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Abstract

Parallel magnetic resonance imaging (MRI) technique is able to accelerate MRI speed for reducing costs and enhancing
patient’s comfortability. Parallel MRI can be categorized into two types: image-based and k-space-based methods.
For k-space-based parallel MRI, missing k-space data is reconstructed by interpolating existing acquired k-space data
with appropriate coefficients, which is generally considered as a linear process. However, noise cannot be suppressed
or removed during the linear reconstruction process and therefore reconstructed image often suffers serious noise,
especially when the acceleration factor is high. Non-linear filters are known to remove non-linear noise better. Based
on the Volterra series that discovers and removes the second-order non-linear noise, we proposed a non-linear
reconstruction strategy called adaptive Volterra generalized autocalibrating partial parallel acquisition (AV-GRAPPA)
to reconstruct the unacquired k-space signals. For the proposed AV-GRAPPA, optimal selection of the second-order
Volterra series terms is adjusted and determined for optimizing reconstruction quality. Experimental results show that
the proposed method is able to better remove the reconstruction noise and suppress aliasing artifacts.
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1 Introduction
Magnetic resonance imaging (MRI) [1–3] is a non-invasive
imaging technique. Different from computed tomography
and other imaging technologies, MRI has the advantages of
non-ionizing radiation, multiple parameter imaging, high
contrast, etc. It has become an important diagnostic tool in
clinical imaging. However, MRI has its own shortcomings,
such as long scan time, which limit its application in many
clinical situations. Therefore, investigators have been ex-
ploring rapid magnetic resonance imaging methods since
the invention of MRI technology. This has led to the devel-
opment of methods for spiral acquisition, radial acquisi-
tion, parallel imaging, and so forth. Those methods have
greatly improved the imaging speed to some extent. In
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MRI, the speed of imaging is very important. Early MRI
scan often took several hours, and then the speed of im-
aging has increased dramatically due to improvements in
field strength, gradient, and pulse sequence. However,
rapid field gradients and high-density continuous radio fre-
quency (RF) pulses will result in higher specific absorption
rate (SAR) that is unsustainable by the physiological limits
of organ tissues in the human body. Therefore, the imaging
speed cannot increase further.
With the application of complex computer image recon-

struction algorithms with a phased array coils, imaging
speed of MRI can be greatly improved. This technique is
often referred to as parallel imaging technology. Parallel
imaging includes simultaneous acquisition of spatial har-
monics (SMASH) [4], sensitivity encoding (SENSE) [5]
parallel acquisition technique, and generalized autocali-
brating partially parallel acquisitions (GRAPPA) [6]. Paral-
lel MRI (pMRI) reconstruction is an image reconstruction
technique for rapid acquisition. It utilizes the spatial sensi-
tivity difference of phased array coils for spatial encoding
and simultaneous acquisition with phased array coils to
achieve fast imaging speed. Currently, the acceleration in
clinical applications can be about 2–6 times faster or even
higher imaging speed. To use parallel imaging technology,
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new requirements are needed for MRI systems, such as
multiple receiver channels, multiple array coils, and coil
sensitivity calibration.
SMASH is a parallel acquisition and reconstruction

method that uses coil sensitivity to fit spatial harmonic
functions and fills undersampled data. The characteristics
of the algorithm include the summation of the data of all
channels and fitting procedure. There is a large error in
the fitting calculation of the traditional algorithm, result-
ing in a serious artifact and a low signal-to-noise ratio
(SNR) of the SMASH image. Subsequently, GRAPPA en-
hances SMASH technique. GRAPPA uses the sampling
data of all channels for fitting and recovers in the under-
sampled data of each channel. Then fully reconstructed
image of each channel after the fitting is combined. Final
image is calculated with sum-of-square on all channel im-
ages. The GRAPPA algorithm reduces the calculation
error of fitting procedure and improves image quality.
When the number of acquired lines and the convolution

kernel size change, GRAPPA reconstruction results also
vary (corresponding to the estimation error that varies).
For example, auto-calibration signal (ACS) lines are
usually sampled in the central region of k-space (low-fre-
quency region) rather than outer k-space (high-frequency
region), based on which the fitting weights are derived.
Therefore, interpolation would be inaccurate when they
are used for reconstructing missing points at outer k-space
region. Although variable density sampling strategy [7]
has been proposed to solve this problem to some extent,
estimation error still exists since it is impossible to fully
sample k-space for reconstruction (otherwise, it is mean-
ingless for pMRI). For both errors, Nana et al. proposed
the cross-validation model for estimating coefficients [8].
Since k-space signals cannot be fully acquired for
GRAPPA reconstruction, model error is difficult to be re-
duced. During the matrix inversion process [9], measured
noise will be propagated and amplified in the fitting and
interpolation procedures. In this paper, we focus on how
to reduce the second kind of error: noise-related error.
Furthermore, some works [10–13] on combining parallel
imaging with compressed sensing and low-rank algo-
rithms have been proposed. Reconstruction quality and
imaging speed have been greatly enhanced.
Although some methods, including regularization-based

method [14, 15] and iterative reweighted least-squares
method [16], reduce the noise level in matrix inversion
process, they fail to consider the noise generation routine
in GRAPPA reconstruction. We analyze it and discover
that non-linear noise is generated in the propagation
process. Finite impulse response (FIR) model is currently
used in GRAPPA reconstruction [17, 18]. It models
GRAPPA as a linear filter. The linear filter cannot remove
non-linear noise. This article presents a new method—
adaptive Volterra GRAPPA (AV-GRAPPA)—to address
the poor SNR problem in GRAPPA. Based on the theory
of adaptive Volterra series, adaptive Volterra filter can be
used for suppressing non-linear noise. The first part of the
paper introduces the existing problems. The second sec-
tion presents the background. The third part gives the
proposed method. Experimental results are provided in
the fourth part. Conclusion is given in the fifth part.

2 Theory
GRAPPA reconstruction can be generalized as a fitting
and interpolation processes in the following equation [6]:

S j ky þ r∙Δky; kx
� � ¼ XL

l¼1

XNa

b¼−Nb

XHr

h¼−Hl

w j;r l; b; hð Þ

�Sl ky þ b∙R∙Δky; kx þ h∙Δkx
� �

ð1Þ
where S is k-space signal, w denotes weight coefficient
set, R represents reduction factor, j is the target coil, l
counts all coils, b and h are transverse neighbor acquired
points. Indices kx and ky count through frequency en-
coding and phase encoding directions, respectively.
The weight coefficients are calculated by least-squares:

x̂ ¼ minx b−Axk k2 ð2Þ
Generally, the errors in the inverse process can be re-

duced in regularization SENSE and GRAPPA recon-
struction [16, 17]:

x̂ ¼ minx b−Axk k2 þ λ xk k2 ð3Þ
where λ is regularization parameter. If noise can be sup-
pressed with keeping a low level of aliasing artifacts,
regularization strategy is actually effective for reconstruc-
tion. Otherwise, aliasing artifacts will deteriorate image
quality seriously even noise can be reduced to some extent.
Because the linear filter has a well-established theoret-

ical basis, simple mathematical analysis, and easy design
and implementation, it has been widely used. However, it
is found that in the presence of non-linearity such as satel-
lite links, high-speed communication channels, and echo
cancelation, the linear filter’s performance is not ideal due
to the inherent disadvantages of the linear adaptive filter.
In order to overcome the shortcomings of linear filters
and improve system performance, non-linear filter theory
research has gradually become popular. In recent years, a
variety of non-linear adaptive filtering methods have been
proposed, such as morphological filter, homomorphic fil-
ter, order statistics filter, Volterra filter, and other polyno-
mial filters. Volterra filter [19–21] studies both of the
linear structure and non-linear structure of the system. It
is suitable for constructing non-linear models of various
systems and has broad application prospects. In actual
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application, the system features are unknown or time-
varying, and parameters of the filter cannot be known in
advance. Non-linear active noise control (ANC) plays an
important role in the field of non-linear signal processing.
The non-linear characteristics contained in the Volterra
filter are suitable for creating a non-linear system model
and it can effectively realize non-linear active noise con-
trol. Therefore, the non-linear active noise control based
on Volterra filter may become feasible for adaptive signal
processing in parallel MRI reconstruction.
The flowchart of the proposed method is presented in

Fig. 1. Given the noisy input signal samples A and noisy
desired output signal samples b, we are trying to estimate
the true model parameters x′, which is driven by na oise-
less input signal A′ and produced noiseless output signal
b′. Volterra series has been widely used in signal process-
ing, which was developed for modeling non-linear behav-
ior [20]. Conventional GRAPPA can be considered as a
linear and time-invariant system via convolution formula
for the output v(t) in terms of the input z(t):

v tð Þ ¼
Z

s τð Þz t−τð Þdτ ð4Þ

where z(t) and v(t) represent the input and output, respect-
ively, and s(t) is the impulse response of the system. A
non-linear system is characterized by the Volterra series as

v tð Þ ¼ s0 þ
Z ∞

n¼1
…

Z
sn τ1; τ2;…; τnð Þz t−τ1ð Þ…z t−τnð Þdτ1…dτn

ð5Þ

where sn(τ1, τ2,…, τn) are called Volterra series coeffi-
cients. In mathematics, Volterra series represent an expan-
sion of dynamics, non-linear, and time-invariant function.
Volterra series can describe the input and output transfer
characteristics of a non-linear system, which is also re-
ferred to as Volterra filter. The major drawback of
Volterra filter is that a large number of weights are needed
to be computed which deteriorates computation cost.
Furthermore, if n = 1 as shown in Eq. (5), it is a linear filter.
Fig. 1 Flowchart of the proposed method
GRAPPA is essential a fitting and interpolation prob-
lem, which needs data consistency to obtain optimal fit-
ting weights. If weights are more accurate, reconstructed
missing k-space signals are more accurate. Otherwise,
serious noise and artifacts will be appearing in the re-
constructed image. The proposed adaptive Volterra
filter-based GRAPPA reconstruction is presented as the
following equation

S j ky þ r � Δky; kx
� � ¼ w 0ð Þ

j;r þ
XL
l¼1

XNa

b¼−Nb

XHr

h¼−Hl

w 1ð Þ
j;r l; b; hð Þ

�Sl ky þ b � R � Δky; kx þ h � Δkx
� �

þ
XL
l¼1

XNa

b¼−Nb

XHr

h¼−Hl

XL
l
0 ¼1

XNa

b
0 ¼−Nb

XHr

h
0 ¼−Hl

½w 2ð Þ
j;r l; b; h; l

0
; b

0
; h

0� �
� Sl ky þ b � R � Δky; kx þ h � Δkx

� �

�Sl0 ky þ b
0 � R � Δky; kx þ h

0 � Δkx
� �

�
ð6Þ

where w denotes weight set, which has constant, first-
order, and second-order parts, respectively. The first-
order part of the equation is equivalent to the conven-
tional GRAPPA that linearly combine the data acquired
from both phase (ky) and frequency (kx) directions from
all coils. The constant and second-order parts of Eq. (6)
suppress the second-order non-linear noise. Noting that
this relation is non-linear in terms of input of acquired
k-space data, but linear in terms of the weights w, it is
possible to calculate the weights in matrix form similar
to Eq. (2), which can simplify the process of solving
weights. After the missing k-space, data are recon-
structed, existing ACS lines and acquired lines are used
to replace the corresponding reconstructed k-space data
for the final sum of squares reconstruction.
A large computation cost is needed to solve the

weights presented in Eq. (6), which is unbearable if all
second-order terms are calculated. Truncated Volterra
series representation via random and pseudorandom in-
puts has been proposed for identifying the non-linear
system [21]. In order to enhance the reconstruction
speed, only a subset of the second-order terms that are
randomly selected takes part in computing the weights.
So, AV-GRAPPA can be reformulated as follows:

S j ky þ r � Δky; kx
� � ¼ w 0ð Þ

j;r þ
XL
l¼1

XNa

b¼−Nb

XHr

h¼−Hl

w 1ð Þ
j;r l; b; hð Þ

�Sl ky þ b � R � Δky; kx þ h � Δkx
� �þXU

t¼1

w 2ð Þ
j;r tð Þ � Spt � Sqt

ð7Þ
where Spt and Sqt are randomly selected from
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Sl ky þ b � R � Δky; kx þ h � Δkx
� �

; l ¼ 1;⋯; L; b
¼ −Nb;⋯;Na; h ¼ −Hl;⋯;Hr ð8Þ

The reconstruction quality also depends on the choice
of the total number of the second-order terms. When
the number of terms U is too small, reconstructed image
has low SNR, and if the number of terms were too large,
aliasing artifacts would appear with high SNR. Similar to
the choice of convolution kernel size for optimal recon-
struction result, the number of the second-order terms
can also be chosen appropriately to achieve good recon-
struction quality.

3 Methods
The proposed method is evaluated on one phantom
dataset and two in vivo brain datasets. The Gaussian
noise is added in this phantom dataset for testing per-
formance. Informed consent was obtained from the vol-
unteer in accordance with the institutional review board
policy. Sensitivity information of each coil was obtained
by pre-scanning. Based on empirical observation of mul-
tiple reconstructions, we choose 4 × 7 convolution ker-
nel size. Furthermore, we choose 64, 48, and 38 ACS
lines for the phantom, four-channel brain, and eight-
channel brain data sets, respectively. For the proposed
AV-GRAPPA, the number of the second-order terms is
set as 672, 784, and 896 for the phantom, four-channel
brain, and eight-channel brain data sets, respectively.
The proposed AV-GRAPPA is also compared to recon-

structed images by Tikhonov regularization [14] and itera-
tive reweighted least-squares (IRLS) [16] for performance
evaluation. For visual evaluation, apart from directly com-
paring reconstructed images, difference maps and local
patches are also used for comparison. Furthermore, with
Fig. 2 Reconstructed images with ROI and difference maps of an eight-cha
reduction factor of 2.29. a Reference image with SoS reconstruction. b GRA
GRAPPA reconstruction with 40 ACS lines and 3 outer reduction factor. d R
IRLS method. f Reconstruction using AV-GRAPPA. g–k Difference maps of b
reference image good. Other methods lose some fine structures and result
sum of squares (SoS) as the gold standard, reconstructions
are also compared quantitatively in terms of the normal-
ized mean squared error (NMSE) [22], which is defined as
the normalized difference square between the recon-
structed image (Iestimated) and the SoS as the gold standard
(Istandard):

NMSE ¼
P

r Iestimated rð Þj j− Istandard rð Þj jj j2P
r Istandard rð Þj j2 ð9Þ

When the value of NMSE is larger, the quality of the
reconstructed image is deteriorated more seriously,
which suggests both increased image artifacts and noise.
For two comparison methods that reduce the noise

level, Tikhonov regularization method for GRAPPA has
an automatic mechanism to tune the parameter λ.
Following the increasing of λ, the noise of reconstructed
image will gradually disappear and aliasing artifacts will
emerge. If both noise and aliasing artifacts exist in the
content of the image simultaneously, the regularization
does not have the power to reconstruct high-quality
image, since regardless of decreasing or increasing λ, re-
constructed image is always deteriorated by noise or
aliasing artifacts. We manually tune the parameter λ for
Tikhonov regularization method to observe the gradual
changing of reconstruction results. For IRLS, two imple-
mentations: slow robust GRAPPA and fast robust
GRAPPA were proposed. Authors stated that both ro-
bust GRAPPAs have the similar performance, so we
choose slow robust GRAPPA for the comparison with-
out having to choose “outlier ratio” for different data
sets, which should be done in the fast robust GRAPPA
implementation.
nnel phantom data. The acquisition is accelerated with a net
PPA reconstruction with 64 ACS lines and 4 outer reduction factor. c
econstruction using Tikhonov regularization. e Reconstruction using
–f, respectively. AV-GRAPPA is able to reconstruct the original
in noise and aliasing artifacts
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4 Results and discussion
Figure 2 shows results of the reconstruction on phantom
data set. The difference is noticeable among these
methods. This experiment demonstrates that noised
phantom can be recovered to high-quality image with
less noise by the proposed method. Figures 3 and 4 show
reconstruction results of both in vivo data sets. For four-
channel brain imaging, reconstructions by the proposed
method achieve a good performance compared to other
methods. For eight-channel brain imaging, the difference
maps also show promising results as the previous data
sets. The proposed method focuses on removing noise
rather than suppressing aliasing artifacts, so the result of
the proposed AV-GRAPPA still has tiny aliasing artifacts.
It generally has the overall superior performance com-
pared to other methods.
Fig. 3 Reconstructed images of a set of real four-channel axial brain data. T
Reference image with SoS reconstruction. b GRAPPA reconstruction with 4
with 22 ACS lines and 3 outer reduction factor. d Reconstruction using Tikhon
using AV-GRAPPA. g–l Patches extracted from the same position in a–f, respe
image from blurring boundary. On the other hand, other methods reconstruc
Table 1 shows the NMSEs for the reconstruction
methods, in which columns represent different reduction
factors, and rows denote different data sets. We fixed the
kernel size as 4 × 7, and changed reduction factor for each
data set. AV-GRAPPA generally generates less reconstruc-
tion error compared to the conventional GRAPPA and
existing methods. We still set the number of the second-
order terms as 672, 784, and 896 for the phantom, four-
channel brain, and eight-channel brain data sets, respect-
ively. The proposed AV-GRAPPA generally outperforms
the other methods in terms of the NMSE measure. How-
ever, NMSE cannot describe the reconstructed image
quality completely and accurately, because NMSE and
other mean squared error measures do not correlate well
with a subjective assessment of image quality. For eight-
channel brain data reconstruction at reduction factor 6,
he acquisition is accelerated with a net reduction factor of 2.56. a
8 ACS lines and 4 outer reduction factor. c GRAPPA reconstruction
ov regularization. e Reconstruction using IRLS method. f Reconstruction
ctively. AV-GRAPPA is able to achieve high SNR while still keeping the
t the image with noise more or less



Fig. 4 Reconstructed images of a set of real eight-channel axial brain data. The acquisition is accelerated with a net reduction factor of 2.77. a
Reference image with SoS reconstruction. b GRAPPA reconstruction with 38 ACS lines and 4 outer reduction factor. c GRAPPA reconstruction
with 12 ACS lines and 3 outer reduction factor. d Reconstruction using Tikhonov regularization. e Reconstruction using IRLS method. f Reconstruction
using AV-GRAPPA. g–k Difference maps of b–f, respectively. Similar to the results in Fig. 3, AV-GRAPPA reduces more noise than GRAPPA, Tikhonov
regularization and IRLS method. In addition, since AV-GRAPPA has little ability to reduce aliasing artifacts, a few aliasing artifacts exist in the
reconstructed image. But, aliasing artifacts also exist in other reconstructed images, compared to which, AV-GRAPPA keeps the aliasing artifacts at a
relatively low level
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reconstructed image by these methods has been seriously
deteriorated by noise or artifacts, so NMSE measure can-
not completely reflect the degree of deterioration. Al-
though Tikhonov regularization and IRLS methods have
lower NMSE value than that of the AV-GRAPPA, they re-
construct the image with high-level noise and aliasing arti-
facts. Another reason why the number of the second-order
terms is so high for eight-channel brain data reconstruc-
tion at reduction factor 6 is that insufficient ACS lines re-
sult in deterioration in reconstruction, which is presented
in the discussion section.
Since GRAPPA constitutes both fitting and interpolation

processes, non-linear noise is generated in the final recon-
structed k-space. Second-order Volterra filter is able to re-
move it to achieve high SNR, while the previously existing
methods do not count the influence of non-linear noise.
Tikhonov regularization presents good reconstruction
Table 1 Quantitative evaluation by using NMSE measure is compare
Tikhonov regularization, IRLS, and the proposed AV-GRAPPA, which
represents the outer reduction factor, and the numbers of ACS lines
reconstructions are implemented with the same sampling pattern. T
other methods

ACS R = 4 R = 5

G(%) T(%) I(%) V(%) G(%) T(%)

Phantom imaging

64 0.0637 0.0643 0.0637 0.0331 0.2204 0.1781

Four-channel brain imaging

48 0.7283 0.1897 0.1195 0.0815 1.1265 0.3526

Eight-channel brain imaging

38 0.2063 0.2056 0.1379 0.1082 1.4566 0.7735
results at low reduction factors. Although IRLS method
can improve image quality to some extent, it still presents
some noise. In the fitting process, small or zero weights
are assigned to “outliers” in k-space, but these small or
zero weights may be not accurate when they are used for
estimating unacquired k-space signals in the interpolation.
This is one restriction of the AV-GRAPPA. The main

reason is that second-order terms in adaptive Volterra fil-
ter will distort low-frequency estimation to some extent.
As we know, magnitudes of signals at low-frequency are
much larger than that of high-frequency. Outliers in low-
frequency regions will be enlarged by the second-order
terms to distort the estimation of missing signals at low-
frequency estimation. On the other hand, it is capable of
estimating weights more accurately for the high-frequency
region in the k-space. For this reason, the proposed AV-
GRAPPA is good at suppressing noise and has little ability
d among reconstructed images of the conventional GRAPPA,
are denoted as “G,” “T,” “I,” and “V” in the table, respectively. “R”
are presented in the first column of the table. In addition, all
he proposed AV-GRAPPA generally has better performance than

R = 6

I(%) V(%) G(%) T(%) I(%) V(%)

0.1756 0.0389 1.0312 0.2496 0.0755 0.0524

0.3878 0.2157 2.1861 0.5458 0.5207 0.4797

0.6847 0.2104 1.9476 0.7356 0.6448 2.2699



Fig. 5 Brain images reconstructed with different number of the second-order terms from the same data set in Fig. 3. a A reference image with
SoS reconstruction of fully sampled data. b–g Reconstructed images using AV-GRAPPA with different numbers of the second-order terms. They
are 1 time, 3 times, 5 times, 11 times, 17 times, and 21 times of the number of the original linear terms. When the less number of the second-order
terms is used, noise cannot be suppressed completely. On the other hand, when the more number of the second-order terms is used, noise is
removed but aliasing artifacts are appearing. Therefore, the number in the middle range can help produce high-quality reconstructed image
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to reduce aliasing artifacts. Furthermore, higher-order
Volterra filter (e.g., the third-order, the fourth-order Vol-
terra filters) will deteriorate the reconstruction more ser-
iously in our experiments. The reason contains two folds:
only the second-order noise exists in the GRAPPA recon-
struction so that the second-order Volterra filter should
be used, and higher-order terms will distort the estimation
of missing signals of low frequency aggravatingly.
Because the second-order part needs to be calculated by

the adaptive Volterra filter compared to the conventional
GRAPPA, in our experiments, reconstruction time is gen-
erally about 2–5 times of the conventional GRAPPA using
the same convolution kernel size. Alternatively, the graph
in Fig. 5 can help the user to tune the parameter U to
achieve the optimal reconstruction results if the computa-
tion time is not the crucial factor when using the AV-
GRAPPA.

5 Conclusion
A non-linear noise generation is analyzed in GRAPPA re-
construction. Based on the theory of Adaptive Volterra
series, AV-GRAPPA is proposed in this paper. It contains
second-order terms to suppress noise with the non-linear
structure of the reconstruction system. The future re-
search will focus on how to solve the problem of recon-
struction quality through using a smaller number of ACS
lines and attempt to combine the proposed method with
the previous nonlinear gradient applications [23, 24].
Since the second-order terms can enlarge errors generated
by outliers in the low-frequency region, how to find a way
to avoid the estimation error to reduce aliasing artifacts is
also a major goal.
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