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Abstract

In recent years, deep convolutional neural networks (CNNs) have achieved great success in visual tracking. To learn
discriminative representations, most of existing methods utilize information of image region category, namely target
or background, and/or of target motion among consecutive frames. Although these methods demonstrated to be
effective, they ignore the importance of the ranking relationship among samples, which is able to distinguish one
positive sample better than another positive one or not. This is especially crucial for visual tracking because there is
only one best target candidate among all positive candidates, which tightly bounds the target. In this paper, we
propose to take advantage of the ranking relationship among positive samples to learn more discriminative features
so as to distinguish closely similar target candidates. In addition, we also propose to make use of the normalized
spatial location information to distinguish spatially neighboring candidates. Extensive experiments on challenging
image sequences demonstrate the effectiveness of the proposed algorithm against several state-of-the-art methods.
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1 Introduction
Visual tracking has been one of the most fundamen-
tal topics in computer vision due to its important roles
in numerous applications such as surveillance, human-
computer interaction, and automatic driving [1–20]. It
aims to estimate the states (e.g., location, scale, rotation)
of a target in a video after specifying the target in the first
frame usually using a rectangle. While significant efforts
have been made in the past decades, developing a robust
tracking algorithm for complicated scenarios is still a chal-
lenging task due to interfering factors like heavy occlusion,
pose changes, large scale variations, camera motion, and
illumination variations.
In recent years, inspired by feature learning based on

sparse coding [21], hierarchical features learned by CNNs
have greatly boost the performance of visual tracking
methods [22–27]. To learn discriminative representa-
tions, most of existing methods utilize information from
image (region) category, namely target or background
[24, 26, 28–30], and/or from target motion among consec-
utive frames [31, 32]. Choi et al [24] propose to utilize the
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category information when learning target/background
classification. In [28], Dong and Shen employ the distance
relationship among positive, negative, and target template
to learning more discriminative features. A feature net,
a temporal net, and a spatial net are designed in [31]
to extract general feature representation, encode target
trajectory, and refine tracking results using local spatial
object information, respectively.
Although these methods demonstrated to be effective,

they ignore the importance of the ranking relationship
among samples, which is able to distinguish whether one
positive sample is better than another positive one or not.
Different from the image classification task, visual track-
ing is location-sensitive, which means a good visual track-
ing CNN model is able to not only tell positive samples
from negative ones but also can distinguish the quality of
positive samples and hence filter out the one having the
largest overlap ratio with the ground truth. As shown in
Fig. 1, the left panel shows the cases of most existing clas-
sification scores, which can correctly distinguish positive
samples from negative ones. However, the order among
positive samples cannot be guaranteed. As a result, the
best target candidate may not obtain the highest classi-
fication score and hence it cannot be filtered out as the
tracking result.
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Fig. 1Most of existing tracking methods only require to tell positive samples from negative ones as shown by the left panel. However, this is not
enough for the visual tracking task as it needs to filter out the one having the largest IoU with the ground truth. To overcome this problem, we
propose to predict scores that are consistent with the ranking order in term of IoU with the ground truth as shown by the right panel

To address the abovementioned problem, in this paper,
we propose to take advantage of the distance ranking
relationship among positive samples to learn more dis-
criminative features. We require that the confidence score
order should be consistent with the IoU order of sam-
ples with ground truth (IoU is the intersection over union
of two bounding boxes). With such a constraint, the
model not only is able to tell positive samples from neg-
ative ones, but also has the ability to assign the highest
confidence to the candidate that is most similar to the
target template. In Fig. 1, we show an illustration of the
expected scoring scheme on the right panel. In addi-
tion, we observe that spatially close samples generally
have the same CNN features due to resolution reduction
after convolution or pooling operations. To overcome this
problem, we also propose to make use of the normal-
ized spatial location information to enhance the differ-
ence of spatially neighboring candidates. Figure 2 shows
that the proposed approach is able to achieve better per-
formance compared to several state-of-the-art tracking
methods.
In summary, wemake the following contributions in this

paper:

1. We propose a tracking method to take the ranking
relationship among samples into consideration,
which is able to estimate samples’ scores with the
consistent ranking in terms of the IoU metric with
the ground truth.

2. We propose to take advantage of the location
information of samples to distinguish them from each
other even in the case they are closely positioned.

3. Extensive experimental results on large object
tracking datasets show the effectiveness of the
proposed tracking methods in comparison with
several state-of-the-art tracking methods.

2 Related work
In this section, we briefly review the closely related track-
ing methods.
Generally, most of existing tracking methods falls into

either the non-CNN-based category or the CNN-based
category according to whether CNN features are used.
The non-CNN-based tracking methods usually employ
the sparse coding framework to obtain effective image
representations [17, 33–38]. In [17], spatial structure
among selected local templates are enhanced to exclude
distractors introduced by noisy templates. Lan et al.
[33, 35, 36] propose to mine the common and specific pat-
terns in sparse codings so as to discriminate positive and
negative examples.
Wang et al. [39] first introduce the deep learning tech-

nology into the visual tracking task, where a denoising
auto-encoder is employed to learn compact image repre-
sentations in a self-supervised manner. After that, Hong
et al. propose to make use of the gradient back-
propagation algorithm to generate a saliency map for the
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Fig. 2 Comparison of the proposed approach against state-of-the-art tracking methods ADNet on three example sequences challenged by large
occlusion (top row), illumination variation (middle row), and fast motion (bottom row). Our approach performs more robustly than the ADNet
tracking method

tracking target in order to facilitate to localize the target.
These two methods only utilize CNN features extracted
from one of the last fully connected (FC) layer. How-
ever, the deeper features are rich in semantic information,
which benefits the tracker to distinguish target from back-
ground. But visual tracking is a location-sensitive task,
and deeper features cannot provide spatial details as its
low spatial resolution (1 × 1 resolution for FC features).
To overcome this problem, [40] proposes to combine
CNN features extracted from both shallow layers and
deep layers, which shows to be effective on visual tracking
benchmarks. One drawback of [40] is that the combina-
tion weights for different features are fixed for all frames
and all videos. This is not feasible because different fea-
tures perform best in different scenarios. To overcome
this problem, Qi et al. [22] propose to adaptively generate
combination weights via an improved Hedge algorithm.
The aforementioned methods use pretrained CNN mod-
els for the image classification task. Due to the fundamen-
tal difference between these two tasks, directly adopting
or simply fine-tuning image classificationmodels limit the
performance of CNNs. To better adapt to visual tracking
task, a multi-domain CNN is designed in [41] to avoid
category ambiguity that one class is the tracking target
in one video while being background in another video.
Nam and Han [41] also introduce hard negative sample
mining and bounding box refinement to further improve

tracking performance. Very recently, [42] propose to
enhance tracking results via pixel-wise object segmen-
tation. The advantage of segmentation based methods
is that rotated minimum bounding rectangle instead of
axis-aligned box can be determined.
The other line is to develop real-time CNN-based track-

ing methods. Tao et al. [43] propose the first real-time
CNN-based tracking method. They design a siamese net-
work to learn a similarity function and using ROI pooling
to reduce repeated feature calculation. The price is to sac-
rifice tracking accuracy. Later, Bertinetto et al. [44, 45]
propose to implement correlation filter learning within
the end-to-end CNN training, which achieves a balance
between the tracking accuracy and tracking speed. In
[46], Yun et al. propose to determine the target state in
a new frame via moving the tracking result in the pre-
vious frame in left/right/up/down four directions and
zoom in of zoom out the bounding box until an stop
action is generated. This method avoids selecting track-
ing target in hundreds of target candidates and hence
improve the tracking speed. Very recently, [25] propose
to quickly adapt pretrained CNN models to test image
sequences via meta-learning, which usually accomplish
adaptation to new videos within five iterations. Li et al.
[47] propose to integrate region proposal network into
siamese network to address the scale problem of siamese
network.
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Overall, most of existing CNN-based visual tracking
methods just make use of image region category informa-
tion and/or target motion information. They neglect the
ranking relationship among samples, and hence, the pos-
itive target candidate with highest confidence may not be
the best. To overcome this problem, we propose a tracking
method to align the confidence ranking consistent with
that of IoU score compared to ground truth.

3 Method
In this section, we first detail the proposed neural network
and then we describe how to train the network.

3.1 Architecture
The proposed deep convolutional neural network is
equipped with two branches in a siamese architecture
as shown in Fig. 3. In each branch, the first three lay-
ers are used to learn common representations among
all kinds of objects, such as corner points and edges. It
can be implemented using pretrained CNN models orig-
inally designed for image classification, such as AlexNet
[48], VGG [49], and ResNet [50]. Here, we adopt the first
three layers of VGGM [51] due to its balance between
computational cost and classification accuracy. The next
three fully connected layers are used to learn high level
embeddings of the input image. It is initialized ran-
domly from a Gaussian distribution. Before classifica-
tion, we concatenate the image embeddings and its spa-
tial information (xi, yi,w/W , h/H), where (xi, yi) denote
the coordinate of the top-left point of the input image
region, w, h denote the width and height of the image
region, and W ,H denote the width and height of the
video frame.

We employ the softmax loss as the supervision for
target/background classification:

lcls(xi, yi) = −f (xi)yi + log

⎛
⎝∑

j=0,1
ef (xi)j

⎞
⎠ (1)

where yi denotes the class label of the input image region
xi, f (xi)yi denotes the yith element of the network output
f (·), j = 0, 1 denote the class labels: 0 for background, 1
for target. To constrain the network predicted scores to
be consistent with their ranking in terms of IoU with the
ground truth, we also adopt the margin ranking loss:

lrank(xi, xj) = max
(
0,m − (

f (xi)1 − f (xj)1
))

(2)

where xi, xj denote two input image regions andm denotes
the least margin. If the training sample xi has a larger IoU
with the ground truth than xj, it should rank before xj
which means its probability being the target f (xi)1 should
be larger than f (xj)1. The overall loss for a training pair
(xi, yi, xj, yj) is

L(xi, yi, xj, yj) =lcls(xi, yi) + lcls(xj, yj)
+ lrank(xi, xj) (3)

3.2 Training
The network is trained in the end-to-end scheme using
stochastic gradient descent (SGD) with moment 0.9. The
training data is sampled according to [41]. In each frame
5500 samples are randomly extracted around the ground
truth. The learning rate is fixed to 2e − 4. In each itera-
tion, each mini-batch contains 32 positive and 32 negative
samples, which have≥ 0.7 and≤ 0.5 IoUwith the ground

Fig. 3 The main architecture of the proposed neural network. In the training phase, it takes two image regions as input and output the
target/background classification scores. Softmax loss and margin ranking loss are employed for training. In the test phase, only one branch is
remained
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Table 1 AUC score and precision at a threshold of 20 pixels on
the OTB100 dataset for the ablation analysis on the ranking loss
(denoted by RL) and spatial location feature (denoted by SLF)

Ours Ours w/o RL Ours w/o SLF

AUC 0.668 0.641 0.653

Precision 0.895 0.873 0.882

w/o denotes “without”

truth bounding box, respectively. The network converges
at about 200 iterations.

3.3 Tracking
Let xi denotes the ith target candidate, the tracking result
is the one with the largest target confidence:

x∗ = argmaxi=0,··· ,Nf (xi) (4)

where N denotes the number of target candidate. Accord-
ing to [41], the model will be updated when the maximum
target confidence is less than zero or after a fixed inter-
val (short-term update interval is 20 frames and long-term
update interval is 100 frames). The data for model update
are sampled in each frame around the tracking result.

4 Experiments
In this section, we first introduce the evaluation proto-
cols. Then, we examine the effectiveness of the proposed
tracking method on large scale datasets compared to
state-of-the-art tracking methods.

4.1 Evaluation protocols
We adopt the commonly used success plots and precision
plots [52] as the main evaluation metrics, which avoid the

drawback of using only one threshold to measure the suc-
cess. The trackers in success plots are ranked in terms of
the area under curve (AUC) and are ranked in precision
plots in terms of success rate at a threshold of 20 pixels
between center points of tracked results and ground truth.
The implementation is based on PyTorch. We sample

300 target candidates in each frame. The model is update
every 20 frames or when the largest confidence is nega-
tive. The unoptimized code runs at 1 FPS on a machine
with an i7-3.4 GHz CPU and a GeForce GTX 1080 GPU.
Fine-tuning samples are collected as the video goes, where
50 positive and negative samples are extracted in each
tracked frame around the tracking result.
We compare the proposed method with six state-of-

the-art tracking approaches including ADNet [46], CFNet
[45], HDT [22], MCPF [53], CREST [54], andMetaTracker
[25].

4.2 Ablation analysis
In this section, we evaluate the effectiveness of the intro-
duced ranking loss and the spatial location features,
respectively. Table 1 presents the tracking performance on
theOTB100 dataset in terms of AUC and precision scores.
It shows that the tracking performance drops about 2% if
the ranking loss is not employed. If the spatial location fea-
tures are not used, the tacking accuracy drops about 1% in
terms of both AUC and precision metrics. These demon-
strate the effectiveness of both the ranking loss and the
spatial location features.

4.3 Quantitative evaluation
In Fig. 4, we provide the overall performance on the
OTB100 dataset. It shows that the proposed tracking
method achieves favorable performance compared to

Fig. 4 Tracking results based on 11 attribute in terms of precision plots
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Fig. 5 Tracking results based on 11 attribute challenges in terms of success plots
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Fig. 6 Tracking results based on 11 attribute in terms of precision plots
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state-of-the-art trackers such as MetaTracker, CREST, or
ADNet. Specially, our trackingmethod performs about 4%
better than CREST, which takes both appearance infor-
mation and temporal motion information into consider-
ation. In contrast, the only motion cues utilized in our
method happens during the target candidate sampling,
which adhere by a Gaussian distribution centered at the
last tracking result.
To further evaluate the proposed method, we also con-

duct the attribute-based performance evaluation on the
OTB100 dataset in terms of success plots and precision
plots. The results are presented in Figs. 5 and 6. The
results in Fig. 5 show that our tracking approach per-
forms best on 7 out of 11 attributes, which includes faster
motion, deformation, illumination variation, in-plane and
out-of-plane rotations, low resolution, and out-of-view.
In the of tracking precision, similar performance can be
observed in Fig. 6.
For completeness, we also present the tracking results

on the VOT 2016 dataset [55] in Table 2. The results show
that our method performs favorably with an EAO of 0.320
compared against state-of-the-art tracking methods, such
as CCOT [56] and SiamFC [44].

4.4 Qualitative evaluation
In Fig. 7, we present sample tracking results of the eval-
uated methods on both OTB100 [52] and UAVDT [57]
datasets. For presentation clarity, only results of the top 7
performing trackers are shown.
Occlusion. The target in the UAV-Traffic sequence S0103
undergoes occlusions caused by trees. Only the proposed
method and MDNet are able to locate the target, while
other trackers such as CREST and ADNet falsely locate
on background out of the view as shown in frames 75 and
152. Similar performance happens in the OTB100 video
Girl2, where the target girl gradually occluded by a man
walking with a bicycle. Such success can be attributed to
powerful deep CNN features regularized by both the clas-
sification loss and the ranking loss, as well as the spatial
location loss.
Camera motion. The target object in the BlurBody image
sequence is blurred due to camera shaking. For such
an image sequence, the proposed tracking method and
CCOTmethods are still able to precisely locate the target.

Table 2 Tracking results on the VOT2016 dataset in terms of
expected average overlap (EAO), accuracy rank (A), and
robustness rank (R)

Trackers Ours CCOT Staple MDNet EBT SiamFC

EAO 0.320 0.331 0.295 0.257 0.291 0.277

A 1.47 1.98 1.87 1.72 3.62 1.30

R 2.10 1.95 3.23 2.8 2.13 3.17

In contrast, other trackers such as ADNet and MCPF
locate the target with much background as shown in
frame 236. The effectiveness of the proposed algorithm
benefits from the camera motion branch as evaluated
in Table 1. In the UAV-Traffic image sequence S0602,
the camera hovers over the crossroads, which leads to
huge appearance variance of the target (the blue bus).
The bounding boxes show that the proposed approach
tracks the target more accurately than others during the
hover, while ADNet falsely locates on the road and MCPF
fails to identify the target from background as shown in
frame 291.
Object motion. The target in the OTB100 sequence
DragonBaby hits his opponent using the turn-around
kick. As shown by the bounding boxes, both the proposed
trackingmethod andMCPFmethods are able to locate the
target accurately in such a procedure, but other trackers
lose the target, such as ADNet. With reference to ablation
evaluations in Table 1, both the spatial location features
and the ranking loss helps to capture discriminative infor-
mation in such a scene.
Scale. In the UAV-Traffic sequence S1701, the size of the
target bus changes intensively and the observation view
changes from bird-view to side-view, which cause large
appearance variations. In such a challenging scene, the
proposed ANTmethod locates the target more accurately
than others such as MDNet and HDT, as shown in frames
200 and 324. The performance gain of the proposed algo-
rithm can be mainly attributed to the ranking loss, clas-
sification loss, and spatial location features, which learns
robust representations under various challenges.
Illumination. The target in Ironman has drastic move-
ments in a dark night with large illumination changes in
the backgrounds. In such a poor lighting condition, the
proposed algorithm accurately locates the target in most
frames while other trackers drift far away as shown in
frames 129 and 165. Similar performance can be observed
in the UAV-Traffic sequences S1301 and S1303. As evalu-
ated in Table 1, the illumination branch contributes most
in such situations.

5 Conclusion
In this paper, we propose a novel tracking method, which
takes advantages of the ranking relationship among pos-
itive samples to learn more discriminative features so as
to distinguish closely similar target candidates. To achieve
this goal, we propose a sample ranking method to select
discriminative samples. In addition, we also propose a
spatial normalization method to make use of the normal-
ized spatial location information to distinguish spatially
neighboring candidates. Extensive experiments on chal-
lenging image sequences demonstrate the effectiveness
of the proposed algorithm against several state-of-the-art
methods.
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Fig. 7 Several samples of tracking results on both the OTB100 dataset and the UAV dataset (from top to bottom, left to right: BlurBody, Girl2,
DragonBaby, Ironman, S1701, S0602, S1301, S0103, and S1303)
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