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Abstract

Bi-iterative

In general, the space-time adaptive processing (STAP) can achieve excellent clutter suppression and moving target
detection performance in the airborne multiple-input multiple-output (MIMO) radar for the increasing system degrees of
freedom (DoFs). However, the performance improvement is accompanied by a dramatic increase in computational cost
and training sample requirement. As one of the most efficient dimension-reduced STAP methods, the extended factored
approach (EFA) transforms the full-dimension STAP problem into several small-scale adaptive processing problems, and
therefore alleviates the computational cost and training sample requirement. However, it cannot effectively work in the
airborne MIMO radar since sufficient training samples are unavailable. Aiming at the problem, a fast iterative method
using persymmetry covariance matrix estimation in the airborne MIMO radar is proposed. In this method, the clutter
covariance matrix is estimated by the original data and the constructed data. Then, the spatial weight vector in EFA is
decomposed into the Kronecker product of two short-weight vectors. The bi-iterative algorithm is exploited to obtain the
desired weight vectors. Simulation results demonstrate the effectiveness of our proposed method.
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1 Introduction

Since the concept of multiple-input multiple-output
(MIMO) radar was first proposed in [1], it has been
receiving considerable attention for its superiority in
spatial diversity and available degrees of freedom (DoFs)
compared with its single-input multiple-output (SIMO)
counterpart [1-4]. More recently, the researches on the
airborne MIMO radar have been extended to the space-
time adaptive processing (STAP) [5-8], which is an
important technique in airborne radars due to the re-
markable ability of clutter suppression that facilitates the
downstream signal processing tasks suffering from high
clutter rates such as multi-target detecting and tracking
[9-11].

By far, a number of literatures have studied various
STAP methods in the airborne MIMO radar. Many
existing STAP methods that were once studied in the
airborne SIMO radar are also applied into the airborne
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MIMO radar and show superior performance with suffi-
cient homogeneous training sample support [12-33].
The dimension-reduced STAP methods [12—-18], such as
joint domain localized (JDL) [13], generalized multiple
beams (GMB) [14], and pulse repetition interval (PRI)-
staggered algorithm [15], can reduce the adaptive di-
mension and hence reduce the computational cost and
the number of required training samples. However, they
are either computational intensive or sensitive to ampli-
tude and phase errors. On the other hand, the rank-re-
duced STAP methods [8, 19-22], such as principle
components (PC) [19] and cross-spectrum method
(CSM) [20], make the eigendecomposition to the clutter
covariance matrix (CCM) and try to estimate the clutter
subspace. Although the rank-reduced STAP methods ex-
ploit the low rank property of clutter and reduce the
number of required training samples to twice of the clut-
ter rank, they are computational intensive due to the
CCM eigendecomposition. Besides, the eigenvectors of
CCM cannot be accurately estimated when the number
of training samples is inadequate. Knowledge-aided (KA)

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made.


http://crossmark.crossref.org/dialog/?doi=10.1186/s13634-019-0610-z&domain=pdf
mailto:chenxx@nwu.edu.cn
http://creativecommons.org/licenses/by/4.0/

Zhou et al. EURASIP Journal on Advances in Signal Processing

radar, which can use the a priori knowledge such as the
digital elevation map (DEM) and geospatial databases to
enhance STAP performance with small training samples
support, has been attracting increasing attentions of re-
searchers and practitioners [23—-27]. However, the pre-
cise information of the a priori knowledge is hard to
obtain. More recently, based on the sparsity of clutter
distribution on spatial-temporal plane, the sparse recov-
ery STAP interests many researchers for the very few
training samples demanding. On the one hand, the
sparse recovery STAP is accomplished by constructing
the overcomplete space-time dictionary and the corre-
sponding amplitude vector, which depends heavily on
clutter distribution and is sensitive to amplitude and
phase errors [28, 29]. On the other hand, the sparse re-
covery STAP is accomplished by adding norm constraint
on the weight vector, which is computational intractable
and hard to be theoretically analyzed [30, 31].

In this paper, the post-Doppler adaptive processing
method, named extended factored approach (EFA or
mDT) [34, 35], which is expected to be one of the most
efficient and practical STAP algorithms and robust to
amplitude and phase errors, are mainly concerned and
to be improved. The basic principle of EFA is to trans-
form the full-dimension STAP, which is actually a KMN-
dimensional (K is the number of pulses, M is the num-
ber of transmitting antennas, and N is the number of
receiving antennas) adaptive filtering problem, into K
separate PMN (P is an integer and P >2) dimensional
adaptive processing problems. Less training sample re-
quirement and smaller computational cost increase its
applicability in practice [36]. However, when insufficient
homogeneous training sample support is met, which is a
frequent condition especially in the airborne MIMO
radar with large-scale antenna array, the clutter suppres-
sion ability of EFA will be considerably degraded.

Actually, nowadays the persymmetry property of CCM
has received much attention and been used as the a
priori knowledge for enhancing CCM estimation. It is
initially exploited in communications, [37] extended the
application of persymmetry to EFA (Per-EFA), and
showed that the required number of training samples
was reduced. Per-EFA is verified to be an effective algo-
rithm in training-limited scenarios. However, Per-EFA’s
computational cost in adaptive processing is increased,
and it still requires excessive training samples in the air-
borne MIMO radar system with large spatial DoFs.

Hence, for the post-Doppler adaptive processing method
in the airborne MIMO radar to effectively work, we
propose the bi-iterative method for clutter suppression by
using persymmetry covariance matrix estimation. Firstly,
according to the persymmetry property, CCM is estimated
by the original data, the constructed spatial transformed
data, the constructed temporal transformed data, and the
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constructed spatial-temporal transformed data. Secondly,
the weight vector in EFA is decomposed into the Kro-
necker product of two short vectors. Then, the original cost
function of EFA is transformed into the cost function with
multiple weight vectors. Thirdly, the bi-iterative algorithm
[38] is adopted to obtain the desired weight vectors.

1.1 Outline

This paper is organized as follows. Fundamentals of the
STAP are reviewed in Section 2. Section 3 brings for-
ward the principle of the proposed method, and the
computational cost is analyzed in Section 4. In Section
5, the experiments show the performance. Finally, we
make a conclusion in Section 6.

1.2 Notation

Throughout this paper, matrix and vector are repre-
sented by boldface uppercase letter and boldface lower-
case letter, respectively. Superscript %, *, and 7 separately
denote transpose, conjugate, and conjugate transpose of
a matrix or a vector. [+]"! means inverse of a matrix. ®
is the Kronecker product operator. A c¢xc identity
matrix is denoted as I..

2 Method and problem setup

Airborne early warning (AEW) radar needs to instantly
detect moving targets, which are saturated in the pres-
ence of dense ground clutter. It is crucial to suppress
the ground clutter. As an effective clutter suppression
method in AEW radar, STAP undertakes huge computa-
tional cost and excessive training sample requirement,
which cannot be fully satisfied in the practical battlefield
environment. Moreover, the computational cost and
training sample requirement are even huger in MIMO-
STAP. Therefore, in this paper, an improving STAP
method with tractable computational cost and training
sample requirement that applies into the airborne
MIMO radar is proposed. The proposed method con-
sists of two parts. The first part is CCM estimation,
which is computed according to the original data and
the corresponding persymmetry data. The second part is
weight vector computation, which is iteratively obtained.
We firstly establish the signal model, which will be a
foundation for the development and performance ana-
lysis of the proposed method.

2.1 Signal model

As shown in Fig. 1, the airborne MIMO radar system
moves at a constant velocity v, parallel to the ground.
The transmitting array consists of M array elements with
interelement space d; and the receiving array consists of
N array elements with interelement space d,. The
MIMO radar simultaneously transmits M deterministic
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waveforms S e C"* €, where C denotes the number of
snapshots in each transmitting signal pulse.

The /th range cell is uniformly divided into N, inde-
pendent clutter patches without consideration of the
earth curvature. The location of the ithclutter patch is
represented by its azimuth angle 6; and elevation angle
¢, Let the crab angle between the antenna array line
and the flight velocity be 6. Assuming that the MIMO
radar system transmits K pulses on the repetition of 7,
in one coherent processing interval (CPI), the received
clutter matrix on the /th range cell at the kth pulse is
given by [5].

N,
= B exp(j2n(k-1)f )a(0;, 9))af (6, 9,)S

Z(l,k)
(1)
where f;;=2T,v,cos(6;+6.) cos¢,/A is the normalized

Doppler frequency, the scatter coefficient f5; is clutter
echo’s random complex amplitude, and a,(0;, ¢;) and
a.(0, ¢;) are transmitting array steering-vector and re-
ceiving array steering-vector, respectively. They are
expressed as

@ (6:, ) = [, exp(j2nf ya), -+, exp(j2n(M-1)f )]
a,(6:,¢)) = [1, exp(j2nfy;), -+, exp(2n(N-1)f )",

(2)

in which f;;=d, cos 6;cos ¢;/A is the normalized spatial

frequency, A is the operating wavelength and a = d,/d,. In

order to obtain the sufficient statistics for STAP process-
ing, $”(SS”)"* is employed as the match filter at the

receiver. After match filtering and stacking the data in the
vector form, the following expression can be obtained

z(l, k) = vec [Z(l, k)st (SSH)—l/z]

1/2

Ne N
= vec {Zﬁ, exp(j2(k-1)f z)a, (0, ¢)a/ (6;, ¢,)(SSH/C)

(3)

where B, = v/CB,, a(6:,9) = (5°ST/C) a6, ¢)), is
the modified transmitting steering-vector. The symbol
vec(s) represents the matrix operation that stacks the
columns of a matrix under each other to form a new
column vector. Now the clutter data received during a
CPI is stacked into the vector form as

(LK)

z(l) = [z T(l 1),z7(1,2), 2"

/;) s:(fa) ® a0, ¢;) © a,(0;,¢;)

(4)

&MZ EMZ

N,
/)) t(.fdl)®ss 917¢l Z iCis
i=1

where c¢;=s,/{f;;) ® s5(0;, ¢;) is the space-time steering-
vector with s,(fy;) = [1, exp(j27fy), -+ exp(i2m(K - 1)f)]"
and s,(0;,¢;) = a:(6;,¢,) ® a,(0;,¢;) representing the
temporal and spatial steering-vectors, respectively. The
received signal contains also the noise, namely,

x(1)

where n is the white noise vector.

= z() +n, (5)
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2.2 Principle of STAP and EFA

Let the normalized target vector be marked as s € C<*N*
!, The objective of the full-dimension STAP is maintaining
the output energy of the target while minimizing that of
the clutter. This implies the following cost function

{MMW%Wﬂ

6
stwls =1 ( )

The Lagrange multiplier methodology can be applied
to obtain the optimal weight

w=R's/(s"R's), (7)

where R, = E[x()x"(])] is the CCM. In general, since the
statistics of the clutter range cell under test are never
known, CCM is estimated by L secondary training sam-
ples in adjacent range cells, namely, R, = 1 7| x(/)x"(
[). RMB (Reed, Mallett, and Brennan) rule [36] shows
that, in the Gaussian noise environment, if the number
of homogeneous training samples exceeds twice the di-
mension of CCM, the output SCNR (signal-to-clutter-
plus-noise ratio) loss will be within 3 dB. The training
sample requirement of the full-dimension MIMO-STAP
is evidently unpractical. Moreover, as the inverse oper-
ation of a KMN x KMN matrix, the computational com-
plexity is approximate to O(K’M°’N?®), which is also
unbearable. These two major drawbacks prevent the
full-dimension MIMO-STAP from being put into effect.
Hence, a large number of dimension-reduced MIMO-
STAP methods have been developed in the past years. In
this paper, the post-Doppler adaptive processing method,
namely EFA, is mainly concerned.

EFA performs Doppler filtering on data of each array
element and then uses spatial filtering separately
within P (P>2) Doppler bins [34, 35]. Let Fre C**X
be the Doppler filter coefficient vector according to the
kth (k=1,2, ---,K) Doppler bin, the dimension-reduced
transformation matrix can be expressed as

Tk = Fk 9 IMN- (8)

The dimension-reduced space-time data and target
can be achieved as

X (1) = Tix(l)
Sk = Tks

9)
The cost function in EFA is

{ moeftso]

10
S.t.ﬁ’fgk =1 (10

Similarly, the solution to Eq. (10) is obtained by using
the Lagrange multiplier methodology and the CCM is
estimated by
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(11)

Evidently, the dimension of CCM is reduced to PMN.
As a consequence, the required number of training sam-
ples and computational cost in adaptive processing are
separately reduced to PMN and O(P’M>N®). Although
EFA reduce the size of CCM in the adaptive processing,
its clutter suppression ability can still be severely de-
graded due to the insufficient training sample support
when antenna array elements are large.

Generally, P=3 is utilized in EFA. Therefore, in the
following, the EFA referred in this paper is with three
Doppler bins.

3 The bi-iterative method using persymmetric
covariance matrix estimation

In order to reduce the required number of training sam-
ples, the persymmetry is utilized as the a priori knowledge
and the CCM is estimated by the following equation [37].

R;, = Ry, + TR, T + T,R;, TV + T R, T/ w4
T _I ®]saTt Ut®IMN1TSt_ St®]s
(12)
where U; J27f 1(MN‘1) j2nfk(MN—1) jankH(MN—l)])7
t = dl

= diag([e
g([e /i MN-1) o 12nfk<MN 1), e /2mf k1 (MN-1)])
0 0 O 01

0 00 10| oy

1 0 O 0 0

with fi 1, fo fx+1 representing the normalized Dop-
pler frequency of three adjacent Doppler bins. After con-
structing the CCM estimator by Eq. (12), the proposed
bi-iterative adaptive method will be introduced. In the fol-
lowing, we will utilize the Kronecker form of weight vec-
tor in EFA and further decrease the computational cost
and training sample demanding in adaptive processing.

As a matter of fact, the clutter data after dimension-
reduced in EFA can be expressed as

z(l) = Trz(l)

(13)

where heC"*! = 4,(6;, ¢,) and geC™N*! = (Fese) T a, (6;,
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¢;). Equation (13) clearly shows that the clutter data after
Doppler filtering possesses the structure of the Kronecker
products of two vectors. Correspondingly, the adaptive
weight vector wy can also be supposed to possess the spe-
cial structure so that wi can be decomposed as the Kro-
necker products of two shorter vectors, namely,

Wy =uQ®YV, (14)

where ue C** ' and ve C**! represent two short weight
vectors with a = M and b = PN. Substituting Eq. (12) and
Eq. (14) into Eq. (10) yields the following cost function

{Immu®w”ﬁxu®ﬂ (15)

stu@v)’§ =1

Using the Lagrange multiplier methodology, cost func-
tion (15) can be transformed into the following uncon-
strained one

(u® v)Hf{,;k (u®v)
+u(1-(ev)'s),

J(u,v) =
(16)

where y is the Lagrange multiplier. Generally, the solu-
tion to Eq. (16) is not easy to be analytically expressed.
But fortunately, the cyclic minimizer [38] can be con-
veniently applied to numerically solve this cost function.
To obtain the numerical solution to Eq. (16), u is ini-
tialized with u(0). Then, Eq. (16) becomes an uncon-
strained cost function with respect to v and u after
substituting u(0) into it. Letting the gradient of J(u(0), v)
with respect to v and y be zero yields an iterative value

v(1) =R)'s,/(s!'R;"s,), (17)
where
= (u(0) ® I;)"” xk( (0) ®1p),s,
= (u(0) ® 1,)"'3 (18)

Again, with fixing v(1), let the gradient of J(u,v(1))
with respect to u and y be zero, the iterative value of
u(1) can be achieved by

u(l) =R.'s,/(s/R;'s.), (19)
where
R, = (L, ®v(1)"Ry, (I, ® v(1)), s,
= (I, ®v(1))"5. (20)

By repeating the aforementioned iterative procedure,
v(t) and v(2), u(3) and v(3), ..., can be obtained in turn.
The iterative procedure will be stopped if the termin-
ation condition [lv(z) - v(t - DII/IIv(®)ll < & is satisfied at
the tth iteration, where § is the threshold and [|«|l is the
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Euclidean norm of a vector. The bi-iterative algorithm is
summarized in Table 1.

Finally, u(f) and v(¢) are substituted into (14) and wy is
achieved by the Kronecker product of two short vectors

wi = u(t) @ v(t).

The sizes of R, and R, produced in the iterative pro-
cedure are a x a and b x b respectively. After weight de-
composition, both the required number of training
samples and computational cost in the spatial adaptive
processing are reduced. Hereafter, for convenience, EFA
that uses Eq. (12) as CCM estimation is marked as
MIMOPer-EFA, EFA based on the bi-iterative algorithm
using Eq. (11) as CCM estimation is marked as
MIMOBI-EFA, and EFA based on the bi-iterative algo-
rithm using Eq. (12) as CCM estimation is marked as
MIMOBiPer-EFA.

(21)

4 Convergence and computational cost analysis

In this section, the asymptotic convergence of the

bi-iterative algorithm is analyzed and verified. First of all,

two definitions and one theorem will be introduced [39]:
Definition 1 (Lyapunov function): let the set R be

defined by R = {h/heC” * "} A function f(h) defined
in R is called a Lyapunov function associated with a
discrete sequence h(z), if (1) f(h) is continuous; (2) the
set g.={h|flh)<c} is bounded for any finite positive
constant ¢; (3) flh(¢)) <fih(z - 1)) for a discrete time ¢.

Definition 2 (invariance set): if the discrete sequence
h(f) € R, then the set Ry, = {h(#)| flh(?)) - fih(t - 1)) = 0}
is called the invariance set of h(z).

Theorem (LaSalle invariance theorem): if function
fih(z)) is the Lyapunov function with respect to the
discrete sequence h(f) € R, then h(f)converges to the in-
variance set Ryyq.

Next, we will show that J(u, v) satisfy the three condi-
tions defined in Lyapunov function by transforming /(u,
v) to J(h) with h =u ® v. Firstly, the cost function J(h) is
continuous for its differentiability. Secondly, J(h(t - 1)) >
J(h(z)) since

J(h(t-1)) = J(u(t-1),
= min /(u(t-1),
= min J(u, v(t)) =

v(t-1))= ] (u(t-1),v(t))
v)2J(u(t), v(t))
J(h(2)).

Thirdly, let |Ivll = 1; the relation J(u(z), v(£)) = wR,u>
Ainllull? can be acquired and the set {u()| Aminlla@I? <
Ju(z), v(t)) <c} is bounded for any constant 0<c< oo,
where A, is the smallest eigenvalue of R,. Therefore,
the set {h(¢)| J(h(¢)) < ¢} bounded for any constant 0 <c¢
<o and any iteration number # is inferred. The three
points just mentioned above satisfy the definition of Lya-
punov function. As a consequence, according to LaSalle

(22)
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Table 1 Bi-iterative algorithm
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Input: ﬁm , 8, , error tolerance O .
Initialize: u(0), r=1.
For t=1,2,3... do

Update u and v
v(it)=R]'s, /(s"R]'s,),

where R, =(u(t-)®1,)" R, (u(t-)®1,).s, = (u(-1)®I,)"S, .

where R, =(I, ®v(1))"R, (I, ®V(1)). s, = (I, ®V(1))"§,.

t=t+1.

Stop if "V(Z) —v(t —1)” / "V(l)” <0 is satisfied.

End for

invariance principle [39], J(h) is the Lyapunov function.
By using the LaSalle invariance theorem, the conclusion
that the cost function J(h) is asymptotically convergent
can be obtained [40].

After the convergence analysis, the computational
costs of MIMOBiPer-EFA, MIMOBI-EFA, MIMOPer-
EFA, and EFA will be analyzed. Since the computational
costs of the Doppler filtering are nearly the same in each
method, we mainly consider the computational costs of
CCM estimation and weight vector calculation in spatial
adaptive processing. The multiplication and division
number (MDN) is used as an index of the computational
cost. First of all, the computational cost of MIMOBIPer-
EFA is analyzed in detail. It should be noted that the
MDN of CCM estimation by Eq. (12), Eq. (18), and
Eq. (20) is Li[3(3MN)* + 3aMN + 3bMN + a” + b*]. The
MDN of weight vectors computed by Eq. (17) and Eq.
(19) is 2[a®+b’] +2a® +a+2b>+b . As shown in
Fig. 9, the bi-iterative algorithm can reach the conver-
gence value within 10 steps. Therefore, the total MDN
of MIMOBiPer-EFA is

Ly [3(3MN)” + 3aMN + 3bMN + a* + b*]

+% [@® +b’] +10[2a” + a + 2b° + b). (23)

Similarly, the MDNs of EFA, MIMOPer-EFA, and
MIMOBI-EFA are

2
Ly(BMN)? + = (3MN)? + 2(3MN)? + 3MN
3 2
L3[3(3MN)* + (3MN)*] + 3 (3MN)? + 2(3MN)? + 3MN
Ly [3aMN + 3bMN + a® + b°] + %0 [+ b’] +10[2a® + a + 2b° + b],
(24)
respectively, where L, L,, Lz and L, are the required

number of training samples in each method. As the com-
parison, the MDNs of classic sample matrix inversion

(SMI) and principal component (PC) are calculated as
follows:

2
Le(KMN)? + 3 (KMN)? 4 2(KMN)? + KMN

25)
2 I (
Ls(KMN)* + 3 (KMN)® + r.(KMN)*

where Ls and Lg are the required number of training
samples in PC and SM], r, is the clutter rank.

5 Experimental results and discussion

5.1 Simulation results

In the simulations, the quadrature phase shift keyed
(QPSK) signal with snapshots C =256 is transmitted by
the airborne MIMO radar. Both the numbers of uniform
linear transmitting array elements and receiving array el-
ements are 8. The other necessary parameters for the
simulation are listed in Table 2.

Intuitively, Wi can be decomposed as the Kronecker
product of u and v with different dimensions. Therefore,
many decomposition results, such as 2 =2 and b =96, a
=3 and b=64, and a=6 and b=32,... satisfy axb=
3MN. Actually, the more a is close to b, the less compu-
tational cost and the number of training samples will be
required in adaptive processing. We will demonstrate

Table 2 Parameters of the simulation

Parameter Value
Transmitting array element spacing d;=02m
Receiving array element spacing d,=0.1m
Wavelength A=02m
Pulse repetition frequency (PRF) PRF = 2000 Hz
Number of pulses in a CPI K=16
Platform velocity Ve=100m/s
Platform height h=9km
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A

the fact by the following computational cost comparison
and training sample convergence rate comparison simula-
tions. In Fig. 2, the computational costs for different a and b
are compared. It can be shown that MIMOBIiPer-EFA can
achieve the minimum computational cost when a =12 and
b =16. Similarly, as shown in Fig. 3, MIMOBiPer-EFA pos-
sesses the fastest training sample convergence rate when a
=12 and b=16. However, the computational costs and

training sample convergence rates of MIMOBIPer-EFA with
a=12 and b =16 and MIMOBIPer-EFA with 2 =8 and b =

24 are nearly the same. In addition, the steady-state value of
MIMOBiPer-EFA with a=8 and b=24is slightly higher
than that of MIMOBiPer-EFA with a=16 and b=12.
Therefore, in view of the SCNR performance, training sam-
ple requirement and in accordance with the Kronecker form
in Eq. (14), a = 8 and b = 24 is chosen in our simulations.

0r a5 o ¢
e —— 2 —
a=12 b=16
a=8 b=24
@ a=6 b=32
?2' —+—a=4b=48
o —5—a=3b=64
< & a=2b=96
O
»
_50 1 1 1 1 1 1 1 1 1 J
0 50 100 150 200 250 300 350 400 450 500
Number of training samples
Fig. 3 Training sample convergence rates for different a and b




Zhou et al. EURASIP Journal on Advances in Signal Processing

(2019) 2019:13

Page 8 of 13

-0.25
Normalized spatial frequency

-0.5

-0.5

Fig. 4 MVDR spectrum of clutter

0
-0.25

Normalized Doppler frequency

Figure 4 shows the minimum variance distortionless
response (MVDR) power spectrum of the clutter. It is
clearly seen that the clutter distributes along the diag-
onal on the plane. Various STAP methods can be per-
formed to sufficiently suppress the clutter that may be
evidently stronger than targets. One important metric to
measure the clutter suppression ability of STAP methods
is the SCNR loss, which is defined as the loss between
the implemented processor and the optimal one [5].
According to the parameters given above, the weight
vector in EFA is decomposed into the Kronecker prod-
uct of two short vectors with ue C¥*! and ve C*M**,
A fast-converging STAP method named fast maximum
likelihood (FML) estimator proposed by Gerlach and
Picciolo is adopted here as the comparison [41]. Figure 5
shows the SCNR loss curves of MIMOBiPer-EFA,

MIMOBI-EFA, MIMOPer-EFA, EFA, and FML with 500
homogeneous training samples support. Under this con-
dition, FML can achieve the best SCNR performance.
The SCNR performance of MIMOBiPer-EFA is slightly
worse than those of MIMOBI-EFA, MIMOPer-EFA, and
EFA. Figures 6 and 7 show the SCNR loss curves with
small training samples support. Twenty training samples
are adopted.! In addition, 6,=0 that represents the
sidelooking scenario and 6.=7m/6 that represents the
non-sidelooking scenario are considered. It is demon-
strated that when limited training samples are met,
which is a frequent condition especially in the airborne
MIMO radar, MIMOBiPer-EFA will evidently outper-
form MIMOBI-EFA, MIMOPer-EFA, EFA, and FML
both in main clutter region and sidelobe clutter region.
In addition, MIMOBI-EFA, MIMOPer-EFA, EFA, and
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FML bear great performance losses when the number of
training samples becomes small. However, the SCNR
loss performance of MIMOBiPer-EFA keeps nearly the
same as shown in Fig. 5.

The SCNR loss versus the number of training samples
describes the training sample convergence rate of a
STAP method. Figure 8 compares the training sample
convergence rates of each method at the normalized
Doppler frequency 0.3 and the normalized spatial fre-
quency 0, where 100 independent Monte Carlo runs
are conducted to achieve each point. The initial train-
ing sample numbers of MIMOBiPer-EFA, MIMOBi-
EFA, MIMOPer-EFA, EFA, and FML are 10, 30, 50,
200, and 40, separately. Obviously, MIMOBiPer-EFA
enjoys faster convergence rate than its counterparts.
Though FML also converges fast and can achieve su-
perior steady-state SCNR performance to MIMOBiPer-

EFA, it behaves poorer performance than MIMOBI-
EFA when the number of training samples is smaller
than 50. Figures 6 and 7 also verify the fact. Moreover,
as exhibited in Fig. 9, the bi-iterative algorithm can
reach the convergence value in 10 iterations, which
demonstrates its fast iterative convergence rate. How-
ever, one point should be noted here that due to using
the optimum processing in spatial domain, better
SCNR loss performance can be obtained by MIMOPer-
EFA and EFA when adequate number of training sam-
ples is available.

According to Eq. (23), Eq. (24), and Eq. (25), the com-
putational cost comparison is shown in Fig. 10. For sim-
plicity, the number of receiving antenna elements is set
to be equal with the number of transmitting antenna el-
ements. L; =30, Ly, =80, Ly=150 L, =300, Ls =2r,, and
Lg=2KMN are adopted here since each method can
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acquire nearly the same SCNR loss with the chosen
number of training samples. The computational cost of
SMI and PC are obviously several orders of magnitude
greater than other methods. In addition, the computa-
tional cost of FML is almost the same as that of PC.
Compared with MIMOBI-EFA, MIMOBiPer-EFA can
achieve the smaller training sample requirement but at
the higher computational cost for the extra computa-
tional cost increased in CCM estimation. However,
MIMOBIPer-EFA still possesses smaller computational
cost than those of MIMOPer-EFA and EFA.

5.2 MCARM data

In order to verify a good many achievements in the the-
ory of STAP, MCARM program was established by
Rome Laboratory and Northrop Grumman Corporation
[42]. The MCARM data used in the experiment comes
from acquisition 575 on flight 5 (rl050575). Though the
MCARM data are not adopted from the airborne MIMO
radar system, it is still worth applying to verify the pro-
posed method. In addition, BiPer-EFA, Bi-EFA, and
Per-EFA are the suitable names here for representing the
corresponding method. The operating parameters used
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to obtain the data are as follows: the platform velocity v
=100.2 m/s, the crab angle 6, =7.28’, the array element
spacing d = 0.1092 m, the radar operating wavelength 1
=0.2419 m, the pulse repetition frequency f.=1984 Hz.
250-500 range bins are selected to verify the proposed
algorithm. The first 10 azimuth channels and the first 32
pulses are exploited here. Accordingly, the length of

weight vector in EFA is 30, and it can be decomposed
into the Kronecker product of two short vectors with
ueC’*' and ve C®*'. Two SNR = - 40 dB moving tar-
gets with azimuth angles 90" and Doppler frequency f;
= - 0.157f, are separately injected near the clutter main
beam at the range bins 350 and 370. Figure 11 shows
the normalized output power (NOP) of each range bin
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by making use of the BiPer-EFA, Bi-EFA, Per-EFA, EFA,
and FML, in which the number of training samples for
CCM estimation are marked in the parentheses. It is
clearly demonstrated that all these methods can identify
the two weak targets from the residual clutter. The aver-
age NOP below the target of the BiPer-EFA, Bi-EFA,
Per-EFA, EFA, and FML are about 26.85dB, 25.87 dB,
24.93 dB, 20.06 dB, and 17.26 dB, respectively. The re-
sults infer that the proposed algorithms can achieve rela-
tively good performance at the improvement of output
SCNR and the corresponding detection probability.

6 Discussion
Based on the obtained results, the following conclusions
can be obtained:

(1) The proposed MIMOBiPer-EFA is an effective clut-
ter suppression method when the number of train-
ing samples is small. The computational cost and
training sample demanding of MIMOBiPer-EFA are
tractable. MIMOBiPer-EFA is even more advanta-
geous when the large-scale antenna array is applied
in the airborne MIMO radar system.

(2) MIMOBiPer-EFA enjoys faster training sample
convergence rate than MIMOBI-EFA while it
possesses larger computational cost than
MIMOBI-EFA for the extra persymmetry CCM
estimation. Therefore, MIMOBiPer-EFA will be
the desired method if the required number of
training samples is the dominant metric while
MIMOBI-EFA will be the desired one if the com-
putational cost is the dominant metric.

(3) When the number of training sample is large
enough, the SCNR loss performances of EFA,
MIMOPer-EFA, and FML are superior to that of
MIMOBiPer-EFA. The probable reason for this re-
sult is that when adequate number of training sam-
ples is available, MIMOPer-EFA and EFA can
achieve the optimal SCNR values while
MIMOBiPer-EFA can only achieve an inferior
SCNR value for the limitation of the special struc-
ture of weight vector.

7 Conclusions

A method that decreases the training sample require-
ment and computational cost in the airborne MIMO
radar for clutter suppression has been proposed. It esti-
mates CCM by the persymmetry property. Then, the
weight vector is constructed as the Kronecker product
of two short weight vectors. The bi-iterative method is
applied to find the desired result. Simulation results
show that the proposed method is advantageous in
convergence rate and training sample requirement. The
proposed method has greater clutter suppression ability

(2019) 2019:13
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compared with the previously proposed post-Doppler
adaptive processing methods especially in the airborne
MIMO radar with limited homogeneous training sam-
ple support.

8 Endnotes

!Notice that under this condition, if the estimated
CCM is singular, the pseudo inverse of the estimated
CCM instead of its inverse is utilized
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