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Abstract

In this paper, athree-dimensional (3D) reconstruction algorithm is proposed for space targets with multistatic inverse
synthetic aperture radar (ISAR) systems. In the proposed algorithm, target 3D geometry can be obtained by solving
the projection equations between the target 3D geometry and ISAR images. Specially, it is no need to perform
cross-range scaling. To obtain the projection equations, the algorithm consists of two steps: establishing projection
matrix and associating scattering centers. Firstly, observation angles of sensor can be estimated by kinematic formulas
and coordinate systems transformation. Using azimuth and elevation angles of sensor relative to target, the projection
matrix from target 3D geometry to ISAR images is established. Secondly, an association cost function based on
projective transform and epipolar geometry is developed. As the cost function is an assignment with 0-1 linear
programming, the Jonker-Volgenant algorithm is used to build a one-to-one correspondence between two scattering
centers. Numerical results show the efficiency of the proposed algorithm.
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1 Introduction

For space targets, it is important to conduct identifications
for these interesting components, such as cabin and solar
panels in the event of their aberrancy. Since inverse syn-
thetic aperture radar (ISAR) provides high-quality two-
dimensional (2D) image for space targets [1], it becomes
possible to analyze characteristics of partial interesting
components. In space security-related reconnaissance and
surveillance, there are a number of issues. For example,
the image projection plane (IPP) is not a prior knowl-
edge, and a 2D image is usually sensitive to the relative
target motion. One solution to tackle these problems is
to form three-dimensional (3D) ISAR image. Compared
with a 2D image, a 3D image contains geometric structure
which provides robust characterization of vital interest-
ing components, so it is of great military significance to
reconstruct 3D image for space targets. In recent years,
several techniques have been exploited to form 3D ISAR
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image. Previous attempts to form a 3D ISAR image can
be roughly categorized into three types. The first class
of methods to form a 3D image is a direct extension of
the 2D ISAR concept [2, 3]. In this method, a transmit-
ter illuminates the target through a 2D angular aperture
in both azimuth and elevation while simultaneously emit-
ting wideband waveforms, 3D Fourier Transform (3D-FT)
is applied to obtain a 3D ISAR image. However, such a 3D-
FT based method requires a measurement of radar data
in three dimensions with a dense sampling way, which
increases the cost of computation and storage signifi-
cantly. The second type of approaches is based on the
interferometric ISAR (InISAR)[4-7], which uses the spa-
tial information provided by multiple antennas. Such an
approach has the advantage of not requiring the prior
knowledge of target motions. For such systems, the height
information can be estimated from the phase differences
between the corresponding ISAR images. However, such
InISAR technique which needs using specific antenna
arrays has difficult in applying for space targets. The
third category reconstructs target 3D geometry via factor-
ization analysis [8—11]. The factorization method builds
the measurement matrix which is made up of a range
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and cross range of tracked scattering centers in multiple
images. Then the target 3D geometry are reconstructed
from a singular value decomposition of the measurement
matrix. However, this method needs cross-range scaling
to obtain cross range of scattering centers. Otherwise, the
reconstructed 3D geometry of target cannot provide the
real size information. In this paper, a new algorithm is
proposed for space targets 3D reconstruction with multi-
static ISAR systems. Firstly, observation angles of sensor
are estimated by using kinematic formulas and coordinate
system transformation, so the projection matrix from the
target 3D geometry to the trajectory of scattering centers
can be build. Secondly, ranges and Doppler frequencies
of scattering centers are extracted to build the trajectory
matrix. Finally, the projection equations from the target
3D geometry to the trajectory matrix of scattering centers
are solved to reconstruct target 3D geometry. Compared
with factorization method, the proposed algorithm only
uses ranges and Doppler frequencies of scattering cen-
ters without cross-range scaling constraint, which would
be thought as an advantage. However, space targets are
viewed under multistatic ISAR systems so that the posi-
tions of scattering centers may vary widely in different
ISAR images. To tackle this problem, a new method based
on projective transform and epipolar geometry [12] is
proposed to associate scattering centers between differ-
ent images. In this method, an optimization cost function
is developed via minimizing the assignment cost of two
scattering center sets. To solve the mixed linear assign-
ment programming, the Jonker-Volgenant algorithm is
used to build a one-to-one correspondence between two
scattering center sets with the lowest cost.

The remainder of this paper is organized as follows. In
Section 2, imaging geometry and signal model is intro-
duced. The proposed 3D reconstruction algorithm is pre-
sented in Section 3. In Section 4, numerical examples
illustrating the efficiency of the proposed method are
given. Finally, the conclusions are drawn in Section 5.

2 Geometry and signal model

In this paper, the space target is in three-axis stabilized
attitude control system, which is the advanced operat-
ing mode. In the operating mode, space target undergoes
steady moving motion relative to the radar. It is noted
that the orbital elements are utilized to calculate the IPP
under the steady moving model. As the space target is
often engaged in complicated maneuvers that combine
translational and rotational motions, we use the motion
compensation method in [13] to eliminate any relative
translation motion of the target. The process of motion
compensation consists of two steps. Firstly, an adaptive
joint time-frequency technique is used to parametrize
the signal using the basis functions. Secondly, the refer-
ence points of target can be selected by using a search
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and projection procedure in the time-frequency plane and
the corresponding motion parameter can be obtained by
the basis functions. Based on the motion parameters, all
the motion error can be well eliminated by multiplying
the phase correction vector, interpolating to the uniform
azimuth scale, and polar reformatting the original col-
lected data. The target is able to be transformed into a
turntable model [14], in which the target rotates around
the center of gravity of the target.

Multistatic ISAR systems are shown in Fig. 1. There is
a body reference coordinate system that is centered at
the center of gravity of the target. We assume that the
orange solid line represents line of sight (LOS) which is
determined by the azimuth and elevation angles 8, and
o, n = 1,2,---,N, N is the number of sensors. In the
far-field region, radar sensor transmits a linear frequency
modulated signal

$(2) = Aexp {jZn ( 0 + ;M?) }

where A denotes amplitude, f, denotes carrier frequency,
w is chirp rate, T}, is time length of the chirp pulse, and t
is the fast time. After dechirp and pulse compression, the
returned signal of the kth scattering centers can be given
by

o1
t|<§Tp 1)

Sk (f, tm) = 5T, sinc{Tp (f n Zfrk>}

4
-exp(—j jzfcrk>,k:1,2,---,1( (2)

where t,,, denotes slow time, ¢ is the velocity of light, 8 is
the backscatter coefficient, rx denotes the range between
the kth scattering center and target rotational center, and
K is the number of scattering centers. As shown in Fig. 1,
the range ry, can be calculated by

Tin = Xk COS @y COS By + Vi COS @y sin B, +zx sin gy, (3)

g

O

Fig. 1 Observation geometry with multistatic ISAR systems
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where (xg, ¥k, zx) is the 3D location of the kth scattering
center. The time derivative of r¢ , is now given by

. . — 2%
Jin = — (@n cos By, sin g, + By sin By, cos §0n) o
; . . 2k
+ (Bn cos B cos g, — @y sin By sin gy,) -
. 2z
+ ¢ncosgy B (4)

where fi , is the Doppler frequency of the kth scattering
center, A denotes the wavelength, and ((,b,,, ﬂn) is the time
derivative of (¢, 8,). Obviously, ISAR images formed by
range Doppler method can offer the range ry, and the
Doppler frequency fi ,. Therefore, the foundation of pro-
jection from the target 3D geometry to ISAR image is
provided without cross-range scaling constraint in (3)
and (4).

3 3Dreconstruction using 2D ISAR images

Based on the signal model shown in Section 2, a 3D
reconstruction algorithm is proposed for space targets
with multistatic ISAR systems. In this algorithm, we use
the projection equations between the target 3D geome-
try and ISAR images offered by multiple sensors properly
spaced. To illustrate this process from the target 3D geom-
etry to ISAR images mathematically, the transformation in
matrix form is expressed by

=]

CoS @, Cos By,

R, = | cos ?” sin B, )
sin @y,
— @y COS By sin @y, —,3,, sin B, cos ¢y,
Fn = /% B €OS By COS 9 — Py sin By, sin gy,

$n COS Py

where pg (: [xk, YVier zk]T) is the 3D-reconstructed posi-

tion of the kth scattering center and D, (= [R,, Pn]T) is
the projection matrix of the nth sensor. Under multistatic
ISAR systems, a set of equations can be expressed as
follows:

Tk,1

D; Ji1
Co|Pe= : (6)

Dy TN

Jin
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Then a least-squares sense is adopted to solve the over-
determined equations.

-1
Pr = DT(DDT) I

Tk,1
D; Sea
D= o, I= : (7)
Dy Tk, N
SeN

In (7), the reconstructed position of scattering center
Pk can be calculated by the composite projection matrix
D and the trajectory matrix I. Obviously, the proposed
algorithm does not need cross-range scaling, and tra-
jectory matrix of scattering centers directly calculated
from the gravity model. To obtain the composite projec-
tion matrix D and the trajectory matrix I, the process is
outlined in Fig. 2. Firstly, the observation angles of sen-
sor relative to space targets can be estimated by using
kinematic formulas and coordinate system transforma-
tion. Then we establish the composite projection matrix
D by using the observation angles (azimuth and eleva-
tion angles) to sensor. Secondly, we assume that scattering
centers are sufficiently separated such that each peak in
the ISAR image corresponds to a single scattering center.
In order to extract scattering centers from ISAR image, a
watershed algorithm is adopted to segment ISAR image
into high-energy regions [15]. As a result, the range and
Doppler frequency of scattering centers can be extracted
from the maximum of every region. Considering projec-
tive positions of scattering centers in different images may
vary widely under multistatic SAR systems, it is neces-
sary to associate scattering centers between different ISAR
images. In this paper, an association cost function based
on projective transform and epipolar geometry is devel-
oped. As the cost function is an assignment with 0-1 lin-
ear programming, the Jonker-Volgenant algorithm is used
to build a one-to-one correspondence between two scat-
tering centers. As these scattering centers from different
images are associated, the ranges and Doppler frequencies
of the same scattering centers in different images can be
used to build the matrix I. The projection matrix D,, is dis-
cussed in Section 3.1 and scattering centers association is
analyzed in Section 3.2.

3.1 Projection matrix

For space targets in the steady trajectory, we can use
orbital elements to establish the projection matrix. As
shown in Fig. 3, a satellite orbits around the earth in its
regular orbit, and we assume that sensors on the Earth’s
surface can receive returned signal on observation time.
The processing steps are listed as follows:
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Orbital elements of target

Estimate target rotation

Establish projection matrix

Fig. 2 The block diagram of the algorithm

Sensor N
image 17| --- | image N*|
c

Extract scattering center

Sensor 1 +.e

Associate scattering center

Solve projection equation

Reconstruct 3D shape

(1) Transform the location of sensor from the Earth-
centered, Earth-fixed (ECEF) reference system to the
Earth-centered inertial (ECI) reference system, as shown
in Fig. 3. By coordinate system transformation, the loca-
tion of sensor is given by

rect = Ry, (aG) Tecer (8)

where Ry, is the rotation matrix rotating around the Z;
-axis [16], ag is the Greenwich Hour Angle, and recer
is the location of the sensor in ECEF reference system
defined by longitude and latitude.

(2) Transform the location of the sensor from the ECI
reference system to the orbit plane (O, X,, Y,, Z,) refer-
ence system. The orbit plane reference system is used to

describe the motion of the satellite. The X, -axis points
at the flight direction of satellite, Z, axis points at sub-
satellite point, and Y axis is normal to the orbit plane. The
transformation consists of two steps: coordinate system
transformation and coordinate system translation. Firstly,
a temporary coordinate system which centers the Earth’s
core and is parallel to the orbit reference system is built by
rotating the ECI reference system

', = Rz, (W) Ry, (i) Rz, (Q) Frcr 9)

where Rz, is the rotation matrix rotating around the Z,
-axis, Ry, is the rotation matrix rotating around the X, -
axis, u is the argument of perigee, i is the orbit inclination,
and 2 is the right ascension. Secondly, in the temporary

Fig. 3 Satellite orbital model
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coordinate system, the location of the satellite is given
by applying Kepler’s laws and the two body kinematics
equations

peos(y)  psin(y) ]T

ES = [ 1+ecos(y) 1+4ecos(y) (10)

where p denotes the semi-latus rectum, e denotes the
eccentricity, and y is the true anomaly [17]. Then, the
location of the sensor in the orbit (O', X, Y,, Z,) reference
system is given by translating the origin of the temporary
coordinate system to the center of satellite

- - ~ 1T
i, =Br,+[00 — | ] (11)
010
where B=| 0 0 —1 | is used to adjust the coordinate
-100
axis.

(3) Transform the location of sensor in the orbit (O’, X,
Y., Z,) reference system to the body (O', X,,, Y,,, Z,) refer-
ence system. In the body reference system, the location of
sensor is shown by

r, = RXn (¥s) RYn (¥s) RZn (Ps) Ty

where 1, <= (%5 V> 21|

(12)

T\ . .
) is the coordinate value of sen-

sor in the body reference system; Ry, , Ry, , and Rz, are the
rotation matrices rotating around the X, Y;, and Z,, axes;
and (s, s, ¢s) are the roll, pitch, and yaw angles of the
satellite. Obviously, while ¥ = 0,5 = 0 and ¢ = 0, the
body reference system is equal to the orbit reference sys-
tem. We use the method in [18] to estimate roll, pitch, and
yaw angles. The basic idea is to exploit the phase history
of the strongest scatterers in different images. Firstly, the
brightest spots in the different images as corresponding
to the same scatterer of the target are associated by using
the simple nearest neighboring method. Secondly, consid-
ering that the rotation vector is involved in the Doppler
frequency of the scatterer, a Doppler matching-based
estimation technique processing scheme is proposed to
recover the Doppler frequency of the scatterer. Then, the
yaw, pitch, and roll rotation motions can be estimated
by matching the Doppler frequency. Finally, the elevation
angle ¢, and azimuth angle 8, of the nth sensor relative to
the satellite are obtained by

. Zn
Yy =arcsm —
(175l

Xy 1
B =arccos | — .
70l cos gn

Generally, the ISAR targets are non-cooperative with
unknown motion. For specific space targets, they usually
undergo steadily moving motion, so orbital elements can
be used to estimate the observation angles of the sen-
sor. By using the elevation angle and azimuth angle, the
projection matrix can be constructed.

(13)
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3.2 Scattering center association

As space targets are viewed under multistatic ISAR sys-
tems and their scattering centers are viewed in different
orientations as well, radar data in general are not associ-
ated. In different ISAR images, the projective positions of
scattering center may vary widely. To tackle the problem
about the association scattering center between differ-
ent images, we propose a new association method based
on projective transform and epipolar geometry. In fact,
scattering center association can be considered as an
assignment procedure which assigns each unassociated
scattering center to the associated one. To arrive at the
minimum assignment cost, we establish a cost function
between the mth and nth image as follows:

P Q
min Y " ki 0, @) (@ 0, D) + €m0, D))

p=1g=1

P
s.t. ka,n wg =1

p=1

Q

ka,n g =1
q=1

kin (0, q) = 1or0 (14)

where P is the number of scattering centers in the mth
image and Q is the number of scattering centers in the nth
image. We assume the mth image is obtained by the mth
sensor and the nth image is obtained by the nth sensor.
km,n (p, q) is the control variable which is called associa-
tion matrix between the mth image and the nth image.
While the pth scattering center in the mth image is asso-
ciated with the gth scattering center in the nth image,
the value of k., (p,g) is 1. On the contrary, the value
of kiuu (0, q) is 0. The variables g, » (p,q) and ey (p, q)
are geometry coefficient and error coefficient which are
analyzed below.

3.2.1 Geometry coefficient gm n (P, q)

Epipolar geometry describes the mapping relationship
between the two images. The 3D geometry structure cor-
responding to its scattering centers on the image should
locate on a line in another image. Therefore, the probable
location of the corresponding scattering center project-
ing on another imaging plane is restricted. The geometry
coefficient g,,, (»,q) indicates the Euclidean distances
between the probable projective position of the pth scat-
tering center in the nth image and the position of the
qth scattering center. The mathematical expression of
geometry coefficient g, , (p, q) is presented as follows.
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Firstly, the position of 3D geometry structure corre-
sponding to the pth scattering center be obtained by

-1

% (1) [ R
Vp (f) =Ry xF)t+ |
zp (t) Ry, x Fyy (15)
rp,m
Som |28 € [tar )
0

where [%, (£) .5 (£) ,Zy (£)] is the probable position of 3D
geometry structure, (rp,m, ];m) are the range and Doppler
frequency of the pth scattering center in the mth image
and “x” is the multiplication cross. The size of 3D geom-
etry structure distributed on the coordinate should be
limited in a certain range, so the value range of 7 are Z, to
tp, which are user-defined values. The projection on the
nth image of this 3D geometry structure is the epipolar
line segment w

qom | Tpn (Z)}

B2t | =0 0 1o
where (?p,n (@) fon (Z)) are the projective range and
Doppler frequency of the pth scattering center in the nth
image. While the pth scattering center is associated with
the gth scattering center, the gth scattering center should
be on the line segment A . Obviously, since there are
deviations caused by noise etc., the gth scattering cen-
ter may be not just right on the line segment P, but

near lp Finally, the geometry coefficient g, , (p, q) is
presented by
. 7 —Tgn
gmn (p,q) = min pr ( f (17)
pn qn

where min (e) donates the minimization and % is used
to keep the same units of the range and Doppler fre-
quency. In (17), the geometry coefficient g, , (p,g) indi-
cates the difference between the pth and gth scattering
center in the same projection plane. The smaller value of
gmn (> q) represents higher possibility of which the two
scattering centers are correlative. However, while the tar-
get is complicated, there may be more than one scattering
centers near lp . Then the error coefficient ey, , (p,q) is
presented to evaluate the association possibility of these
scattering centers.

3.2.2 Error coefficient em n (p, q)

In (7), the 3D position of the scattering center is able to
be reconstructed by the least-squares solution with min-
imum mean squared error. While trajectory matrix I has
a large error, for example, scattering center association
is inaccurate, there may have a big reconstruction error
between the 3D-reconstructed position and the 3D real
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position. Here, the error coefficient e, ,, (p, ) regards the
reconstruction error as the assignment cost. The math-
ematical expression of the error coefficient e, (v, q) is
presented as follows.

Firstly, based on projective transform, the 3D-
reconstructed position can be obtained by associating the
pth scattering center with the gth one

~ ~ ~ —-1_
Bpq =D' (DDT) T

rp,m
. D - f
D= "= | /P 18
[Dn ] Tqn (18)
Jan

where D, and D, denote the projection matrixes of the
mth and nth sensors and ry,,,; and f,,, are the range and
Doppler frequency of the pth scattering center in the mth
image. Similarly, r;, and f;, are the range and Doppler
frequency of the gth scattering center in the nth image.
Then the projection ranges and Doppler frequencies of
Pp,q on the two images are expressed by

Fon | o
|7 o

Fun .
1| =Dyppg
] o

According to (19), the error coefficient ey, (p,q) is
given by
_ | Tom | _ | tom
enstr=|[ )< [

-]
fq,n fqul 2

In (20), based on the projective transform, the error
coefficient e, , (p, ) indicates the difference between the
3D reconstructed position and the 3D real one in the
image domain. As error coefficient ey, , (»,q) is smaller,
the association possibility is higher.

The next step is to optimize the cost function. The
cost function is an assignment problem with 0-1 lin-
ear programming, which is extremely complex to opti-
mize. Enumeration methods are used for this assignment
problem; however, they need too much computation. In
this paper, the linear assignment problem can be effi-
ciently solved by the Jonker-Volgenant algorithm [19].
The Jonker-Volgenant algorithm is a joint optimization
process which decreases the cost of computation.

As analyzed above, the proposed association method
simplifies the association problem between the two
images to the one between line and image. However, this
method needs a high range and Doppler frequency reso-
lution of images. To get better performance, interpolation
method [20] can be utilized to enhance image resolution.

(19)

> (20)

AT,
T
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Table 1 Simulation conditions

Parameter Value
Carrier frequency f, 10 GHz
Bandwidth B 2GHz
Pulse repetition frequency f, 200 Hz
The number of hits per image H 512
The eccentricity of target orbit e 0

The orbit inclination 51.6°
The argument of perigee w 0°
Signal to noise ratio 5dB

4 Results and discussion

In this section, examples of numerical simulation are
presented to evaluate the performance of the proposed
algorithm. Firstly, the performance analysis of the pro-
posed association method is given in comparison to other
association methods. Then, the proposed algorithm is
tested with simulation data. The conditions of the simula-
tion are shown in Table 1.

On the conditions shown in Table 1, the range resolu-
tion of the image is Ar = ¢/2B = 0.075m, and the Doppler
frequency resolution of the image is Afy; = f,/H =
0.39Hz.

4.1 Experiment 1

Here, an experiment is presented to compare the per-
formance of the proposed association method which is
defined as epipolar geometry projective (EGP) method
with the nearest neighbor (NN) method, robust point
matching (RPM) method [21], and coherent point drift
(CPD) method [22]. The NN method is the most com-
mon association method and the main characteristics of
the NN method are simple and fast. The RPM method and
CPD method are association methods for optical images
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which can recover the transformation and assign corre-
spondences between two images. There are 100 scattering
centers in every image and each scattering center is placed
at different separations from each other.

We evaluate the robustness of the proposed association
method of the observation angle (6, ¢). To eliminate the
interactions between the elevation angle 6 and azimuth
angle ¢, the experiment falls into two parts: the location of
sensors only varies in the azimuth angle, and the location
of sensors only varies in the elevation angle. We use the
corrected associated rate to evaluate the performance of
these association method. The corrected associated rate
w, can be calculated by

N,
Notal

o (21)
where Niota) is the total number of scattering centers in
the two images and N, is the number of scattering centers
which are correctly associated in the two images. The cor-
rect associated rates of the proposed method, NN method,
RPM method, and CPD method, are shown in Fig. 4. The
association performance of the NN method is the worst.
It is because that the positions of scattering centers in dif-
ferent images may vary widely. Besides, it is also seen that
the proposed method is more robust to the rotation angle
than the RPM method and the CPD method. The rea-
son is that the proposed method uses epipolar geometry
to build the projection relationship between the scatter-
ing center and epipolar line, so the association problem
between the two images is simplified to the one between
line and image.

4.2 Experiment 2

We consider first a point-scatterer target which consists
of a platform and a solar panel shown in Fig. 5. Eighty-five
scattering centers (red dot) are used to form the target,
each with unit reflectivity amplitude. Table 2 shows the
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Fig. 4 Correct associated rate with rotation angles changing. a Keeping the same elevation angle and changing azimuth angle. b Keeping the same
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Fig. 5 Simulated aura satellite configuration and 3D reconstruction result. a The 3D model of aura satellite. b Estimated positions of scattering

position of sensors in the ECEF reference system. The
reconstruction result along with the real positions of scat-
ter centers is shown in Fig. 5. It can be seen that all the
strong scatter centers can be formed correctly, agreeing
with the real positions.

The reconstruction performance is measured by the
coordinate errors Axg, Ayk, and Azg which are given by

Axp = xk—fck|
Ay = |k — Jk
Az = |zi — 2k

(22)

where (x¢, ¥k, zx) is the true position of the kth scattering
center in the body reference system and (&k, Vi 2k ) is the
estimated position of the kth scattering center in the body
reference system. As shown in Fig. 6, we can see that the
absolute errors are so small that the position errors are less
than the range resolution, which confirms the efficiency
of the proposed algorithm.

Table 2 The positions of radar sensors

Sensor 3

(N45°,£121.4°)

Sensor 2

(N35.6°,E110.7°)

Sensor 1

(N39.9°,E116.4°)

To evaluate the performance of the proposed algorithm
in the presence of noise, different levels of complex Gaus-
sian noise have been added to the ISAR data to produce
different signal-to-noise ratios (SNRs) ranging from 0 to
20 dB. The average errors ey, e, and e, are given by

11 Nn K
ey = N, K ‘ Axk,i
i=1k=1
11 Nm K
&= 5% 2 2 Dyki (23)
i=1k=1
e &
e; = mf Z Z AZ](,Z

Il
—_
>
Il
—_

where N, is the number of Monte Carlo trials. In this
experiment, the number of Monte Carlo trials is 500.
Figure 7 depicts the relationship between the SNRs and
the average errors when various data sizes are used. It can
be seen that with the increase of the SNRs, the reconstruc-
tion accuracy improves as well. While the SNRs are over
10 dB, the average errors remaining stable are less than the
range resolution. The reason is that the accuracy of asso-
ciation is mainly influenced by the range resolution and
Doppler frequency resolution.

Next, the estimation accuracy of the 3D-reconstructed
position of scattering center (xx, yx, zx) is specified by the
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Cramer-Rao lower bound (CRLB). Firstly, the CRLB for
the target range ry and Doppler frequency f; are given as
follows [9]

6
47721 B2
6
2
4r 23 M (M2 — 1)

CRLB {ry} =(§)2

CRLB {f;} = (24)

where 7 is the signal-to-noise power ratio, t,; is the pulse
recurrence interval and M is the total number of hits
to observe ISAR images. In the following discussion, the
vector-form representation of the parameters g, and py is
introduced as follows

Xk
— T -
gn=|:fk’n:|;pk= yk 1k=1’2)"‘)K~ (25)
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Fig. 7 Relationship between the SNRs and the average errors

Then the error sensitivity matrix of (x, yx, zx) to the
range and Doppler frequency directly observed from the
ISAR image are calculated from (5) as follows

Xy
i
Yk
3f k.n
9Zx
af k.n

-1
:(DZDH) D!

Xk
3}"/(,,,
RU/3
0T

9z
0Tk

di} k _
dgy

(26)

The CRLB for (xx, ¥k, zx) can be expressed using the
CRLB for r¢,, and f; , as follows:

dpi { } dpi B
dgy dgy
where CRLB {gn} is a diagonal matrix whose diagonal
elements are the CRLBs given by (25).

CRLB {pi} = (27)
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Fig. 8 CRLBs and estimated variance for the parameters (x, y, 2)
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The experiment for the estimation accuracy of the 3D-
reconstructed position of the scattering center is pro-
vided, and the system parameters in Table 1 are assumed.
The CRLBs expressed by (27) are shown in Fig. 8. The
horizontal axis represents SNRs, and the vertical axis rep-
resents the CRLB. From Fig. 8, while the SNRs are over
20 dB, it is clear that the estimation accuracy is close
to the CRLBs. While the SNRs are low, the estimation
performance is also influenced by the over-determined
projection equations.

4.3 Experiment 3

In this experiment, we use the geometrical theory of
diffraction (GTD) data to evaluate the efficiency of the
proposed algorithm. Figure 9 shows the 3D Hubble Space
Telescope (HST) model. Generally, strong scattering cen-
ters of the target are generated from edges, corners, and
tips; therefore, these strong scattering centers are able to
present the physical structure and interesting component.
As shown in Fig. 9, these strong scatter centers are mainly
distributed on the edges of solar panels. As solar panels

*+ true
O estimated

E o
N
10
20
yim 1020y
(a)
10 * true
O estimated

£

[$)]
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are interesting components of satellite, the experiment
is performed to estimate the physical structure of solar
panels.

Figure 10 shows the 3D reconstruction results along
with the real positions of scatter centers. The recon-
structed scattering centers are grouped into four straight
lines around edges of solar panels. The estimated width
of solar panels which is calculated by the average distance
of four straight lines is 3.65m (actual width is 3.8m). The
estimated length of solar panels which is calculated by the
average length of four straight lines is 16.2m (actual width
is 16.6m). Besides, there are several reconstructed scatter-
ing centers away from solar panels, and the reason is that
these scattering centers association is inaccurate.

5 Conclusions

In this paper, a 3D reconstruction algorithm is proposed
for space targets with multistatic ISAR systems. The
algorithm builds the projection equations between the tar-
get 3D geometry and ISAR images without cross-range
scaling constraint. The projection equations contain the
projection matrix and the trajectory matrix of scattering
centers. The first one is obtained by kinematic formulas
and coordinate systems transformation, and the second
one is ranges and Doppler frequencies extracted from
ISAR images. However, the positions of scattering cen-
ters in different images may vary widely, and we propose
a new method based on projective transform and epipo-
lar geometry to associate scattering centers. Numerical
results with simulation data validate its performance in
scattering center association and 3D reconstruction.

The future works consist of two parts. Firstly, when the
space target is in other control systems, its intrinsic orbit
characteristics may lead to an unsteady moving trajectory
relative to the radar. Aiming at this problem, we will study
the 3D reconstruction of space target for unsteady mov-
ing trajectory relative to the radar. Secondly, in fact, as
the radar illuminates target, there are some structures of
target that are occluded, which adds to the difficulty in
scattering center association. Therefore, we will improve
the association method to solve the problem of occlusion.
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