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Abstract

Frequency estimation of a tonal signal in passive sonar systems is crucial to the identification of the marine object. In
the conventional techniques, a basis mismatch error caused by the discretization of the frequency domain is
unavoidable, resulting in a severe degradation of the object detection quality. To overcome the basis mismatch error,
we propose a tonal frequency estimation technique in the continuous frequency domain. Towards this end, we
formulate the frequency estimation problem as an atomic norm minimization problem. From the numerical
experiments, we show that the proposed technique is effective in identifying the tonal frequency components of
marine objects.
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1 Introduction
Recently, passive sonar has received much attention as
a means to detect acoustic signals radiated from marine
objects (e.g., submarines, ships, and marine animals)
[1–4]. The passive sonar system is preferred since an
intentional signal transmission is unnecessary.
Roughly speaking, the signal detected by the passive

sonar consists of four components: tonal signal, pro-
peller noise, hydrodynamic noise, and ambient noise [5]
(see Fig. 1). Among them, the tonal signal, the sum of
sinusoidal tones occurred by a marine object [6], has
received special attention as a tool to identify the marine
object. Since each object can be characterized by the
frequency dependent features, accurate identification of
the frequency components in a tonal signal is of great
importance for the target object detection.
Traditionally, an approach to use the discrete Fourier

transform (DFT) has been popularly employed for imple-
mentation simplicity [7]. One well-known drawback of
this approach is that the frequency resolution (spacing
between adjacent points in the frequency domain) is lim-
ited. In fact, since the frequency resolution of the DFT-
based approach is inversely proportional to the observa-
tion interval, a small observation time might cause a basis
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mismatch in the frequency domain, resulting in a severe
degradation of the object detection quality. To overcome
the shortcoming, various spectral estimation techniques
have been proposed over the years [8–10]. Representa-
tive techniques include root multiple signal classification
(root-MUSIC) [8], estimation of signal parameters via
rotational invariance techniques (ESPRIT) [9], and matrix
pencil algorithm [10]. These approaches estimate the fre-
quency components using the eigenvectors in the signal
subspace. In obtaining the signal subspace, the correla-
tionmatrix constructed from the large number of sampled
data is required. In addition, the number of frequency
components should be known a priori or estimated in
advance, to determine the number of eigenvectors used in
the frequency estimation.
As an alternative approach, compressed sensing (CS)-

based techniques have been employed in identifying the
tonal frequency components [11, 12]. It is now well-
known from the theory of CS that a high-dimensional
signal can be recovered from a relatively small number of
measurements as long as the desired signal is sparse (i.e.,
the number of nonzero elements in the signal is small).
The main observation behind the CS-based techniques
is that a tonal signal consists of a small number of fre-
quency components. Motivated from this observation, the
CS-based techniques construct a discretized frequency
basis and then identify the basis components represent-
ing the tonal signal. While the CS-based approaches are
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Fig. 1 Types of signal in underwater environments

effective in terms of the computational complexity and
the accuracy of the estimated frequency components, a
basis mismatch error caused by the discretization of the
frequency axis is unavoidable.
The primary goal of this paper is to put forth a new

approach to estimate the frequency components of the
tonal signal. The key idea of the proposed approach is to
formulate the tonal frequency estimation problem as an
atomic norm minimization (ANM) problem [13–15]. In
a nutshell, ANM can be thought as an extension of the
CS technique in which the sensing matrix is allowed to
have an infinite number of columns (atoms). One clear
benefit of using the ANM technique is that one can avoid
the basis mismatch error caused by the discretization of
the frequency domain, since ANM identifies the desired
frequency components in a continuous domain.
From the simulations using synthetic and real experi-

mental data, we demonstrate that the proposed detection
technique is effective in identifying the tonal frequency
components. In particular, when the number of frequency
components is larger than 15, the proposed technique
shows roughly two times larger success probability than
those of the conventional techniques. By the success prob-
ability, we mean the probability of estimating all the tonal
frequency components within an error of 1/N where N is
the number of measurements.
We briefly summarize the notations used in this paper.

Vectors are written as boldface lowercase letters (e.g., r),
and matrices are denoted by boldface uppercase letters
(e.g., A). For a vector r ∈ C

N , r[ n] is the nth element of
r. Toep(r) ∈ C

N×N is the Hermitian Toeplitz matrix with

r as its first column. For a matrix A ∈ C
N×L, al ∈ C

N is
the lth column of A. AT and A∗ are the transpose and the
conjugate transpose of A, respectively. ‖A‖F is the Frobe-
nius norm of A. For a square matrix M ∈ C

N×N , tr(M) is
the trace ofM.

2 Signal model
We consider the practical scenarios where the tonal sig-
nal dominates the received signal and is used in detecting
a marine object. The signal r(t) detected by the passive
sonar is expressed as [5, 6, 16]

r(t) = rtonal(t) + rpropeller(t) + rhydro(t) + u(t). (1)

rtonal(t) is the tonal signal generated frommachinery com-
ponents of a marine object, and rpropeller(t) is the propeller
noise produced by the rotation of a propeller and then
modulated by cavitation. rhydro(t) is the hydrodynamic
noise caused by the friction between a marine object and
waves, and u(t) is the ambient noise including surface
noise, molecular motions, and seismic noise. Further-
more, it is well-known that the tonal signal is expressed as
a linear combination of complex sinusoids, i.e.,

rtonal(t) =
k∑

i=1
Ai cos(2π fit), (2)

where Ai ∈ C is the (complex) amplitude of the ith fre-
quency component [16]. Also, the propeller noise is given
by [6]
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rpropeller(t) =
(
1 +

p∑

m=1
Bm cos

(
2π(m̃f0)t

))
c(t), (3)

where f̃0 is the undesired harmonic frequency caused by
propeller rotations, Bm ∈ C is the amplitude of the mth
harmonic frequency component, and c(t) is the Gaussian
cavitation noise. Then, the signal rl ∈ C

Ñ sampled at the
lth channel can be expressed as

rl[ n] =
k∑

i=1
Ail cos

(
2π

fi
fs
n
)

+
(
1 +

p∑

m=1
Bml cos

(
2π

m̃f0
fs

n
))

cl[ n]

+ vl[ n] , (4)

where fs is the sampling frequency and vl is sum of the
hydrodynamic noise and the ambient noise.

3 Proposedmethod
In this section, we describe the proposed technique to
estimate the tonal frequency components (f1, · · · , fk) from
r1, · · · , rL. The proposed technique consists of two main
operations: (1) pre-filtering to suppress the undesired
frequency components and noise and (2) estimation of
the tonal frequency components from the filtered signal
using a modified ANM. We first describe the pre-filtering
step and then demonstrate the tonal frequency estimation
using the modified ANM.

3.1 Noise suppression via pre-filtering
In the pre-filtering step, we first apply the low-pass filter
(LPF) followed by the decimation to the sampled signals
{ri}Li=1. In order to prevent the aliasing phenomenon, we
set the cutoff frequency fc of the LPF to be smaller than
fs/α where α is the decimation ratio. Since the desired
tonal signal consists of low frequency components [6],
we need to preserve the tonal component yet filter out
unwanted high frequency interferences and noise. Using
the low-pass filter with the cutoff frequency fc and deci-
mation with the decimation ratio α (α > 1), the output of
LPF and decimation process r̃l at the lth channel is given
by

r̃l[ n]=
k∑

i=1
Ail cos

(
2π

fi
fs/α

n
)

+ c̃l[ n] +̃vl[ n] ,

n = 0, · · · ,N ,

(5)

where N is Ñ/α, c̃l[ n] is the filtered propeller noise, and
ṽl[ n] is the sum of the filtered hydrodynamic and ambient
noises.
Also, we used an auto-correlation filter defined as

Rxx(τ ) = F−1[ |X̂(f )|2] where X̂(f ) is the Fourier trans-
form of x, F−1 is an inverse Fourier transform function,

and τ is a time-lag variable. Note that an auto-correlation
filter has the property of boosting the periodic signal
and suppressing the uncorrelated stochastic noise [17].
Thus, using the auto-correlation filter, desired periodic
tonal signal is strengthened while propeller and ambient
noise components are suppressed [18]. As a result, the
pre-filtered output pl at the lth channel is given by

pl[ n] =
k∑

i=1
Ail cos

(
2π

fi
fs/α

n
)

+ wl[ n] (6)

= sl[ n]+wl[ n] , (7)

where

sl[ n] =
k∑

i=1
Ail cos

(
2π

fi
fs/α

n
)
, (8)

and wl is the output of the auto-correlation filter corre-
sponding to the input c̃l + ṽl. In [17, 18], it has been
shown that if c̃l and ṽl are white Gaussian, then the power
spectrum of wl is negligible.
Note that

sl√
N

=
k∑

i=1

Ail
2
a
(

fi
fs/α

)
+

k∑

i=1

Ail
2
a
(
1 − fi

fs/α

)
, (9)

where a(f ) =[ 1, ej2π f , · · · , ej2π f (N−1)]T /
√
N . Thus, S =

[ s1 · · · sL]∈ C
N×L can be expressed as

S =
k∑

i=1

(
a
(

fi
fs/α

)
+ a

(
1 − fi

fs/α

))
x∗
i , (10)

where xi =
√
N
2 [Ai1 · · · AiL]∗.

3.2 Tonal frequency estimation via modified ANM
The primary goal after the pre-filtering is to estimate the
tonal frequency components (f1, · · · , fk) in S from the pre-
filtered signal P =[p1 · · · pL]= S + W. To this end, we
first introduce an atom A(f ,b), defined as

A
(
f ,b

) = a
(
f
)
b∗ ∈ C

N×L, (11)

where f ∈[ 0, 1] and b ∈ C
L is an �2-normalized vector

(i.e., ‖b‖2 = 1). We also denote the set of atoms as

A = {A (
f ,b

)
: f ∈ [0, 1] ,b ∈ C

L, ‖b‖2 = 1}. (12)

In a nutshell, the atoms in A are building blocks of the
desired signal S, i.e., S can be expressed as an affine
combination of some atoms inA:

S =
k∑

i=1
‖xi‖2A

(
fi

fs/α
,

xi
‖xi‖2

)

+
k∑

i=1
‖xi‖2A

(
1 − fi

fs/α
,

xi
‖xi‖2

)
. (13)
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One can notice that while A contains an infinite number
of atoms, the number of atoms used in the representa-
tion (13) is very small. In this sense, we can readily say that
S is sparse with respect toA.

3.2.1 Conventional ANM
In the same vein as the �0-norm minimization technique
in CS, the sparse signal S (with respect to A) can be
reconstructed from P by solving [15, 19]

min
X

1
2
‖X − P‖2F + τ‖X‖A,0, (14)

where τ(> 0) is the pre-determined regularization param-
eter and ‖X‖A,0 is defined as

‖X‖A,0 = inf
K

{K : X =
K∑

i=1
ckAk , ck ≥ 0,Ak ∈ A}. (15)

Finding the solution to (14 ), however, requires a com-
binatorial search over all possible subspaces spanned
by the atoms in A, so that direct (exhaustive search)
approach is infeasible for most practical scenarios. To per-
form the reconstruction task, the ANM technique can be
employed. The key idea of ANM is to replace the noncon-
vex term ‖X‖A,0 in (14) with its convex surrogate atomic
norm ‖X‖A defined as

‖X‖A = inf
{

∑

k
ck : X =

∑

k
ckAk , ck ≥ 0,Ak ∈ A

}
.

(16)

In other words, ANM reconstructs S by solving [15]

min
X

1
2
‖X − P‖2F + τ‖X‖A. (17)

By using [15, Theorem 1]

‖X‖A = inf
{
1
2

(tr(W) + tr(Toep(u)))

:
[
W X∗
X Toep(u)

]
� 0

}
, (18)

and thus we obtain the equivalent form of (17) as

min
X,W,u

‖X − P‖2F + τ (tr(W) + tr(Toep(u)))

s.t.
[
W X∗
X Toep(u)

]
� 0

. (19)

Note that the problem (19) can be solved effectively via
a well-known SDP solver (e.g., SDPT3 [19]). Note also
that since the computational complexity of the SDP is
O(M5/2) [20] and the number of samples M is reduced
to N = Ñ/α by the decimation process, the computation
complexity of the estimation step is marginal.
We now present a method to estimate the frequency

components (f1, · · · , fk) in S (see (13)). To this end, we first

derive a dual problem of (17). By introducing a new vari-
ableY = X for the problem (17), the Lagrangian L(X,Y,Z)

associated with (17) is expressed as

L(X,Y,Z)

= 1
2
‖X − P‖2F + τ‖Y‖A + Re(tr(Z∗(X − Y)))

=
(
1
2
‖X − P‖2F + Re(tr(Z∗X))

)

+ (τ‖Y‖A − Re(tr(Z∗Y))), (20)

where Z is the dual variable. One can easily show that

min
X

1
2
‖X − P‖2F + Re(tr(Z∗X))

= 1
2
(‖P‖2F − ‖P − Z‖2F) (21)

and

min
Y

τ‖Y‖A − Re(tr(Z∗Y))

= min
Y

‖Y‖A
(
τ − Re

(
tr

(
Z∗Y/‖Y‖A

)))

=
{
0 ‖Z‖∗

A ≤ τ

−∞ ‖Z‖∗
A > τ , (22)

where ‖Z‖∗
A is the dual norm of the atomic norm defined

as ‖Z‖∗
A = sup

‖X‖A≤1
Re(tr(X∗Z)). From (20)–(22), the dual

problem of (17) is given by

max
Z

1
2

(‖P‖2F − ‖P − Z‖2F
)

s.t. ‖Z‖∗
A ≤ τ .

(23)

Let Ẑ be the solution to (23). Then, the correlationQ(f ) =
‖Ẑ∗a(f )‖2 between the solution Ẑ and the atom a(f ) is
maximized when f is one of the tonal frequency com-
ponents (i.e., f ∈ {f1, · · · , fk}). Specifically, Q(f ) satisfies
[15]

{
Q(f ) = τ , if f ∈ {f1, · · · , fk}
Q(f ) < τ , if f /∈ {f1, · · · , fk} . (24)

Therefore, we can estimate the desired frequency compo-
nents (f1, · · · , fk) by solving Q(f ) = τ .

3.2.2 Modified ANM
One potential limitation of the conventional ANM tech-
nique is that the performance is not so appealing when
the source vectors s1, · · · , sL are strongly correlated. For
better understanding of this issue, we take the following
example. If the correlation between s1 and s2 is extremely
strong (i.e., |〈s1,s2〉|‖s1‖2‖s2‖2 ≈ 1), then s1 ≈ s2 (up to a constant
factor1) and therefore the corresponding measurement
vectors p1 and p2 would be also similar (i.e., p1 ≈ p2). As a
result, ANM cannot obtain any additional information on

1Note that |〈s1,s2〉|‖s1‖2‖s2‖2 ≤ 1 and the equality is attained if and only if
s1/‖s1‖2 = s2/‖s2‖2 .
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the frequency components from p2, which in turn implies
that there is no benefit of using multiple measurement
vectors p1 and p2.
In order to achieve reliable performance even when

the source vectors are highly correlated, we exploit an
orthonormal basis of the measurement space in esti-
mating the frequency components. By the measurement
space, we mean the subspace spanned by the measure-
ment vectors p1, · · · ,pL. Specifically, we replace the mea-
surement matrix P in (23) with the orthonormal basis U
of span(P). Suppose the observationmatrix P ∈ R

N×L has
full column rank (i.e., rank(P) = L), then an orthonor-
mal basis of the measurement space can be obtained by
performing an singular value decomposition (SVD) oper-
ation on P. Specifically, if P = U � VH where U ∈ R

N×L,
� ∈ R

L×L, and V ∈ R
L×L, then U is an orthonormal basis

of span(P). After obtaining the orthonormal basis U, we
reformulate (23) as:

max
Z

1
2

(‖U‖2F − ‖U − Z‖2F
)

s.t. ‖Z‖∗
A ≤ τ

(25)

Let Z̃ be the solution to (25). Then, the proposed tech-
nique estimates the desired tonal frequency components
(f1, · · · , fk) by solving

Q(f ) = ‖Z̃∗a(f )‖2 = τ . (26)

We depict the overall block diagram of the proposed
scheme in Fig. 2. To verify the performance of the mod-
ified ANM technique, we perform the numerical simula-
tion in the scenario where the source vectors are highly
correlated. In our simulation, we generate the strongly
correlated source vectors s1, s2 such that |〈s1, s2〉| ≈ 0.99,
and each source vector consists of k tonal frequency
components. As a metric to evaluate the performance of
each technique, we employ the exact reconstruction ratio
(ERR) defined as

ERR = Number of successful trials
Number of trials

.

Here, each trial is defined to be successful if all the esti-
mated frequencies f̂i satisfy |fi− f̂i| < 1

2N where fi is the ith
target frequency component andN is the number of mea-
surements. Note that we perform 2000 independent trials
for each point of the technique. In Fig. 3, we plot the ERR
performance of each technique as a function of k. Over-
all, the ERR performance improves with the number of
measurement vectors L. One can see from Fig. 3 that the
performance improvement of the modified ANM tech-
nique performs much better than that of the conventional
ANM method. The key reason for this result is that p1 ≈
p2 and thus the conventional ANM obtains little informa-
tion on the frequency components from p2. Additionally,
one can observe that the ERR performance of themodified
ANM is the same as that of the conventional ANM when
L = 1, since the orthonormal basis of the measurement
space coincides with themeasurement vector (up to a con-
stant factor) in this case. In Table 1, we summarize the
critical sparsities of the proposed scheme and the conven-
tional ANM technique. By the critical sparsity, we mean
the maximum number of frequency components at which
ERR is above 0.9. From the table, we can observe that our
scheme outperforms the conventional ANM technique for
all L. For example, when L = 5, the critical sparsity of the
proposed scheme is three times higher than that obtained
by the conventional ANM technique.

4 Simulation results and discussion
In this section, we study the performance of the proposed
frequency estimation technique using both synthetic and
real datasets.

4.1 Simulation setup
First, we test the performance of the proposed technique
using synthetic data. In our simulations, we generate the
tonal signal whose frequency components are uniformly

Fig. 2 Block diagram of the passive sonar systems using proposed frequency estimation scheme
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Fig. 3 The ERR performance of the conventional and modified ANM techniques when the source vectors are highly correlated

chosen at random in the range of 0–500 Hz and ampli-
tudes of frequency components are drawn i.i.d. from a
Gaussian distribution N (1, 0.1). The base frequency f̃0 of
the propeller noise is set to 10 Hz, and we assume the
scenario where the propeller noise consists of three har-
monic components (i.e., p = 3 in (4)). The other noise
component vl in (4) is generated as a white Gaussian with
mean zero and variance σ 2. The sampling frequency fs is
set to 10 kHz. In the pre-filtering step, we set the cutoff
frequency of the LPF to 500 Hz and the decimation ratio
α to 10. In our simulations, the following frequency esti-
mation techniques are considered and we perform 5000
independent trials for each point of the technique:

1) Root-MUSIC [8]
2) ESPRIT [9]
3) Matrix pencil [10]
4) Conventional ANM [19]
5) Modified ANM

We next verify the performance of the proposed tech-
nique using real data obtained from the shallow water

Table 1 Critical sparsity performance comparison of modified
ANM and conventional ANM

L = 1 L = 5 L = 10 L = 15

Modified ANM 5 24 27 28

Conventional ANM 5 8 10 13

evaluation cell experiment 96 (SWellEx-96). Note that the
SWellEx-96 was conducted 12 km off the coast of San
Diego, CA, in May 1996, and the target source signal con-
sists of 13 frequency components (49, 64, 79, 94, 112, 130,
148, 166, 201, 235, 283, 338, and 388 Hz). In our sim-
ulations, we divide 4000 measurement vectors into 200
groups (20 measurement vectors in each group). Using
each group of measurement vectors, we estimate the tonal
frequency components.

4.2 Results and discussion
In Fig. 4, the ERR performance of each technique is plot-
ted as a function of k (number of desired tonal frequency
components). This simulation is performed in the sce-
nario where the signal-to-noise ratio (SNR) is SNR =
10 log((

k∑
i=1

|Ai|2)/(
p∑

m=1
|Bm|2 + σ 2)) = 10 dB. As shown

in Fig. 4, the ERR performance of the proposed tech-
nique is better than those of the other frequency esti-
mation techniques in the whole range of k by a large
margin.
In Fig. 5, we plot the mean square error (MSE) perfor-

mance of conventional ANMmethod and modified ANM
as a function of k. The MSE is defined as

MSE = 1
k

k∑

i=1

(
f̂i − fi

)2
.
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Fig. 4 ERR performance as a function of k

Note that the MSE performance shows how close each
of the estimated frequency components is to the origi-
nal frequency components. Wemeasured theMSE only in
the case where the estimation was successful. As depicted
in Fig. 5, the modified ANM performs better than the
conventional ANM.

In Fig. 6, we plot the MSE performance of the proposed
method and other line spectrum estimation methods
as a function of SNR. As shown in Fig. 6a, ANM-
based algorithms outperform conventional line spectrum
methods in all SNR region. In particular, when SNR =
0 dB, the MSE of the proposed scheme is 1.5 times

Fig. 5MSE performance as a function of k
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lower than that of the conventional ANM technique
(see Fig. 6b).
In our real experiment test, we say that the ith frequency

component fi is successfully estimated if |fi − f̂i| < 5. As a
metric to measure the performance of the proposed tech-
nique, we exploit the success ratio rsuccess and the mean
square error MSEsuccess of the successfully estimated fre-
quency components. Let J be the index set of success-
fully estimated frequency components. Then, rsuccess and
MSEsuccess are defined as

rsuccess = |J|
13

,

MSEsuccess = 1
|J|

∑

j∈J
|fj − f̂j|2.

In Table 2, we summarize the performance of the con-
ventional ANM-based method and the proposed tech-
nique. One can see that the success ratio rsuccess of the
proposed technique is roughly 2.5 times higher than that
of the conventional ANM-based technique. Furthermore,

Fig. 6MSE performance as a function of SNR. aMSE performance comparison of line spectrum estimation techniques as a function of SNR. bMSE
performance comparison of ANM-based scheme as a function of SNR
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Table 2 Performance comparison of ANM-based algorithms

Conventional ANM Proposed ANM

rsuccess 0.2871 0.6557

MSEsuccess (Hz) 7.7159 6.3799

the MSEsuccess of {̂fj : j ∈ J} obtained by the proposed
method is 1.2 times smaller than that acquired by the
conventional method.

5 Conclusion
In this paper, we proposed an ANM-based frequency
estimation technique to identify the tonal frequency com-
ponents in the passive sonar system. The proposed tech-
nique consists of two major steps. In the first step, we
applied the LPF, decimation, and the auto-correlation fil-
ter to the signal detected by the passive sonar, filtering out
the unwanted propeller noise and high-frequency inter-
ferences. In the second step, we formulated the tonal
frequency estimation problem as an ANM problem and
then estimated the desired frequency components using
an orthonormal basis of the measurement space. In doing
so, we could achieve reliable performance even when the
source vectors are strongly correlated. Finally, using both
synthetic and real datasets, we demonstrated that the
proposed technique is effective in estimating the tonal
frequency components.
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