=u̇TnCqi,n. Substituting (13) into (22), the

derivative of J̄(n) with respect to wn can also be
expressed as:

∂ J̄(n)

∂wn
= −θαn

(
uTn un

)−1
ψ[ e(n)] (1/�x)ϕ′

i(un)gn, (23)

where the constant 2 is absorbed by θ and the parameter
αn is defined as:

αn =
{
1 − γ

|e(n)| , γ < |e(n)| < ξ

0, otherwise, (24)

Hence, the recursive relation of the IIR tap-weight vector
is given as:

wn+1=wn+θαn
(
uTn un + ε0

)−1
ψ[ e(n)] (1/�x)ϕ′

i(un)gn, (25)

where ε0 is a small regular parameter for preventing from
zero division. For the special case e(n) = 0 and ψ[e(n)]= 0,
the weight updating is suspended.
For the updating of the control point vector, taking the

derivative of the cost function (19) with respect to qi,n, we
have:

∂ J̄(n)

∂qi,n
= −θαn

(
uTn un

)−1
ψ[e(n)]CTun. (26)
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Using the steepest descent method, the learning rule of
the control point vector is given as:

qi,n+1 = qi,n + θαn
(
uTn un + ε0

)−1
ψ[e(n)]CTun, (27)

It is noted that in (25) and (27), θαn is equivalent to
the step size in the IIR-SAF-NLMM, i.e., the step sizes
μw = μq = θαn for the IIR-SAF-SMNLMM are not con-
stants any more. Furthermore, the IIR-SAF-SMNLMM
algorithm can be viewed as the variable step size IIR-SAF-
NLMM algorithm.When the upper bound γ is set to be 0,
then resulting into αn = 1, the SAF-SMNLMM algorithm
degenerates into the SAF-NLMM.
In (20), the outlier rejection depends on the choice of ξ ;

improper choice of ξ leads to the presence of a part of the
impulsive noise in e(n). This makes αn in (24) nonoptimal.
Here, we use the impulsive-free estimation of E[ |e(n)| ]
[20] instead of e(n) in (24) which is derived as:

σ̄e(n) = λ1σ̄e(n − 1) + (1 − λ1)med[Ae(n)] , (28)

where Ae(n) = [|e(n)|, |e(n − 1)|, · · · , |e(n − Nw + 1)|],
and λ1 is the forgetting factor approaching but smaller
than one.
Hence, (24) can be approximated as:

αn =
{
1 − γ

σ̄e(n)
, γ < σ̄e(n) < ξ ,

0, otherwise.
(29)

4 Computational complexity
The computational burdens of the IIR-SAF-LMS, IIR-
SAF-NLMS, IIR-SAF-NLMM, and IIR-SAF-SMNLMM
algorithms per iteration are compared in Table 1. For
the spline output calculation and adaptation, we take
into account of the terms uTnCqi,n, u̇TnCqi,n, and CTun; it
only needs 4Kp multiplications plus 4Kq additions, where
Kp and Kq (less than 16) are the constants which can
be defined with reference to the implementation spline
structure in [21]. Due to the normalized operation, extra
four multiplications, four additions, and two divisions
are required for the IIR-SAF-NLMS algorithm. Compared
to the IIR-SAF-NLMS algorithm, the proposed IIR-SAF-
SMNLMM algorithm needs extra eight multiplications
and three additions caused by (25)–(29). IfM+N 
 4, the
proposed algorithms only require more O

(
Nw log2Nw

)

median operations per iteration than the other two cited
algorithms.

5 Convergence properties
In this section, we study the convergence properties based
on the energy conservation relation. The identification
scheme is shown in Fig. 2; w0 and q0 represent the IIR
filter and the nonlinear network of the target nonlinear
system, respectively. It is reasonable to suppose that the
adaptation of the variables wn and qi,n is in two separate
phases, e.g., only the adaptation of linear filters is consid-
ered in the first phase of learning and then it is optimal
in the second one [7]. To make the analysis tractable, the
following assumptions are given:

Assumption 1 The ambient noise η(n) = ηG(n)+ηI(n),
where ηG(n) is white Gaussian background noise with
zero-mean and variance σ 2

G and ηI(n) is the impulsive
noise, modeled by an independent and identically dis-
tributed (i.i.d) random variable. The sequence η(n) whose
variance is σ 2

η is independent of x(n) and s(n).

Assumption 2 For sufficient long IIR weight error vector,
the output error e(n) is independent of ϕ′

i(un),
∥∥gn

∥∥2 and
‖Cun‖2 and the parameter αn involved with e(n) in (24) is
also independent of ϕ′

i(un),
∥∥gn

∥∥2 and ‖Cun‖2.

In the first phase, we define the IIR weight error vector
as�wn = w0−wn; the iteration of�wn can be written as:

�wn+1=�wn−θαn
(
uTn un+ε0

)−1
ψ[ e(n)](1/�x)ϕ′

i(un)gn,

(30)

Setting the regularization parameter ε0 to zero and taking
the mathematical expectation of the squared Euclidean
norm of both sides of (30), we have:

D(n + 1) = D(n) − 2θE
{
ψ[ e(n)]αn||un||−2ξw(n)ϕ′

i(un)/
(
c3qi,n

)}

+ (
θ2/�x2

)
E

{
α2
nϕ

′
i(un)2ψ2[ e(n)] ||gn||2||un||−4} ,

(31)

whereD(n) = E
[||�wn||2

]
denotes themean square devi-

ation (MSD); ξw(n) is defined as a noise-free priori error
associated with the IIR weight error vector�wn which can
be expressed by [22]:

ξw(n) = (
c3qi,n/�x

)
�wT

n gn, (32)

where c3 is the third row of the matrix C.

Table 1 Comparison of the computational complexities

Algorithm Multiplications Additions Divisions Median operation

IIR-SAF-LMS [9] 2M + 4N + 4Kp 2M + 4N + 4Kq 0 0

IIR-SAF-NLMS [18] 2M + 4N + 4Kp + 4 2M + 4N + 4Kq + 4 2 0

IIR-SAF-NLMM 2M + 4N + 4Kp + 7 2M + 4N + 4Kq + 5 2 O
(
Nw log2 Nw

)

IIR-SAF-SMNLMM 2M + 4N + 4Kp + 12 2M + 4N + 4Kq + 7 2 O
(
Nw log2 Nw

)
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Fig. 2 Identification scheme for IIR-SAF nonlinear system

In addition, in this phase, the control point vector is
assumed to be optimal; thus, the output error is given as:

e(n) = d(n) − y(n) = ξw(n) + η(n), (33)

Considering that ξw(n) is not corrupted by the impulsive
noise, based on the features of the function (13) which
rejects the outliers, ψ[e(n)] can be approximated as [23]:

ψ[e(n)]= ψ [ξw(n)+η(n)] ≈ ξw(n) + ψ[ η(n)] , (34)

Assuming ξw(n) is independent of ψ[ η(n)], we substitute
(34) into (31) and apply the Assumptions 1 and 2, we have:

D(n + 1) = D(n) − 2θE
[
αnξ

2
w(n)

]
E

[||un||−2ϕ′
i(un)/

(
c3qi,n

)]

+(
θ2/�x2

) {
E

[
α2
nξ

2
w(n)

]+ σ 2
ψ(η)E

[
α2
n
]}

E
[
ϕ′
i(un)

2||gn||2||un||−4] ,

(35)

where σ 2
ψ(η) denotes the variance of ψ[ η(n)].

By using the property tr[AB]= tr[BA] and insert-
ing (32) into (35), where tr[ ·] denotes the trace oper-
ator for matrices. The relation (35) can be rewritten
equaivalently as:

tr [cov (�wn+1)] = tr [cov (�wn)] − 2Anθ tr
[
E

(
αngngTn �wn�wT

n

)]

+ Bnθ
2tr

[
E

(
α2
ngngTn �wn�wT

n

)]
+ CnE

[
α2
n
]
,

(36)

where cov (�wn) = E
(
�wn�wT

n
)
,An = [(

c3qi,n
)
/�x2

]

E
[||un||−2ϕ′

i(un)
]
,Bn=

[(
c3qi,n

)2
/�x4

]
E

[
ϕ′
i(un)2||gn||2

||un||−4] , and Cn = σ 2
ψ(η)E

[
ϕ′
i(un)2||gn||2||un||−4] .

Now by applying the unitary matrixQ, we have:

tr
[
QTcov (�wn+1)Q

]
= tr

[
QTcov (�wn)Q

]

− 2Anθ tr
[
E

(
αnQTgngTnQQT�wn�wT

nQ
)]

+ Bnθ
2tr

[
E

(
α2
nQTgngTnQQT�wn�wT

nQ
)]

+ CnE
[
α2
n
]
,

(37)

Assuming that �wn+1 is independent of the filter inputs
and using the Assumption 2, (37) can be rewritten as:

tr
[
cov

(
�w′

n+1
)] = tr

[
cov

(
�w′

n
)] − 2Anθ tr [E (αn
n)] tr

[
cov

(
�w′

n
)]

+ Bnθ
2tr

[
E

(
α2
n
)

n

]
tr

[
cov

(
�w′

n
)] + CnE

[
α2
n
]

= tr
[
I − 2AnθE(αn)
n + Bnθ

2E
(
α2
n
)

n

]
tr

[
cov

(
�w′

n
)]

+ CnE
[
α2
n
]

(38)

where �w′n+1 = QT�wn+1, 
n is a diagonal matrix
whose elements are the eigenvalues of E

(
gngTn

)
, denotes

as λl for l = 0, · · · ,M + N − 1. From (38), the algorithm
is stable when

∣∣1 − 2AnθE(αn)λl+Bnθ2E
(
α2
n
)
λl

∣∣ < 1,
which gives:

0 < θ <
2AnE[αn]
BnE

[
α2
n
] , (39)

In the second phase, we define the control point error
vector �qi,n = q0 − qi,n and then obtain:

�qi,n+1=�qi,n−θαn
(
uTn un+ε0

)−1
ψ[ e(n)]CTun, (40)

Taking the mathematical expectation of the energies of
both sides of (40) and using Assumptions 1 and 2, again,
we obtain:

K(n + 1) = K(n) − 2θE
[
αnξ

2
q (n)

]
E

[||un||−2]

+ θ2
{
E

[
α2
nξ

2
q (n)

]
+ E

[
α2
n
]
σ 2

ψ(η)

}
E

[
||un||−4||CTun||2

]
,

(41)
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Fig. 3MSEs of the SAF-LMS, SAF-NLMS, and proposed algorithms in the absence of impulsive noise

where K(n) = E
[||�qi,n||2

]
, ξq(n) is defined as the a

noise-free priori error associated with the control point
error vector �qi,n which is given by:

ξq(n) = �qTi,nCTun, (42)

By using again the property tr[AB]= tr[BA] and insert-
ing (42) into (41), we obtain:

tr
[
cov

(
�qi,n+1

)] =tr[ cov(�qi,n)]−2Ānθ tr
{
E

[
αnCTun

(
CTun

)T
�qi,n�qTi,n

]}

+ B̄nθ
2tr

{
E

[
α2
nCTun

(
CTun

)T
�qi,n�qTi,n

]}
+ θ2σ 2

ψ(η)B̄nE
[
α2
n
]
,

(43)

In a similar way to cov(�wn), the relation (43) can be
rewritten as:
tr

[
cov

(
�q̄i,n+1

)] =tr
[
I − 2ĀnθE(αn)
̄n+B̄nθ

2E
(
α2
n
)

̄n

]

tr
[
cov

(
�q̄i,n

)] + θ2σ 2
ψ(η)B̄nE

[
α2
n
]
,

(44)

Table 2 Number of update ratio for the corresponding
algorithms in the absence of impulsive noise

Algorithm Update ratio %

IIR-SAF-LMS [9] 100

IIR-SAF-NLMS [18] 100

IIR-SAF-NLMM 98.81

IIR-SAF-SMNLMM 48.86

where cov
(
�q̄i,n+1

) = QTcov
(
�qi,n+1

)
, Ān =

E
[||un||−2], B̄n = E

[||un||−4||CTun||2
]
, 
̄n is a diagonal

matrix whose elements λ̄p (p = 0, 1, 2, 3) are the eigen-
values of E

[
CTun

(
CTun

)T]
. The system is stable when

∣∣1 − 2ĀnθE(αn)λp+B̄nθ2E
(
α2
n
)
λp

∣∣ < 1, which gives:

0 < θ <
2ĀnE[αn]
B̄nE

[
α2
n
] , (45)

Note that in (39) and (45), the bound of the constant θ can
be set by:

0 < θ < min
{
2AnE[αn]
BnE

[
α2
n
] ,

2ĀnE[αn]
B̄nE

[
α2
n
]

}

. (46)

6 Results and discussion
In this section, several detailed experimental results are
presented in the context of the IIR-SAF nonlinear system
identification as shown in Fig. 2. The mean square error
(MSE) which is defined as 10 log10[ e(n)]2 is used to evalu-
ate the performance. All the following results are obtained
by averaging over 100Monte Carlo trials. The input signal
is generated by the following relationship:

x(n) = ωx(n − 1) +
√
1 − ω2a(n), (47)

where a(n) is the white Gaussian noise signal with zero-
mean and unitary variance, and the parameter 0 < ω <
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Fig. 4MSEs of the IIR-SAF-SMNLMS algorithm for different θ in the absence of impulsive noise

0.95 represents the level of correlation between the adja-
cent samples. The lengths of the MA and AR parts in the
IIR adaptive filter are set to M = 2 and N = 3, respec-
tively. The initial tap-weight vector for the IIR adaptive
filter is w−1=[1, 0,..., 0] with length M+N = 5, while the
control point vector is initially set to a straight line with
a unitary slope. Only the CR-spline basis is applied in the
simulations; however, similar results can also be obtained
by using the B-spline basis.
The unknown IIR-SAF nonlinear system is composed of

an IIR filter whose transfer function is given by:

w0(z) = 0.6 − 0.4z−1

1 + 0.2z−1 − 0.5z−2 + 0.1z−3 , (48)

and the nonlinear spline function is implemented by a
LUT q0 with 23 control points, �x is set to 0.2 and q0 is
defined by:

Table 3 Number of update ratio of the IIR-SAF-SMNLMS
algorithm for different θ in the absence of impulsive noise

θ Update ratio %

0.01 83.14

0.025 63.32

0.075 44.7

0.1 36.2

q0 =[−2.2,−2.0,−1.8,−1.6,−1.4,−1.2,−1.0,−0.8,−0.91,

− 0.4,−0.2, 0.05, 0,−0.4, 0.58, 1.0, 1.0, 1.2, 1.4, 1.6, 1, 8, 2.0, 2.2] .

(49)

The ambient noise η(n) = ηG(n) + ηI(n), where ηG(n)

is the white Gaussian background noise and ηI(n) is the
impulsive noise. The background noise ηG(n) is the zero-
mean independent white Gaussian sequence with vari-
ance σ 2

G, with 40 dB signal-to-noise ratio (SNR) which
is added to the input of the unknown system. The SNR
is defined as SNR = 10 log10

(
σ 2
x /σ 2

G
)
, where σ 2

x is
the variance of the system input x(n). The impulsive
interference ηI(n) is modeled by the contaminated Gaus-
sian (CG) process or the symmetric α−S distribution.
The CG impulse can be represented by ηI(n)=z(n)b(n)

with a signal-to-interference ratio (SIR) of − 10 dB or
− 20 dB, where z(n) is a white Gaussian process with
zero-mean and b(n) is a Bernoulli sequence with the
probability mass function with P(b) = 1 − P for
b = 0 and P(b) = P for b = 1, where P is the
probability of the occurrence of the impulsive interfer-
ence. The SIR is defined as SIR = 10 log10

(
σ 2
d /σ 2

z
)
,

where σ 2
z and σ 2

d are the variances of z(n) and the
desired signal d̃(n), respectively. The symmetric α−S
distribution is characterized by the fractional order
parameter p and characteristic exponent α, for which
the fractional-order signal-to-noise ratio (FSNR) can be
defined as FSNR = 10 log10[E(|d̃(n)|p)/E(|ηI(n)|p)] and
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Fig. 5MSEs of the IIR-SAF-SMNLMS algorithm for different κ in the absence of impulsive noise

0 < p < α. The step sizes are set to μw = μq =
0.01 for the IIR-SAF-LMS, IIR-SAF-NLMS, and proposed
IIR-SAF-NLMM. For the proposed SAF-SMNLMM, the
constant θ is set to 0.06 except in Fig. 4. Other parameters
are selected as follows: γ =

√
τσ 2

G/(κ + 1), τ=5, κ=0.6
except in Fig. 5, λ0=λ1=0.99, ε0=ε=0.001, ω=0.7, α=0.8,
and p=0.7.
The first experiment is to evaluate the performance of

the proposed algorithms in the absence of impulsive noise.
Figure 3 shows the MSE learning curves of the IIR-SAF-
LMS, IIR-SAF-NLMS, proposed IIR-SAF-NLMM, and
IIR-SAF-SMNLMM in the absence of impulsive noise. It
can be noted that all the algorithms acquire the nearly
identical steady-state MSEs. Compared with the cited
algorithms, the IIR-SAF-NLMM suffers from the conver-
gence performance deterioration due to the application of
the modified Huber M-estimate function. However, the
IIR-SAF-SMNLMM obtains the faster convergence rate

Table 4 Number of update ratio of the IIR-SAF-SMNLMS
algorithm for different κ in the absence of impulsive noise

κ Update ratio %

0 12.21

0.25 34.59

0.5 44.49

0.8 61.08

than the other algorithms. The number of update ratio
for the corresponding algorithms in the absence of impul-
sive noise is demonstrated in Table 2; we can see the
proposed algorithms have lower update ratio over the
other two cited algorithms, especially for the IIR-SAF-
SMNLMM which involves in the set-membership error
bound.
Figure 4 shows the MSE learning curves of the pro-

posed IIR-SAF-SMNLMM for different values of θ in
the absence of impulsive noise. It can be clearly seen
that the larger value of θ leads to the faster conver-
gence rate, and the proposed IIR-SAF-SMNLMM gets
nearly similar steady-state MSEs for different values of
θ . Besides, Table 3 displays the larger value of θ can
decrease the number of the update ratio because of the
faster convergence rate. Therefore, the parameter θ which
is bounded by (45) can be set as large as possible in
the application of the proposed IIR-SAF-SMNLMM. The
performance of the IIR-SAF-SMNLMS algorithm for dif-
ferent values of κ in the absence of impulsive noise is
shown in Fig. 5. It can be noted that the proposed IIR-SAF-
SMNLMS holds similar convergence rate with respect to
different values of κ . Moreover, the larger value of κ results
in the lower steady-state MSE and a lager number of
update ratio which is shown in Table 4.
In the second experiment, the performances of the pro-

posed algorithms are compared with those of the IIR-SAF-
LMS and IIR-SAF-NLMS algorithms in the CG process



Liu et al. EURASIP Journal on Advances in Signal Processing          (2019) 2019:8 Page 10 of 15

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

−40

−35

−30

−25

−20

−15

−10

−5

0

Samples

M
S

E
 [

d
B

]

 

 
IIR−SAF−LMS
IIR−SAF−NLMS
IIR−SAF−NLMM
IIR−SAF−SMNLMM

Fig. 6MSE curves for the corresponding algorithms in the CG impulsive noise (SNR = 40 dB, SIR = − 10 dB, P = 0.01)
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Fig. 7MSE curves for the corresponding algorithms in the CG impulsive noise (SNR = 40 dB, SIR = − 20 dB, P = 0.001)
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Fig. 8MSE curves for the corresponding algorithms in the CG impulsive noise (SNR = 40 dB, SIR = − 10 dB, P = 0.001)
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Fig. 9MSE curves for the corresponding algorithms in the the symmetric α−S impulsive noise (SNR = 40 dB, FSNR = − 5 dB)
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Fig. 10MSE curves for the corresponding algorithms in the the symmetric α−S impulsive noise (SNR = 40 dB, FSNR = 0 dB)
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Fig. 11MSE curves for the corresponding algorithms in the the symmetric α−S impulsive noise (SNR = 40 dB, FSNR = 15 dB)
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Table 5 Number of update ratio % for the corresponding algorithms in the CG impulsive noise

IIR-SAF-LMS IIR-SAF-NLMS IIR-SAF-NLMM IIR-SAF-SMNLMM

SIR = − 10 dB P = 0.01 100 100 98.89 49.6

SIR = − 10 dB P = 0.001 100 100 98.70 49.57

SIR = − 20 dB P = 0.001 100 100 98.79 48.49

impulsive noise or the symmetric α−S impulsive noise.
Figures 6, 7, and 8 show the performance comparison
at different SIR and probability of the occurrence of the
impulsive interference for CG noises. Figures 9, 10, and 11
indicate the MSE learning curves of four algorithms in
the symmetric noise environment at different FSNR. From
these plots, the proposed algorithms provide the robust
performance in the impulsive noise environment, whereas
the other two cited algorithms fail to suppress the impulse.
The proposed IIR-SAF-SMNLMS achieves the faster con-
vergence rate. Besides, in Table 5, it can also be seen that
the proposed algorithms have lower update ratios over the
cited algorithms.
The third experiment evaluates the tracking ability

of the proposed algorithms. The target system changes
abruptly after 30,000 samples, i.e., (w0,q0) → (w1,q1),
where the system (w1,q1) contains an IIR filter which is
given as:

w1(z) = 0.4 − 0.2z−1

1 − 0.2z−1 + 0.01z−2 − 0.002z−3 , (50)

and a nonlinear spline network which is implemented by
a LUT q1 with 23 control points and q1 is defined by:

q1 =[−2.2,−2.12,−2.0,−1.52,−1.43,−1.1,−0.92,−0.71,−0.88,

− 0.44,−0.18, 0.12,−0.12,−0.2, 0.42, 0.75, 1.0, 1.2, 1.31, 1.52, 1, 93, 2.1, 2.2] .

(51)

Figures 12 and 13 show the MSE tracking curves of four
algorithms in case of the CG noise and the symmetric α−S
impulsive noise, respectively. It can be clearly seen that the
proposed algorithms get better tracking ability and more
robust against impulsive noise than the cited algorithms.
The IIR-SAF-SMNLMM algorithm performs best.

7 Conclusions
In order to suppress the effect of the impulsive noise
and decrease the computational burden, this paper com-
bines the set-membership framework and least-M esti-
mate scheme and proposes two variants based on the IIR
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Fig. 12 Tracking ability for the corresponding algorithms in the CG impulsive noise (SNR = 40 dB, SIR = − 10 dB, P = 0.01)
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Fig. 13 Tracking ability for the corresponding algorithms in the the symmetric α−S impulsive noise (SNR = 40 dB, FSNR = − 5 dB)

spline adaptive filter. The proposed SAF-IIR-NLMM algo-
rithm is derived by using a robust M-estimator as the cost
function and the SAF-IIR-SMNLMM is characterized by
the set-membership error bound leading into an evident
decrease of the number of the update ratio. Moreover, the
computational burdens and the convergence properties
of the proposed SAF-IIR-SMNLMM algorithm are also
given. Compared to the cited spline adaptive filtering algo-
rithms, the proposed algorithms offer more robustness
against impulsive noise, better tracking ability, and lower
computational complexity.

8 Methods/Experimental
This paper studies the SAF-IIR-NLMM and SAF-IIR-
SMNLMM algorithms aiming at suppressing the effect
of the impulsive noise and decreasing the computational
burden compared with the conventional nonlinear adap-
tive spline adaptive algorithms. The derivation of the algo-
rithms are based on the modified HuberM-estimate func-
tion and set-membership framework. Besides, the con-
vergence properties of the SAF-IIR-SMNLMM algorithm
are analyzed by using the energy conversion relation. The
numerical experiments are carried out by applying the
white Gaussian noise signal and colored noise signal in
the CG impulsive noise or symmetric α−S impulsive noise
environment. The results demonstrated that the two pro-
posed variants of the SAF are robust to the impulsive

noise, and the SAF-IIR-SMNLMM algorithm obtains low
updating ratio.
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