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Abstract

In this paper, online non-negative discriminative dictionary learning for tracking is proposed, which combines the
advantages of the global dictionary learning model and the class-specific dictionary learning model. The previous
algorithm based on general dictionary learning does not take into account the inter-class relations between classes
and make full use of tag information. In order to improve the classification ability of dictionaries, the class correlation
was proposed to guide the learning of discriminant dictionaries, which makes full use of the correlation and difference
between the atomic classes of dictionaries and introduces the tag information of the categories to improve the
discriminant ability of dictionaries. For this purpose, the Huber loss function and the Fisher weight coefficient is used
in the discriminative term to improve computational efficiency. In addition, non-negative constraints is added on
dictionaries to enhance the performance. The OTB50 and OTB100 datasets are used to evaluate our tracker and
compare with related algorithm. The experimental results show that our method performs much better than the
tracking method compared in this paper.
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1 Introduction
With the continuous development of computer hardware
and artificial intelligence algorithms in the resent years,
using machines to assist or partially replace human is the
current trend in the field of information technology. As
one of the basic research areas of computer vision, target
tracking method can provide computers with important
target motion-related information, which helps comput-
ers to analyze and understand the behavior of targets
to make decisions and actions. Although there are many
requirements for target tracking, the difficult factors of
target tracking are doubled due to complicated scene and
diversified requirements. During tracking, the appearance
of the target may change drastically due to the rotate,
occlusion, etc. There are also dramatic changes in light-
ing, rapid movement of the target, camera-shake, and
other situations, which make the target cannot be well
displayed in the image sequences. In practice, all need to
be trade-off between software and hardware environment,
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speed requirements, accuracy and robustness of the algo-
rithm that further increases the difficulty of the algorithm
research. Especially , those problems are huge challenge
for the UAV target tracking [1, 2] .
In recent years, experts, scholars, and engineers have

invested a lot of research, proposed a variety of single tar-
get tracking algorithms, and builded various databases in
order to solve these problems. Smeulders et al. [3] sum-
marized the 19 most representative algorithms of nearly
10 years. Those algorithms were divided into five classes:
matching, matching with extended appearance, matching
with constraints, discriminative classification, discrimina-
tive classification with constraints. In the recent research
literatures [4–7], the tracking methods are classified gen-
erative model and discriminative model.
Generative tracking methods describe the target

appearances using generative models and search for the
target regions that fit the models best. In general, the
target model is represented by a subspace or a basis vec-
tor consisting of a series of templates. In order to better
learn object appearance, Ross et al. [8] proposed incre-
mental visual tracking (IVT) which used principal compo-
nent analysis (PCA) to learn a low-dimensional subspace
representation, and online updated the target changes. In
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the same year, Han et al. [9] applied the mixed probability
density estimation model to the target tracking algorithm
and worked well. In 2010, Kwon et al. [10] proposed
visual tracking decomposition (VTD) model which pro-
vided an efficient strategy for dividing tracking problem
into basic observation model and motion model. Visual
tracking decomposition method integrates multiple basic
trackers into one robust compound tracker while inter-
actively improves the performance of all basic trackers.
Among the generative tracking methods, the most repre-
sentative algorithm is the tracking algorithm based on the
sparse representation. Mei et al. [11, 12] proposed L1T
algorithm of sparse representation with �1 norm to reduce
the effect of object internal factor (such as rotation, scale
transform) and object external factor (such as illumina-
tion) change. Extracting features based on the appearance
model from the data-independentmulti-scale image space
was used by Zhong et al. [13] to improve the efficiency
of the algorithm. That same year, Zhang et al. found that
the potential relationship between the sampling particles
can improve the performance of the tracking algorithm,
and then they proposed the compressive tracking (CT)
[14]. Luka and Matej [15] proposed a coupled-layer visual
model optimization method to solve rapid and significant
appearance changes. Zhou et al. [16] proposed sparse het-
erogeneous feature representation (SHFR) for multi-class
heterogeneous domain adaptation (HDA) to learn a sparse
feature transformation between domains with multiple
classes.
Different from the generative tracking methods, dis-

criminative tracking methods treat the target tracking
process as a binary classification problem. The methods
use a classifier to separate the target from the back-
ground. Babenko et al. [17] used online multi-instance
learning to capture positive and negative samples with
uncertainty as a classification algorithm for target track-
ing. Kalal first [18] used unlabeled structured data and
a semi-supervised learning algorithm to design online
tracking method. Tracking learning detection (TLD) [19]
algorithm was proposed by adding redetection after the
tracking failed. Subsequently, Hare proposed Struck [20]
algorithm which used online tructured output based on
support vector machine. The MIL tracker [21] integrated
the sample importance into an efficient online learning to
improve the preformance of classifier. Among discrimi-
native tracking algorithms, the tracking algorithm based
on correlation filter (CF) stood out and developed rapidly
with its high speed and high efficiency. Bolme et al.
[22, 23] proposed MOSSE (minimum output the sum of
squared error) algorithm based on correlation filter, which
transformed the image from spatial domain to frequency
domain, greatly reduced the memory requirements and
computational burden. João et al. [24] firstly introduced
cyclic matrix into the visual tracking method based on

correlation filter, and then the tracking method by linear
space was extended to nonlinear space in [25]. Yao et al.
[26] proposed RTINet approach for joint off-line train-
ing of deep representation and model adaptation in CF
trackers.
However, in complex environment, the discriminative

tracking algorithm can perform better. This is due to
the use of negative samples in the discriminative model,
which can avoid drifting in the tracking process. Gen-
erally speaking, combining the two models can achieve
better results than a singlemodel.Wang et al. [4] proposed
the method of online non-negative dictionary learning
(ONNDL), which was a good combination of the genera-
tive model and the discriminative model. Yang et al. [27]
combined dictionary learning with positive and negative
label information and proposed an online discriminative
dictionary learning tracking method.
In this paper, online non-negative discriminative dic-

tionary learning for tracking (ONDDLT) algorithm is
proposed, which combines the advantages of the global
dictionary learning model and the class-specific dictio-
nary learning model. The contributions of this paper are
summarized as follows:

• To solve the residual growth problem of objective
function and improve the robustness of matrix of
singular value, the �1 norm is replaced by Huber loss
function.

• Fisher weight coefficient is used to replace the
support vector algorithm of adaptive weight
coefficient in the discriminative term in order to
make the objective function easier to solve.

• Non-negative constraints on dictionaries are added to
enhance the interpretability and system performance.

• Experimental results on the tracking benchmark
shows that our tracker achieves the first tracking
performance compared with other methods based on
sparse coding in this paper.

2 Related work
2.1 The appearance representation in tracking
It’s difficult to solve how to use the appearance of the tar-
get object and its features to represent the target in the
visual tracking. In the current research of tracking algo-
rithms, different ideas and methods are proposed to solve
the problem of object appearance representation. In [4,
11, 12, 14, 15, 27, 28], the target object image was used
as the dictionary atom after feature extraction, and the
new target image was used to update the dictionary in the
tracking process, so as to reconstruct the apparent model
of the target in different periods of time. In [5, 29, 30], in
order to cope with the gesture change and occlusion of
the target object well, the target was divided into multi-
ple parts. Feature extraction is also one of the important
ways of object representation. In [30], color histogram
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statistics in color space were used as the representation
characteristics of the target. In [31], a variety of usual
feature extraction methods were used to combine and
form new features by utilizing complementary informa-
tion between features. In the research [6, 7, 32–35], deep
leaning (DL) was used as the extraction method of track-
ing algorithm and obtained great success. Wang et al. [32]
proposed the point-to-set distance metric learning which
was conducted on convolutional neural network features
of the training data extracted from the starting frames. Lei
Qu et al. [36] integrated fast histogram of oriented gradi-
ent (FHOG) and discriminative color descriptors (DD) to
further boost the tracking performance.

2.2 Discriminative dictionary learning
The goal of discriminative dictionary learning is to
enhance the discriminative ability of the coefficient vec-
tor while learning the dictionary. There are two learning
strategies: the global dictionary learning model and the
independent dictionary learning model. The global dictio-
nary learning model is to learn a dictionary whose atom
corresponds to all categories of the training set. Mairal
et al. [37] explored the structured information of the dic-
tionary through the classifier trained by the coefficient
vector, thereby improving the recognition and classifi-
cation ability of the discrimination dictionary. Pham et
al. [38] proposed joint optimization K-SVD face recogni-
tion discriminant dictionary learning. In [39], linear SVM
(support vector machine) was used to simultaneously
optimize the dictionary and classifier that made the dic-
tionary and coefficient vector more adaptive and flexible.
These global dictionary learning could use a small dictio-
nary to represent the training data but they ignored the
relationship between the category label and the dictionary
atom. The independent dictionary learning model means
that each class corresponds to a single dictionary and
each dictionary atom corresponds to only one class. Struc-
tured dictionary learning model proposed by Ramirez et
al. [40] could improve the discriminative ability of sub-
dictionaries between different categories. In [41], author
proposed an unified joint discriminative feature learning
framework in which uncontaminated and corrupted fea-
tures, classier parameters of multiple visual cues. This
paper [42] proposed to jointly learn heterogeneous fea-
tures and classifiers for multi-modality tracking under
discriminabilty-consistency constraint. In [43], they pro-
posed to extract informative feature templates and exploit
the modality consistency in discriminability and repre-
sentation ability for modality fusion-based appearance
modeling. Yang et al. [44] explored the Fisher discriminant
criterion to learn the discriminant dictionary.

2.3 Tracking algorithm based on dictionary learning
The online dictionary learning tracking method is the tar-
get tracking method based on sparse coding technology.

Different from general sparse coding, the training samples
of the target template dictionaries are increasing, and the
dictionaries are required to maintain a high update speed.
Accordingly, the online dictionary learning algorithm can
reduce the update time of the general dictionary, so as
to meet the online target tracking method’s demand for
the update speed as much as possible. In L1T [11], the
basis vector which was made up of the target template
and the minor template was used to describe the target.
The linear combination of the sparse basis vector was used
to reconstruct the candidate region particles. The target
template corresponded to the appearance of the target.
The minor template was mainly used to deal with noise
and occlusion. Zhang et al. [38] proposed a novel tracking
model which used a semi-supervised appearance dictio-
nary learningmethod. In general, a small number ofminor
template could significantly reduce the reconstruction
error. In the online non-negative dictionary learning tar-
get tracking method (ONNDL) [4], the Huber loss func-
tion was used to instead of the minor template, thereby
reducing the calculation consumption. Mathematically, it
is correct to have negative values in the decomposition
results from a computational point of view, but nega-
tive elements are often meaningless in practical problems.
This is why non-negative constraint able to enhance the
tracking performance. Both [45–48] were related with
sparse coding. The method of sparse coding combined
with non-negative constraint could improve the robust-
ness and accuracy of themodel. Sparse dictionary learning
as same as sparse coding could combined with non-
negative constraint. In addition, the dictionary learning
method of mapping gradient descent model was adopted
to solve the problem of online dictionary learning.

3 Proposedmethod
3.1 The objective function of algorithm
In general discriminant dictionary learning, training sam-
ples and their labels are all known in advance, and dictio-
naries can be fully learned through corresponding train-
ing. In the process of target tracking, the results of each
tracking provide new training samples and labels, and the
dictionary is constantly updated in the process. Accord-
ingly, we adopt the same method as Wang [4], mapping
gradient descent method, which can make the dictionary
faster and better. The Huber loss function is slower than
the �2 norm when the residuals increase, which is con-
ducive to the robustness of singular values. Therefore, in
the target function, the Huber loss function is used to
replace the norm as the reconstruction term of dictio-
nary learning. At the same time, the �1,∞ norm is used
as regularization term inspired by the class correlation. It
can fully use the inter-class relations and tag information
within the class. In conclusion, the objective function is
shown in Eq. (1).
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min
D,A

f (D,A) =
∑

i

∑

j
�δ(xij − d.ia.j) + γ

∑

c
‖Ac‖1,∞

+ β

2
L(A,W )s.t.D � 0,A � 0,d.Tk d.k

� 1,∀k.
(1)

where D is the matrix of dictionary template, A is the
matrix of expression coefficient, xij is the element of row
and column of training sample, d. is the vector of dictio-
nary template and a. is the vector of expression coeffi-
cient. L(A,W ) is the discriminative term.W is the weight
the weight coefficient matrix of the discriminative terms.
A � 0 is to make sure the coefficients are not negative. γ
and β are parameters that can be set manually to adjust
the effects of the regularization term and the discrimina-
tive term. �δ(·) represents the Huber loss function. The
specific form is shown in Eq. (2).

�δ(r) =
{ 1

2 r
2 |r| < δ

δ|r| − 1
2δ

2 otherwise (2)

where δ is the parameter of Huber loss, and it controls
the velocity of gradient descent. In the previous paper,
the support vector of the weight coefficient was used to
represent the discriminative term. The solution of Huber
loss function is too complex. In the method of Cai [39],
the Fisher discriminative can be simplified into Eq. (3).
According
to the Fisher discrimination criterion, a structured dic-

tionary, whose dictionary atoms have correspondence to
the class labels, is learned so that the reconstruction error
after sparse coding can be used for pattern classifica-
tion. Meanwhile, the Fisher discrimination criterion is
imposed on the coding coefficients so that they have small
within-class scatter but big between-class scatter.

L(A) =
C∑

c=1

⎛

⎝
∑

yi=c,yj=c

(
1
nc

− 1
2n

) ∥∥a.i − a.j
∥∥2
2

+
∑

yi=c,yj �=c
− 1
2n

∥∥a.i − a.j
∥∥2
2

⎞

⎠
(3)

In Eq. (3), yi = cmeans the label is class c, otherwise, the
label is not class c. It can be seen from this formula, the
weight coefficient between the same class and different
class is relatively fixed, so as to increase the discriminating
ability and reduce the computational complexity. Since the
coefficient of the interclass term in Eq. (3) is negative, it
cannot be proved that the objective function is convex. In
the process of tracking, the basis vector of the target dic-
tionary is constantly updated, and the context relation of
the basis vector of the background dictionary is required
to be as weak as possible, and the new background tem-
plate is also used to update. Therefore, the influence on

the dictionary discriminative will be small when the class
terms are removed, and the objective function can be
guaranteed to be a convex function for solving. Further,
the discriminant term in Eq. (3) is simplified as

L(A,W ) =
∥∥∥ATWA

∥∥∥
1

(4)

In Eq. (4),W=
[
W o 0
0 W b

]
,W o is the weight coefficient

matrix of target andW b is the weight coefficient matrix of
background, both can be calculated by using Eq. (2). Here,
we only give the calculation ofW o:

W o =

⎡

⎢⎢⎣

2 + n0
n − 4

n0 · · · 1
n − 2

n0
...

. . .
...

1
n − 2

n0 · · · 2 + n0
n − 4

n0

⎤

⎥⎥⎦ (5)

In Eq. (5), n0 represents the number of samples of
this class, and n represents the total number of sam-
ples. In conclusion, the objective function of the online
non-negative discriminative dictionary learning tracking
model is written again as

min
D,A

f (D,A) = ∑
i

∑
j

�δ(xij − d.ia.j) + γ
∑
c

‖Ac‖1,∞+ β
2

∥∥∥ATWA
∥∥∥
1

s.t. D ≥ 0,A ≥ 0,d.Tk d.k ≤ 1,∀k
(6)

3.2 The solution of the expression coefficient A
After obtaining the dictionary template D, there are two
expression coefficients to be solved. First, the expression
coefficients of candidate particles need to be solved for
finding the target by the relevant generation function or
discriminant function. Second, the corresponding class
sparse coefficient should be solved when the template
dictionary online is updated. In this section, we mainly
introduce the solution method of the corresponding class
sparse coefficient. Here, the objective function in Eq. (6)
is a convex function with constraint term (A � 0). The
constraint term is written into the objective function as
shown in Eq. (7) by using Lagrange multiplier method.

〈A〉 = min
A

∑

i

∑

j
�δ(xij − d.ia.j) + γ

∑

c
‖AcAc‖1,∞

+ tr(�TA)+β

2

∥∥∥ATWA
∥∥∥
1

(7)

Among them, the tr(·) is matrix rank, � is the Lagrange
multiplier. Due to the existence of the �1,∞ norm, the
above equation is a non-smooth convex function and has
not a closed solution. For the solution of �1,∞ norm, other
parts must be smooth convex function. At this point,
we introduce the separation variable A′ and divide the
solution into solving two unknown approximate func-
tions. Then, the objective function about A is rewritten as
Eq. (8):
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〈
A,A′〉 =min

A,A′

∑

i

∑

j
�δ(xij − d.ia.j) + γ

∑

c

∥∥A′
c
∥∥
1,∞

+ tr(�TA) + α

2
∥∥A − A′∥∥2

2 +β

2

∥∥∥ATWA
∥∥∥
1
(8)

Since there are two unknown variables in the target
function, and all unknown variables cannot be solved at
one time, the most similar value needs to be obtained by
multiple cross iterations (ADMM) as the solution of the
objective function, so the solution can be solved in two
steps again.
A)For sub-problem A, we can re-design it as

〈A〉 = min
A

∑

i

∑

j
�δ(xij − d.ia.j)+tr(�TA)

+α

2
∥∥A − A′∥∥2

2 +β

2

∥∥∥ATWA
∥∥∥
1

(9)

For the above equation, there is no closed solution, so
the following update method that satisfies the KKT con-
dition is used to iterate the expression coefficient A until
it converges.

ap+1
kj = apkj

[
(Zp � X)TD

]

kj[
(Zp � (D(Ap)T))

TD + β
2A

pW
]

kj
+ α

(
apkj − a′p+1

kj

)

(10)

In Eq. (10), p represents the pth iteration, � represents
the element dot product between the matrix, X is the
matrix of training sample, and zij of matrix Z represents
the weight coefficient of the jth characteristic of particle i,
matrix Z can be obtained by Eq. (11).

zpij =
{

1
∣∣∣rpij

∣∣∣ < δ

δ
rij otherwise

(11)

where rij = xij − d.ia.j is the reconstruction of residual.
B)The corresponding sub-problem A′, and the objective

function is as follows:
〈
A′〉 = min

A′ γ
∑

c

(∥∥A′
c
∥∥
1,∞ + α

2
∥∥Ac − A′

c
∥∥2
2

)
(12)

3.3 Dictionary template update
In the process of target tracking, in order to catch the
change of target appearance in time, the new target
samples are used to update the appearance presentation
model constantly. In this section, it is mainly to realize the
dictionary template update of the target object. Assuming
that at frame l, the algorithm has obtained the position
and size of the target. The target in this frame will be taken
as new training samples and the corresponding dictio-
nary will be updated. This is different from the dictionary
learning method and is similar to the online dictionary
learning algorithm ofMairal et al. [49] and the online non-
negative dictionary learning tracking algorithm of Wang

Table 1 Evaluation results of ONDDLT with/without Fisher
weight coefficient and Huber loss on OTB100 dataset

Tracker OTB100 FPS

ONDDLT 0.418 34.6

ONDDLT without Fisher weight coefficient 0.409 18

ONDDLT without Huber loss 0.412 26.4

ONDDLT without Huber loss and Fisher weight coefficient 0.405 9

et al. [4]. Here, we adopt the dictionary updating method
of Wang et al. [4].
Generally speaking, in the process of target tracking,

the probability of drastic change is very small, so the
target between every two consecutive frames is very sim-
ilar. Therefore, the training samples can be approximately
divided into low-rank components and sparse compo-
nents. The sparse components represent occlusion or
other changes. In this way, the dictionary can automat-
ically reduce the effect of occlusion when it is updated.
Here, the algorithm still uses Eq. (6) as the target function.
The optimization problem of Eq. (6) is divided into two
parts: the expression coefficientA and the dictionary tem-
plate D. The solution of the expression coefficient A was
given above. For the optimization of dictionary template
D, although it can be updated incrementally with a limited
batch size, it needs to be completely recalculated while the
new images are being inputted. Here, the mapping gra-
dient descent method is used to solve this optimization
problem as shown below:

d̃.ti = d.ti − η∇h(d.ti),d.
t+1
k =

∏
(̃dl

k) (13)

In Eq. (13), ∇h(d.ti) is the gradient vector, and η is
the update stride. The gradient vector ∇h(d.i;A) corre-
sponding to each dictionary atom d.i is shown as follows:

∇h(d.i) = ∂h(d.i;A)

∂d.i
=AT�iAd.i − AT�iyi (14)

where �i denotes the diagonal matrix whose elements
is the ith row in W t .

∏
(x) is an mapping calculation

that each column element of D is mapped to the con-
vex set C = {x : x ≥ 0, xTx ≤ 1}. While solving the
problem that the dictionary atom cannot be negative, it
also avoids the problem of atomic scalability. Inspired by
Mairal et al. [49]’s online matrix decomposition and dic-
tionary learning, the two matrices of Eq. (13) are taken as

Table 2 Comparison in terms of expected average overlap
(EAO), accuracy (A), and frames per second (FPS) on VOT2016

Tracker ONDDLT ONNDL CT MIL TLD L1T

EAO 0.178 0.162 0.140 0.149 0.158 0.167

A 0.52 0.49 0.42 0.42 0.44 0.50

FPS 37 7 40 10 9 0.4

The top one results are marked in red
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Fig. 1 Success plots compared with the relative trackers on the OTB50 and OTB100 datasets

sufficient statistical information of the sample. So that the
algorithm can online update. When updating the frame l,
the matrix is defined as

U l
i = (Al)T�iAl

V l
i = (Al)T�iyi (15)

After obtaining the result of frame l+1, the update rules
of matrix U i and V i are

U l+1
i = ρU l

i + a.l+1a.Tl+1V l+1
i = ρV l

i + a.l+1yi
(16)

In the formula, the ρ is the forgetting factor. It is the
exponential reduction of previous data. In summary, the
atomic update rules of the dictionary template are as
follows:

d̃.li = d.li − η
(
U l+1

i d.l+1
i − V l+1

i

)
,d.l+1

k =
∏

(d̃.lk) (17)

3.4 Target positioningmodule
When locating the target, the feature extraction and selec-
tion of the target image are needed first. Generally, rect-
angular bounding box is used as the size and position of
the target. However, the target is not always rectangu-
lar, so even in the correct target image blocks or the real
target location and size (ground truth), it is inevitable to
contain a small number of background areas. In addition,
the deformation or occlusion of target will have adverse
effects for tracking. These effects can be reduced if the
invariant feature and informational characteristics of the
target are selected. For this reason, the feature selection by
logistic regression with �1 norm is adopted in this section
as shown below:

min
w

∑

i
log{1 + exp[−li(wTyi + b)] } + ξ‖w‖1 (18)

where yi is a sample in the previous frame, and li is the
corresponding label. When the value is 1, it indicates that

Fig. 2 Success plots of IPR, IV, LR, and BC attributes on the OTB100 dataset
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Fig. 3 Precision plots and success plots compared with the relative trackers on the UAV123 dataset

yi is a positive sample. When the value is −1, it indicates
that yi is a negative sample. By feature selection, the com-
putational complexity of the algorithm is reduced while
the robust robust discriminative samples are provided. In
a series of tracking algorithm studies, it is shown that
detailed grid search is not suitable for most algorithms.
Because that high similarity between samples leads to
redundancy and the redundancy and the computational
complexity increases with the square multiple of the tar-
get image size. Therefore, we use the particle filter based
on the sequence monte carlo (SMC) model to select

Table 3 Comparison results of the AUC score (%) on OTB50
dataset with different values of parameters α,β , and η

Parameters
β = 0.005 β = 0.01

α = 0.05 α = 0.10 α = 0.15 α = 0.05 α = 0.10 α = 0.15

η = 0.1 46.8 46.6 45.8 45.4 45.2 44.5

η = 0.2 47.4 47.1 46.4 46.4 46.5 46.1

η = 0.3 47.0 46.4 45.8 46.6 46.4 45.9

the samples. Particle filter is a kind of sample selection
method and is used frequently in visual tracking due
to its simplicity and high efficiency. The particle filter
dynamically provides a candidate sample for the track-
ing algorithm by estimating the hidden state sequentially
by observing the sequence. The hidden state variable of
particle filter does not need to strictly follow Gaussian
distribution or some distribution with parameters. At the
same time, with the increase of the number of filters, the
approximation precision also increases. In addition, the
probability distribution of the hidden state variables can
make algorithm easier to recover from tracking failure.
The objective function of Eq. (6) is adopted as the

search method when we choose the suitable target from
the candidate particles. When the target is positioned,
the particle representation coefficient is independent exis-
tence rather than a certain class or group. Therefore,
the regularization term of the target function cannot be
applied to encode the coefficient of a class or group with
the �1,∞ norm. Here, the regularization term of the target
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function can be redefined as Eq. (18) after adopting �1
norm.
min
A

∑

i

∑

j
�δ(xij−d.ia.j)+γ ‖A‖1+tr(�TA)+β

2

∥∥∥ATWA
∥∥∥
1

(19)

Similar to the Eq. (10), there is no closed solution in the
above equation, but the expression coefficient A can be
iterated until convergence by using the following update
method which satisfies the KKT condition:

ap+1
kj = apkj

[
(Zp � X)TD

]

kj[
(Zp � (D(Ap)T))

TD + β
2A

pW
]

kj

(20)

After obtaining the representation coefficient, the parti-
cle with the maximum reconstruction value in the target
dictionary template is usually used as the predicted value,
but this method is easy to cause the problem of target
drift. The target dictionary template and the background
dictionary template are combined to improve the robust-
ness of the algorithm. That is, the reconstruction value of
the target should be as large as possible and the recon-
struction value of the background should be as small as
possible. Thus, μ(‖Doao‖1 − ‖Dbab‖1) is used as the
target function, the subscript o, b respectively represents
the target and background. The parameter μ is mainly
used to control the sparse representation of particles and
constraint representation of background.
The entire steps of our ONDDLT are summarized in

Algorithm (1).

4 Experimental results and discussion
4.1 Visual tracker benchmark
In this section, our trackers is evaluated on OTB50 [50]
and OTB100 [51] datasets. The OTB50 dataset with 50
fully annotated sequences is to facilitate tracking eval-
uation. In order to increase the robustness of evalu-
ation, the OTB100 dataset adds 50 videos compared
with OTB50 dataset. For further analysis, the dataset
labeled every video with 11 attributes(illumination vari-
ation, scale variation, occlusion, deformation, motion
blur, fast motion, in-plane rotation, out-of-plane rota-
tion, out-of-view, background clutters, low resolution).
We use the one pass evaluation (OPE) with success plot
for evaluation which counts the number of successful
frames whose overlap are larger than the given thresh-
old. The success plot shows the ratios of successful frames
at the thresholds varied from 0 to 1. To verified the
robustness of the tracker, we also performed tracker on
VOT2016 and UAV123 datasets. The VOT2016 dataset
contains 60 sequences and the UAV123 dataset contains
123 sequences. The VOT2016 benchmark introduced the
expected average overlap (EAO) to measure the expected
no-reset overlap of a tracker. The videos in UAV123

Algorithm 1: Online non-negative discriminative dic-
tionary learning for tracking
Input: The initial bounding box b0
Output: The predicted target statebl=(x̂l+1, ŷl+1, ŝl+1) ,

dictionary template D and expression coefficient A
repeat
1.Getting the feature of frame l + 1 by solving the
logistic regression function
2.Solving the candidate samples coefficient
while

∥∥Ap+1 − Ap∥∥
2 < ε1 do

for the elements ap+1
kj in A do

Solving the Eq. (20) to obtain the elements
ap+1
kj in candidate samples coefficient A

end
end
3.Predicting the position and scale of target
(x̂l+1, ŷl+1, ŝl+1) ← max(D0a0 − Dbab)
4.Solving the training samples coefficient
while

∥∥At+1 − At∥∥
2 < ε0 do

while
∥∥Ap+1 − Ap∥∥

2 < ε1 do
for the elements ap+1

kj in A do
Solving the Eq. (10) to obtain the
elements ap+1

kj in training samples
coefficient A

end
end
Solving the Eq. (12) to obtain the A′

end
5.Update dictionary template
for i = 1 to n do

Update dictionary template by solving the
Eq. (13)

end
until The end of the video sequences;

dataset were captured from low-altitude UAVs. Evaluation
on the UAV123 dataset is to better measure the perfor-
mance of the tracker in different scenarios.

4.2 Ablation study
For an in depth analysis of the Fisher weight coefficient
and Huber loss, we evaluate each component on the
OTB100 dataset respectively. As can be seen from Table 1,
the tracking speed are also improved by Fisher weight
coefficient and Huber loss. Removing the effect of Fisher
weight coefficient causes the FPS from 34.6 to 18 with a
decrease of half and the AUC scores decreases about 0.9%.
The Huber loss also improves the accuracy and the speed.
Overall, the ablation study results demonstrate the effec-
tiveness of the Fisher weight coefficient and Huber loss for
tracking task.
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Fig. 4 Visualization performance of our method compared with other relative trackers on Trellis, Singer, Man, Kitesurf, and Deer

4.3 Quantitative analysis
To validate the proposed method, our tracker is compared
with the relative trackers, including ONNDL [4], CT [14],
MIL [21], L1T [11], and TLD [19]. In the evaluation, we set
α = 0.05, δ = γ = ξ = 0.01, ρ = 0.99, η = 0.2, and
β = 0.005. We compared the tracking speed of trackers
in Table 2 on VOT2016 dataset, our ONDDLT can achieve
real-time tracking while improving the precision.
Figure 1 presents the comparison results on OTB50

and OTB100 datasets. Compared to the relative ONNDL
and L1T, the performance of ONDDLT has improved a
lot on OTB50 dataset, achieving the best success rate
of 47.4% and improving the precision by 6.0% and 5.8%,
respectively. We notice that the performance of OND-
DLT has declined a lot on OTB100 dataset. However, our
tracker also achieves the best performance (41.8%) on
OTB100 dataset. We find that our tracker gets superior
performance than ONNDL with a gain of 2.2%. Over-
all, our ONDDLT performs excellent against other rela-
tive trackers on public visual tracking benchmarks. For
comprehensive analysis, the success plot over different
video attributes annotated is presented in the OTB100

benchmark. On average, our ONDDLT performs better
about 3% higher than ONNDL on all attributes. Our
method is ranked top 1 on 8 attributes and top 2 on
2 attributes, which can be explained by the advantages
of the global dictionary learning model and the class-
specific dictionary learning model. Especially, our tracker
obtains significant improvements on LR, IV, BC, and IPR
shown as in Fig. 2. More results can be found in Figure
5 of Appendix A. According to the comparison results in
Table 2 and Fig. 3, the performance of our ONDDLT are
all top one in VOT2016 and UAV123 datasets. The accu-
racy of ONNDL decreases rapidly in UAV123 dataset, but
our ONDDLT shows good robustness. To verify param-
eter robustness of trackers, we selected three important
parameters that affect the tracking accuracy in Table 3.
We can see that the accuracy of the tracker remains stable
within a certain range of parameters. When α = 0.05,β =
0.005. and η = 0.2, the AUC score achieves optimal
accuracy.

4.4 Qualitative analysis
The qualitative results are presented by visualization in
Fig. 4. These sequences are captured under the conditions
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of complicated environment. The L1T loses the tar-
get on all videos and the ONNDL loses the target on
Trellis, Kitesurf, and Deer. We can know that OND-
DLT has stronger robustness and higher accuracy com-
pared with the tracker based on sparse coding. As you
can see from the picture, our tracker predicts more
accurate position and scales than the other methods.
Specifically, our method not only has better robust-
ness and accuracy for light variation on Trellis and
Man, but also has better robustness and accuracy for
scale variation on Singer. Our method also performs
well on fast motion (Deer) and deformation (Kitesurf)
while other trackers lost the target. The reason of
improvement of tracking performance is that online non-
negative discriminant dictionary learning tracking strat-
egy is used to improve the discriminative ability for
matching.

5 Conclusion
In this paper, online non-negative discriminative dictio-
nary learning for tracking algorithm is proposed, which

combines the advantages of the global dictionary learning
model and the class-specific dictionary learning model.
To this end, we explore online dictionary learning track-
ing algorithm and introduce the online discriminant dic-
tionary learning tracking strategy. Especially, the Huber
loss function and the Fisher weight coefficient is used in
the discriminative term to improve computational effi-
ciency. In addition, non-negative constraints on dictio-
naries is added to enhance the performance. The exper-
imental results show that our method performs much
better than the tracking method compared in this paper.
Compared with current shallow features, deep learning
can more adaptively explore the semantic features of
the target. Therefore, the fusion of deep learning and
sparse representation can be studied. In addition, the
computational efficiency and performance of the track-
ing algorithm based on sparse coding can be further
optimized.

Appendix: Evaluation results of different attributes
on the OTB100 dataset

Fig. 5 Success plots of DEF, FM, OV, MB, OCC, OPR, and SV attributes on the OTB100 dataset
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